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Abstract: Per- and polyfluoroalkyl substances (PFAS) are a diverse group of man-made chemicals that
are commonly found in body tissues. The toxicokinetics of most PFAS are currently uncharacterized,
but long half-lives (t 1

2
) have been observed in some cases. Knowledge of chemical-specific t 1

2
is necessary for exposure reconstruction and extrapolation from toxicological studies. We used
an ensemble machine learning method, random forest, to model the existing in vivo measured
t 1

2
across four species (human, monkey, rat, mouse) and eleven PFAS. Mechanistically motivated

descriptors were examined, including two types of surrogates for renal transporters: (1) physiological
descriptors, including kidney geometry, for renal transporter expression and (2) structural similarity
of defluorinated PFAS to endogenous chemicals for transporter affinity. We developed a classification
model for t 1

2
(Bin 1: <12 h; Bin 2: <1 week; Bin 3: <2 months; Bin 4: >2 months). The model had an

accuracy of 86.1% in contrast to 32.2% for a y-randomized null model. A total of 3890 compounds
were within domain of the model, and t 1

2
was predicted using the bin medians: 4.9 h, 2.2 days,

33 days, and 3.3 years. For human t 1
2
, 56% of PFAS were classified in Bin 4, 7% were classified in

Bin 3, and 37% were classified in Bin 2. This model synthesizes the limited available data to allow
tentative extrapolation and prioritization.

Keywords: perfluoro-alkyl substances; PFAS; half-life; machine learning model; toxicokinetics

1. Introduction

Per- and polyfluoro-alkyl substances (PFAS) are a large and diverse class of organic
chemicals in which all (per-) or some (poly-) carbon–hydrogen bonds have been replaced
with carbon–fluorine bonds [1]. Since carbon–fluorine bonds are stronger, they help make
PFAS resistant to metabolism and degradation [2]. PFAS have both hydrophobic and
lipophobic properties, from which they derive both water- and stain-repellant properties,
thereby providing some of their utility to industry and consumers [3]. The majority of PFAS
have either a straight- or branched-chain alkane backbone, with one or more functional
groups bonded to the terminal ends of the backbone [2,4]. Examples of commonly studied
straight-chained PFAS include carboxylic acids (such as perfluorooctanoic acid/PFOA)
and sulfonic acids (such as perfluorooctane sulfonic acid/PFOS). A branched PFAS of note
is GenX (perfluoro-2-methyl-3-oxahexanoic acid) [5,6]. Even the relatively well-studied
PFOA and PFOS have lesser studied branched isomers [7,8].

PFAS are commonly found in human tissues [1]. Chemical properties of PFAS, such
as the propensity to bind to protein, contribute to significant partitioning in the liver, the
kidney, and the blood [9,10]. PFAS are of significant public health concern, as exposure
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has been associated with a growing list of pathologies in humans. Pathologies include
endocrine system disorders, immunological disorders, fatty liver disease, cancers of the
kidneys and testicles, and lower birth weight [11].

Due to the ubiquity of PFAS in body tissues, there is growing interest in characterizing
the disposition of these chemicals within the body (that is, their toxicokinetics/TK) [12,13].
TK half-life (t 1

2
) is the amount of time needed for 50% of the chemical to be eliminated from

the body. t 1
2

is used to extrapolate from toxicological effects observed in animal species [14]
and to understand human exposure [15–17]. Some PFAS (for example, PFOS) have been
noted as having long half-lives (several years in humans). Widespread PFAS exposure from
the environment and long half-lives result in the potential for bioaccumulation, as rates of
uptake may exceed rates of excretion [18].

For typical organic chemicals, mathematical models exist for predicting properties
related to human t 1

2
from chemical structure [19–22]. However, these approaches are

expected to fail for some PFAS [23] due to the peculiarities of fluorous chemistry [24] and
potential biological interactions [25–27]. The estimation of PFAS t 1

2
thus relies on either

observational studies or extrapolation from animal species [11,28–30]. Typical extrapolation
methods for TK parameters of PFAS are unreliable between species [14] and chemicals [27].
Efforts at extrapolating the measured PFAS t 1

2
across species are complicated by unusual

and unpredictable variability [26]. The t 1
2

of perfluorohexanoic acid (PFHxA), for example,
appears to scale allometrically (proportional to species weight) across mice, rats, monkeys,
and humans [31]. In contrast, the t 1

2
of the PFOA ranges from a few hours in female rats,

days in male rats, 30–130 days in mice and monkeys, respectively [32–34], to 2–4 years
in humans [35–39]. This large variation for PFOA occurs despite its structural similarity
to PFHxA.

Under current chemical risk assessment paradigms, animals such as rats, mice, and
monkeys serve as models to obtain toxicological information for other species where
experiments may not be conducted; that is, humans and endangered wildlife. As toxicity
testing evolves to include new approach methodologies [40], this may be less true. However,
it is well known from physiologically based toxicokinetic modeling that understanding
what phenomena can and cannot be extrapolated between species will inform human
chemical risk assessment [41–44]. Thus, a key goal for PFAS is understanding differences
in elimination kinetics between species [27].

Lau et al. [11,28–30] have reviewed the literature on in vivo measured interspecies
PFAS t 1

2
in 2007, 2012, 2015 and, most recently, in 2021. They have curated PFAS t 1

2
data for

multiple species across eleven PFAS. Most of the measured data are for rodents. While some
PFAS rapidly transform to one of these eleven PFAS in vivo, [45] there are many thousands
more for which there are no data available [12]. This is, in part, because in vivo experiments
are resource intensive [46,47]. Additionally, higher throughput toxicokinetic methods
perform poorly for some PFAS due to a lack of data characterizing transporters [23].
For linear PFAS only, t 1

2
is observed to roughly increase with carbon chain length [36].

However, no systematic rules have been discerned for inter-species or inter-chemical
extrapolation of PFAS t 1

2
in general. Instead, each chemical and species require new

in vivo studies [14,26,48]. Interaction with transporters and protein binding have both been
suggested as relevant mechanisms that might be accessible in vitro [25–27,32], but these
again require species- and chemical-specific measurements that are generally unavailable.
Additionally, t 1

2
varies with sex for some PFAS and species, with males typically having

longer t 1
2

than females [1].
Given the failure of typical approaches for the inter-species or inter-chemical extrapo-

lation of PFAS t 1
2

, and the importance of this parameter for understanding the impact of
these chemicals in the environment, a new approach is needed. Machine learning (ML) is
an opportunity to use the available data to develop predictions for new chemical–species
combinations. ML-based models of TK parameters can integrate multiple descriptors
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into predictive models for chemical properties [20,21,49]. Ensemble ML-based methods,
such as random forest, combine predictions from an assembly of models (for example,
regression/classification trees) to improve the robustness of the predictions. Each model
contributing to the ensemble is built from a subset of predictors and/or training data
records. Such ensemble models have been shown to provide reasonably accurate pre-
dictions over a range of chemical properties when empirical data are unavailable [20,50].
ML has previously been applied to PFAS, including to identify efficient treatment and
removal from water [51] and to prioritize groundwater testing [52]. These prior works also
used a variety of different machine learning approaches, including neural networks, the
method of random forests, and other classification algorithms [51,52]. ML-based models
might organize existing PFAS t 1

2
data, categorize unmeasured PFAS, and identify the most

impactful data needs for additional measurement. Since machine learning draws inferences
from a data “training set”, one key metric for evaluating performance is a comparison of
the difference between an ML model built with the actual training set and a model built
using a “y-randomized” training set [53]. In y-randomization, the outcome to be predicted
(in this case, t 1

2
) has been randomly swapped among the data. Y-randomization provides a

baseline of how well a model might perform by chance.
In this study, we use the random forest method to develop a ML classification model

for PFAS t 1
2
. We first use Monte Carlo methods to supplement the Lau et al. [11,28–30] t 1

2
data set using TK studies not previously included. Given a small training set of eleven
PFAS across four species, we aimed only to broadly classify PFAS chemical/species t 1

2
into four categories: less than 12 h, 12 h to 1 week, 1 week to 2 months, or greater than
2 months. A diverse array of 119 descriptors was considered by the ML as potential
predictors. These descriptors were mechanistically motivated, including both chemical
and physiological properties. In particular, the descriptor set included several potential
surrogates for transporters. Feature elimination was used to ensure a parsimonious model.
To assess coincidental associations between descriptors and predictions, the actual model
was contrasted against models built using multiple training data randomization approaches.
We applied the model to a large set (~6600) of PFAS, for which t 1

2
data are unavailable. Given

the broad ranges of half-lives predicted by the model, for humans the model effectively
predicts whether a given PFAS is more likely to be persistent. Those chemicals identified to
likely be biologically persistent may pose an elevated risk. Finally, we use the predicted t 1

2
values and a simple TK model to predict whole body clearance and steady-state plasma
concentrations in multiple species.

2. Materials and Methods

The major steps of the workflow for this study included training dataset assembly,
predictor set assembly, model construction, and model application (Figure 1). Dataset
assembly is described in brief below, and in detail in the Supplemental Information (S1.1, see
S1_Dawson et al._ML PFAS_HL_101322.pdf). All analyses were performed using the freely
available R statistical software platform v4.1.3 [54]. We used the following open-source tools
(“packages”) from the Comprehensive R Archive Network (https://cran.r-project.org/,
accessed 20 September 2022): caret [55], classyfireR [56], corrplot [57], data.table [58],
gdata [59], ggplot2 [60], httk [61], MLmetrics [62], OneR [63], openxlsx [64], purr [65],
randomForest [66], readxl [67], scales [68], showtext [69], stringr [70], and tidyr [71]. All
scripts and data are available at: https://github.com/USEPA/CompTox-PFASHalfLife
(accessed 17 January 2023).

2.1. Dataset Assembly
2.1.1. PFAS Half-Life Data (Dependent Variable)

We modeled in vivo serum t 1
2

data for 11 PFAS using published data experimentally
collected from 4 species. The literature base was assembled from the most recent curation
of Lau et al. (2021) [11,28–30] and supplemented with studies not previously reviewed.

https://cran.r-project.org/
https://github.com/USEPA/CompTox-PFASHalfLife
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We intend models developed with these data to be preliminary attempts to classify the
range of t 1

2
of PFAS. Of the 11 chemicals, 6 are straight-chain perfluoroalkyl carboxylic

acids: perfluorobutanoic acid (PFBA, DTXSID4059916), perfluorohexanoic acid (PFHxA,
DTXSID30318623031862), perfluoroheptanoic acid (PFHpA, DTXSID1037303), perfluorooc-
tanoic acid (PFOA, DTXSID8031865), perfluorononanoic acid (PFNA, DTXSID8031863),
and perfluorodecanoic acid (PFDA, DTXSID3031860); 3 chemicals are straight-chain per-
fluoroalkyl sulfonic acids: perfluorobutanesulfonic acid (PFBS, DTXSID5030030), perflu-
orohexanesulfonic acid (PFHxS, DTXSID7040150), perfluorooctanesulfonic acid (PFOS,
DTXSID3031864). The 2 remaining chemicals, perfluoro-2-methyl-3-oxahexanoic acid
(GenX, DTXSID70880215) and perfluoro (2-((6-chlorohexyl)oxy)ethanesulfonic acid (F-53B,
DTXSID80892506), are branched perfluoroalkyl carboxylic acids and perfluoroalkyl sul-
fonic acids, respectively. See the Supplemental Information (S2.3, see S2_Dawson et al._ML
PFAS_HL_101322.xlsx) for structural representations of each of the compounds. Chem-
icals and species were selected to have a range of data to inform extrapolation: species
included humans, cynomolgus monkey (Macaca fascicularis), mouse (Mus musculus), and
rat (Rattus rattus). Data from both sexes of each species were also included, as available.
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Figure 1. Scientific workflow including (A) Training Data Assembly, (B) Predictor Dataset Assembly,
(C) Dataset Processing and Preparation, (D) Random Forest Model Construction, and (E) Application
of the Models to the CCD PFAS list. Green boxes denote data sources, purple boxes denote assembled
datasets, red boxes denote models, blue boxes data denote processing steps, black boxes denote
model outputs, and arrows indicate flow between steps.

Lau et al. [11,28–30] provide point estimates and ranges synthesizing multiple sources
into consensus estimates of chemical- and species-specific t 1

2
. New peer-reviewed mea-

surements were heterogeneously reported, including both measured and calculated mean
t 1

2
values per species, sex, and chemical that were usually accompanied by measures of

variance (standard deviation, standard error, or 95% confidence interval). A Monte Carlo
approach generated random samples using standard errors (SE) as the bounds of reported
values/ranges. See Supplemental Information (S1.1.1) for details.

Distributions were generated by randomly sampling N animals (N = the sample size
used in each estimate) from within the SE bounds assigned to each measurement, storing
these samples in a vector, and then repeating this process 100 times. Each contributing
study was represented in the complete vector of sampled values, in proportion according to
sample size. Lastly, we fit a distribution to all samples and used the mean of this distribution
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as the t 1
2

value in our training set for the corresponding chemical/species/sex/dosing
method. Distributions were fit using the R package fitdistrplus [72], and an appropriate
distribution (between the normal, lognormal, gamma, and exponential) as chosen based on
the lowest AIC score.

Data were aggregated across multiple sources into a final dataset with a single value
of t 1

2
per chemical, species, sex, and dosing methodology; a total of 91 datapoints (Table 1).

Of these, 50 were distinct measures by species and sex. See the Supplemental Information
(S2) for the compiled processed dataset used for ML model construction.

Table 1. PFAS t 1
2

life estimates used in model construction (full data set is provided in Table S3). Data
adopted from Fenton, Ducatman, Boobis, DeWitt, Lau, Ng, Smith and Roberts [11] was augmented
by new studies wherever available. Values for chemical/species combinations that were not available
were omitted from modeling, but values only available for one sex of a species were assumed to be
same for both.

Rat Mouse Monkey Human
(Rattus rattus) (Mus musculus) (Macaca fascicularis) (Homo sapiens)

Chemical
CAS/DTXSID Sex Value Unit Ref. Value Unit Ref. Value Unit Ref. Value Unit Ref.

PFBS (C4)
375-73-5

DTXSID5030030

F 1.5–7.4
Hours [34,73,74]

4.5
Hours [75]

1.1 Days [73,74]
35 Days [36,73]M 3.6–5.0 5.8 1.6 36

PFHxS (C6)
355-46-4

DTXSID7040150

F 1.3–1.4 Days [34,76,77]
27 Days [76]

87 Days [76]
13

Years [35–37,39]M 26–27 28 140 14

PFOS (C8)
1763-23-1

DTXSID3031864

F 28–43 Days [32,34,77]
38 Days [32]

110 Days [32]
3.4

Years [35–39]M 34–36 43 130 3.7

PFBA (C4)
375-22-4

DTXSID4059916

F 1.8
Hours [78]

6.2
Hours [78] 1.7 Days [78] 3 Days [78]M 9.2 12

PFHxA (C6)
307-24-4

DTXSID3031862

F 0.5–7.3
Hours [74,79–81]

2.4
Hours [74] 32 Days [31]M 1.3–11 5.3

PFHpA (C7)
375-85-9

DTXSID1037303

F 1.2–2.1
Hours [25,79]

140 Days [35,36]M 1.5–2.4 130

PFOA (C8)
335-67-1

DTXSID8031865

F 1.7–4.8 Hours
[25,77,80,82]

16 Days [83]
33 Days [84] 3.5 Years [35–37,85]M 8.1–8.5 Days 22 20–21

PFNA (C9)
375-95-1

DTXSID8031863

F 6.4 Days [25,86,87]
42 Days [87]

1.7 Years
[35]M 3.3–5.5 87 3.2

PFDA (C10)
335-76-2

DTXSID3031860

F 45–59 Days [25,80,86]
4

Years [35]M 55–83 7.1

F-53B
756426-58-1

DTXSID80892506

F
18 Years [88]M

GenX
13252-13-6

DTXSID70880215

F 0.9–2.8 Days [89]
1.0 Days [89]

3.3 Days [89] 3.4 Days [90]M 3.0–3.7 1.5 2.7

2.1.2. Chemical and Species Descriptors (Independent Variables)

We assembled a set of 119 chemical and physiological descriptors as potential predic-
tors of t 1

2
in ML models. These descriptors characterized either the structure of the chemical

agent or the physiology of the animal species; please see full details in the Supplemental In-
formation (S1.1.2). We use the term “predictor” for chemical descriptors that are identified
as predictive by ML.

Physico-chemical descriptors (22 descriptors): Physico-chemical descriptors have
been shown to characterize TK for organic chemicals present in pharmaceuticals, else-
where in commerce, and the environment [20,21,91–93]. Here, 18 physico-chemical prop-
erties predicted by version 2.7 of the OPERA modeling platform [50] were used. We note
that OPERA’s training sets were recently updated to include additional PFAS data on
LogP, water-solubility, vapor pressure, and melting point (https://github.com/kmansouri/
OPERA/releases/tag/v2.7-beta2, accessed on 1 October 2021). In addition, some PFAS have
been designed to include an ether bond to potentially facilitate more rapid metabolism [94].
To account for this, a binary descriptor (the ToxPrint Chemotype [95] “COC_alphatic”)

https://github.com/kmansouri/OPERA/releases/tag/v2.7-beta2
https://github.com/kmansouri/OPERA/releases/tag/v2.7-beta2
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was included, denoting the inclusion of an ether bond along the carbon backbone. Finally,
average molecular mass and two chain length descriptors were included.

Transport/re-uptake analogs (88 descriptors): Although some PFAS are metabolically
stable, they may still be subject to active cellular transport by the body, particularly if they
are mistaken for endogenous, non-fluorinated analogs. For example, the long half-life of
PFOA in humans has been attributed to reabsorption in the kidney by transporters for the
endogenous caprylic acid [26,96]. Unfortunately, PFAS-specific transporter affinities [25,97]
and species-specific data on variation on transporter ontogeny [98] are often unavailable. As
surrogates for species- and chemical-specific data on the expression of relevant transporters,
we examined two types of potential predictors:

Physiological descriptors including kidney structural features as surrogates for renal
transporter expression (21 descriptors): The kidney is suspected to be a primary site of
PFAS elimination and active transport (secretion/reabsorption) [96,99]. While the species-
and chemical-dependent affinities for the transporters driving section/reabsorption are not
typically known [26], they are expressed along the surface of the proximal tubule, and so
geometry provides one available descriptor that might be correlated with clearance [100],
in this case by limiting the surface area available for the expression of transporters. To
capture the potential of physical aspects of the kidney as a surrogate for the amount of
active transport, a suite of 21 kidney structure descriptors (for example kidney weight,
number of nephrons, glomerular surface area) was assembled from Oliver [101] which
reported these properties for rat, rabbit, dog, human, cattle, elephant, whale, horse, and
chicken. Regressions were made on log-transformed body weight and these regressions
were used to make predictions for mouse and monkey based upon body weights reported
by Davies and Morris [102] (see GitHub file “CurrentScripts/1_PFAS_Dataset_building.R”
for additional information). Overall species body weight was also included as a potential
predictor, but was found to be heavily correlated by feature elimination (below).

The similarity of “Defluorinated” PFAS to Endogenous ligands as surrogates for trans-
porter affinity (67 descriptors): As an additional surrogate of the impact of active transport
on PFAS, we considered the structural similarity of defluorinated PFAS and a set of 894
endogenous compounds [103] that might be transporter substrates. We presume that struc-
tural similarity might result in exogenous chemicals serving as ligands for transporters of en-
dogenous chemicals [104]. Several PFAS have similar non-fluorinated endogenous analogs;
for example, caproic acid (that is, Hexanoic acid, CASRN:142-62-1, DTXSID7021607) may
be a substrate for human peptide transporter 1 (PEPT1), which facilitates renal reabsorption
of peptides in the proximal tubules of the kidney [105,106]. Caproic acid is structurally
equivalent to perfluorohexanoic acid (CASRN: 307-24-4, DTXSID:3031862), with hydrogen
atoms instead of fluorine atoms along its carbon backbone. To incorporate this information
into a predictor dataset, we calculated molecular descriptors (PubChem and Morgan finger-
prints) for PFAS in which each fluorine was replaced with hydrogen. Then, we calculated
Tanimoto [107] scores (that is, Jaccard similarity) between the defluorinated PFAS and the
endogenous compounds for each fingerprint. The subset of endogenous compounds with
the highest and lowest similarity for each PFAS was then selected as potential predictors. In
this subset, similarity values were discretized (>0.9 being similar (1), otherwise dissimilar
(0)) and used as values for each predictor. Among the 11 structures, there were 65 endoge-
nous ligands with at least one non-zero descriptor plus the two maximum values across all
ligands for PubChem and Morgan.

Protein Binding (4 descriptors): PFAS bind to specific proteins in the liver and to
albumin in serum, which likely influences clearance rates (and therefore t 1

2
) [29]. To

account for this, two experimentally available serum–albumin binding rate constants, Ka
(M−1) [26], and two binding rate dissociation constants to the liver fatty acid binding protein
(L-FABP) [108] were added for a subset of PFAS where measurements had been made.

Categorical Descriptors (2 descriptors): We considered sex (male, female) and dos-
ing type as indicated in the literature source documentation (intravenous, oral, other
(epidemiological, via metabolite extrapolation)).
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2.1.3. Descriptor Reduction

The total descriptor set (119) was reduced prior to modelling; see Supplemental
Information (S1.1.3) for full details. First, we identified and eliminated low variance
predictors—that is, those predictors that have nearly the same value for most chemicals—
defined as predictors with standard deviation/mean < 0.05. Next, we eliminated highly
(>0.9) correlated predictors using the “findCorrelation” function of the caret [55] package
of R statistical analysis software. This resulted in 13 numeric descriptors plus the two
categorical descriptors that were held out of the quantitative analysis. A summary of the
15 descriptors used is shown in Table 2. Prior to modeling, these were mean-centered and
scaled by standard deviation.

Table 2. Summary of Descriptor Set Used. (A) All chemical descriptors used in model construction.
* = indicates value is the mean, rather than median. This was used for binary descriptors with either
a 1 or 0. For ether bond: 1 = present, 0 = not present; for endogenous similarity measures, 1 = similar
(≥90% Tanimoto score), 0 = not similar. Endogenous ligand similarity was included as a surrogate
for chemical-specific transporter data. (B) All physiological descriptors included in model by species.
As additional surrogates for kidney transporter data, we focused on the geometry of the proximal
tubule where they are expressed. Body and kidney weight (italicized) included here for reference
but were identified as highly correlated with other features and eliminated by feature reduction for
model building. (C) Categorical descriptors used.

A–Chemical Structure Descriptors

Parameter Type Descriptor Chemical
Coverage (%) Training Set Median Training Set Min Training Set Max

Protein binding Albumin binding affinity constant
(Mol−1) 45.45 2.84 × 105 2800 1.10 × 106

Physico-chemical

Average Mass (g/mol)

100

400.1 214 532
Log Vapor Pressure (mmHg) −2.07 −8.09 1.53

Log Octanol: Air 4.16 3.46 6.33
Log Octanol: Water 3.11 1.43 5.61

Log Water Solubility (Mol/L at 25 ◦C) −2.68 −4.9 −0.5
Ether bond present 0.13 * 0 1

Endogenous Ligand
Similarity

CAS 142-62-1
100

0.18 *
0 1CAS 107-92-6 0.088 *

CAS 111-16-0 0.066 *

B–Physiological Descriptors

Species Proximal tubule diameter (mm) Body Weight (kg) Kidney Weight/Body
Weight (g/kg)

Glomerular Surface
Area/Proximal
Tubule Volume

(1/mm)

Glomerular
Surface

Area/Kidney
Weight (mm2/kg)

Human 0.072 70 2.23 3.16 1.65
Monkey 0.062 5 2.5 2.13 2.04
Mouse 0.054 0.02 8 2.05 2.28

Rat 0.058 0.24 2.92 2.31 3.26

C–Categorical Descriptors

Sex Female/Male
Dosing intravenous, oral, other (epidemiological, via metabolite extrapolation)

2.2. Model Development

We used the R caret package [55] to iteratively call the randomForest package [66] to
construct random forest [109] classification models of t 1

2
using all 15 independent descrip-

tors. The classification approach was selected due to the limited size (91 data points) and
scope (11 chemicals) of the training set. All models described below were fit using 10-fold
cross validation with 10 repetitions at each step. We evaluated 3, 4, and 5 bin models. Bins
were initially split into approximately equal proportions using the OneR package [63]. Bins
were slightly adjusted towards whole number time increments. The distribution of data
points into the bins was similar, ranging from 22.0 to 29.7%.

To further reduce overfitting, we used recursive feature elimination (“rfe” from
caret [55]) to find the model with the highest accuracy with the fewest of the 15 descriptors
in Table 2. Starting with the full 15 descriptor set, a series of models were built using sets of
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progressively fewer descriptors, with the least “important” descriptor excluded from one
series to the next. Predictor importance [109] was quantified as the percentage reduction of
model accuracy resulting from permutation of that particular predictor.

2.3. Model Evaluation

Machine learning involves a set of data used to construct the model (a training set)
and a second set of data used to evaluate the model (a test set). Our ability to evaluate
models was limited, as insufficient data were available to formulate a test set. To partially
evaluate the performance of the models, we employed y-randomization; in this case, y-
randomization tests for false associations by randomly permuting the t 1

2
half-life categories,

while keeping the descriptors the same. We then refit the model using the same methodol-
ogy as for the training set. For each y-randomization approach we considered, we built
ten models using ten different y-randomized data sets. To evaluate how the distribution
of variance of t 1

2
values between species, between chemicals, and between chemicals and

species influences model fitting, this process included t 1
2

values y-randomized in three
ways. First, t 1

2
values were randomized across all species and chemicals. Next, t 1

2
values

were randomized between species of the same chemical. Third, t 1
2

values were randomized
between chemicals of the same species. Finally, we computed and compared model accu-
racies between the models constructed using the three types of y-randomized values and
non-randomized t 1

2
values.

The prediction of error of the random forest models was characterized using out-of-
bag (OOB) error—each decision tree of the random forest is constructed with a randomized
subset (in-bag) of the available data and the data withheld from that tree’s construction
(OOB) are used as a test set to evaluate the performance of that tree. OOB error of the
ensemble of trees (that is, the random forest) is the average OOB error across the ensemble.
For a categorical (classification) model, a confusion matrix can be constructed in which
each row of represents the instances of the correct class for the samples from a test set,
and each column represents the predicted class for samples—a perfect predictor would
only have values on the diagonal. For a random forest model constructed with R package
randomForest, a confusion matrix is calculated using the OOB data only. Finally, for a
categorical model, a “No Information Rate” is calculated as from the largest class percentage
in the data set, representing the performance of a “model” in which all samples were
predicted to be in the most commonly occurring class.

2.4. Model Application
2.4.1. Prediction of Half-Lives for Novel Chemicals and Species

The t 1
2

model was applied to the largest list of PFAS available from EPA’s CompTox
Chemicals Dashboard (CCD) [110] (https://comptox.epa.gov/dashboard/chemical-lists/
pfasmaster, accessed on 1 January 2023). PFASMASTER is “a consolidated list of PFAS sub-
stances . . . of current interest to researchers and regulators worldwide” that includes PFAS
from multiple EPA lists, the OECD New Comprehensive Global Database, KEMI Swedish
Chemicals Agency Report, and the NORMAN Suspect List Exchange, among others. This
is a list of 8163 PFAS compounds (as of August 2020) with structural information that
is listed on the USEPA CompTox Chemicals Dashboard [110]. Predictor values for these
compounds were assembled in a similar way to the training set. When a predictor value
was unavailable for a chemical, average values were imputed from available data, resulting
in some predictors being largely imputed from a small subset of available chemicals (for
example, serum–albumin-binding coefficients). In addition, the model was applied to a
new species, the domestic dog (Canus domesticus), to demonstrate its applicability to a novel
species based on changing the model’s kidney predictor values. The distribution of the
predicted t 1

2
of the chemicals was plotted for both models for each species.

The applicability domain (AD) of the model was characterized using the methodology
of Roy et al. [111]. This method considers whether the distribution of the scaled descriptors

https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster
https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster
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of a novel chemical are captured within the distribution of the training chemical descriptors.
Each chemical of the CCD PFAS list was described as either inside or outside the domain of
the t 1

2
model by species. In addition, several predictors were chemical properties estimated

with OPERA models, and thus had their own ADs. Thus, each chemical by species was
further delineated by whether it was included in the domain of both the t 1

2
model and all

underlying predictor models. We describe the intersection of “All Model ADs” as the “AM
domain”. Lastly, we used the chemical classification tool ClassyFire [56] to help characterize
the predicted chemicals relative to the chemicals in the training set.

2.4.2. Prediction of Serum Concentration

Finally, we used t 1
2

predictions within a simple 1-compartment model framework
to predict steady-state concentrations within the body following exposure. This pro-
cess included first using predicted t 1

2
values to calculate elimination rate constants (kelim,

Equation (1), units of h−1), which are then used to calculate whole body clearance rates
(CLtot, Equation (2), units of L/kg body weight/day) and whole-body, steady-state concen-
trations (Css, Equation (3), mg/L):

kelim =
ln(2)

t 1
2

(1)

CLtot = Vd × kelim × 24 (2)

Css =
D

CLtot
(3)

In Equation (2), the volume of distribution (Vd) can be defined as the volume needed
to yield the concentration of a chemical observed in plasma [112]. To estimate Vd across
chemicals and multiple species, we investigated developing models using the same process
as for t 1

2
; see Supporting Information (S1.2) for further details. In Equation (2), the factor

of “24” allows CLtot to be given in units of in L/kg body weight/day. In Equation (3),
steady-state plasma concentration (Css) is calculated by assuming a constant dose rate (D) of
1 mg/kg body weight/day, which may be then used for reverse dosimetry in vitro–in vivo
extrapolation [61]. Using this approach, we predicted steady-state concentrations Css for
each species (including the inferred species, dog (C. familiaris)) for PFAS compounds for
which QSAR-ready SMILES were available for descriptor calculations, and which fell into
All ADs of the model.

3. Results and Discussion
3.1. Half-Life Model Optimization and Selection

Knowledge of chemical-specific t 1
2

is necessary for exposure reconstruction [15–17]
and extrapolation from toxicological studies [14]. For PFOA, we found the TK t 1

2
scales

only weakly across species with bodyweight (R2 = 0.39). This scaling was on average
even less for the other chemicals in our data set (R2 = 0.26 overall). Instead, a total of
119 descriptors (including body weight) was considered for modeling t 1

2
. The number of

descriptors was reduced prior to modelling; see Supplemental Information (S1.1.3) for full
details. First, correlation was used as a guide to identify 15 independent descriptors; for
example, both body and kidney weight were identified as highly correlated with other
physiological features and eliminated. For the 15 descriptors, listed in Table 2, models
were constructed iteratively using subsets of the 15 descriptors. This recursive feature
elimination process did not further reduce the number of predictors. That is, a model built
using all 15 predictors was identified as optimal. We used ML to organize the available
in vivo PFAS TK t 1

2
data into to three, four, or five bins using the predictors in Table 2.

The models had cross-validated accuracies of 82.2%, 86.1%, and 75.3% for three, four
or five bins, respectively. Cohens’s Kappa [113] was 0.731, 0.812, and 0.688, respectively.
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Due to the slightly greater accuracy, the four-bin model was selected (Figure 2): 0–12 h,
>12 h to 1 week, >1 week to 60 days, and >60 days. The four-bin model has an error
rate of 11%. The misclassification events for the four-bin model were near the margins
of the bins (Figure 2), and only occurred for rat for perfluorooctanoic acid (PFOA) and
perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) in mouse.
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Figure 2. Values of t 1
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of the training data (y-axis) vs. classification predictions by the RF Classification
model using 15 predictors. Colors signify species, while shapes indicate different PFAS compounds.
Bin margins (<12 h, 12 h−1 week, 1 week−2 months, >2 months) are indicated as dotted lines. Note
that observations have been jittered (that is, a small amount of random variation has been added)
along the x-axis to increase readability.

Renal elimination includes three processes: glomerular filtration, proximal tubular
secretion, and proximal tubular resorption [26]. The mechanistically motivated descriptors
initially considered were selected to provide surrogates for PFAS-specific mechanisms of
toxicokinetics, with an emphasis on potential renal resorption by the proximal tubules [96].
We do not know the species- and chemical-dependent affinities for the transporters driving
section/reabsorption, nor the expression levels of the transporters. We do know that some
transporters are expressed along the surface of the proximal tubule. Thus, we can assume
that geometry might potentially be correlated with expression level. Similarity to the
endogenous ligands of those transporters provides a potential correlate of affinity. The
importance of predictors was estimated by the decrease in model performance when the
predictor was randomized [109]. The five most important predictors (Table 3) were the
average mass of the compound; OPERA model predictions for the logarithmic Octanol:Air
partition coefficient and Vapor Pressure; and the kidney descriptors Glomerular Surface
Area (SA):Kidney Weight Ratio and Proximal Tubule Diameter. In the case of average
molecular mass, a recent review of t 1

2
data found that PFAS t 1

2
tends to increase with

molecular weight in the same species included in this study [114]. This is consistent with
previously observed increases in PFAS t 1

2
with increasing carbon chain length [26,27,36].

The belief that shorter chains result in faster excretion has prompted a drive to develop
alternative chemicals with shorter carbon chains. For example, the chemical GenX is
branched and has a shorter t 1

2
than straight chain PFAS, though without more data we do

not know if this generalizes across PFAS.



Toxics 2023, 11, 98 11 of 22

Table 3. Predictor Importance [109] (percent reduction in accuracy) of all model predictors.

Parameter Raw Accuracy
Change

Scaled Accuracy
Change

Average mass 9.49 100
Log Octanol:Air (OPERA) 7.02 73.3
Glomerular Surface Area (SA): Kidney Weight Ratio 6.32 65.6
Proximal Tubule Diameter 6.11 63.4
Log Vapor Pressure (OPERA) 4.86 49.7
Log Octanol:Water (OPERA) 4.37 44.4
Glomerular Surface Area: Proximal Tubule Volume Ratio 4.14 42.0
Log Water Solubility (OPERA) 3.72 37.4
Dosing Form 3.26 32.4
Albumin binding affinity 3.16 31.3
Ether Bond (COC) 2.56 24.8
Sex 2.14 20.2
Similarity to CAS 142-62-1 1.93 18.0
Similarity to CAS 107-92-6 0.61 3.63
Similarity to CAS 111-16-0 0.27 0

We found surrogates for active transport among the predictors. First, the kidney physi-
ology predictors are likely proxies for both physical differences and species variation in the
expression of transporters for PFAS. The kidney is a primary site of PFAS disposition and
elimination for the body [96,99]. Previous work shows that anionic transporters play a key
role in renal excretion and reabsorption of PFAS compounds [26]. Renal transporters reside
on the membrane of the proximal tubules [26]. Importantly, proximal tubule structural
features (length, surface area) were strongly correlated with body weight. Body weight
was used to predict proximal tubule structural features for species for which data were
not available (monkey and mouse). These results are, therefore, supportive of the need to
further understand renal transporter activity for PFAS across species to better extrapolate
to humans. Endogenous ligand similarity was the second type of surrogate for active
transport that we considered. Three distinct endogenous ligands were identified after the
others were eliminated based on correlation to these three. PFAS similarity to hexanoic
acid (DTXSID7021607, CAS 142-62-1), butanoic acid (DTXSID8021515, CAS 107-92-6), and
heptanedioic acid (DTXSID5021598, CAS 111-16-0) were considered as a surrogate for
transporter affinity. Inclusion in our model indicates that the kidney transporters for which
these compounds are ligands may be involved in PFAS t 1

2
.

3.2. Model Evaluation

The aim of supervised machine learning is to identify patterns of descriptor values
that predict how each entry in the training set has been “labelled”. Here, we labelled each
measured t 1

2
according to a broad bin (or category) spanning a range of times. To evaluate

whether the patterns occur by chance, we used y-randomization. Additional models were
constructed, following the same procedure as above but using ten y-randomized datasets.
In a y-randomized dataset all descriptors were held the same, but the bins for the t 1

2
values

were randomly permuted. The predictive performance of the ML model presented was
compared to the performance of multiple y-randomized models. The non-randomized ML
model accuracy (86.4%) was better than any of the models constructed with y-randomized
data. A model using t 1

2
values randomized across all species-by-PFAS combinations had

low predictive value (accuracy of 32.2 ± 13.3%).
y-Randomization showed that some variation in t 1

2
is accounted for by differences

at the species and chemical level. The models for t 1
2

with training data randomized
within species but not chemicals (that is, the chemicals were correct) had an accuracy of
36.8 ± 13.4%. The models where training data chemical identities were randomized, but
not species, had an accuracy of 50.2 ± 15.6%. That is, species-specific data alone provide
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information about the plausible values of t 1
2

of PFAS. However, the large improvement
(86.4% vs. 50.2% accuracy) of the fully non-randomized model suggests that enough
chemical-species TK interactions exist to justify combining chemical and species informa-
tion together. The improvement of the full model over any randomized model indicates
that the presented model for t 1

2
does not occur by chance.

The no information rate is an additional effective “null hypothesis” that we examined.
The no information rate is the accuracy for a model that predicts all chemicals to be in
the most common bin. The four-bin model has an accuracy of 86.4% compared to the
no information rate of 27%. That is, the accuracy of the model presented here is an
improvement over selecting the most commonly occurring bin. Since 64% of human t 1

2
falls into Bin 4 (the longest t 1

2
), this provides a species-specific no information rate. The

model accuracy (100% for humans) is greater than the human no information rate. The
prevalence of predicted Bin 4 chemicals for humans across other PFAS (56%, as discussed
in the following section) indicates fewer long t 1

2
PFAS than would be expected from the

human observations alone.

3.3. Application of the Model to a PFAS Library

For each chemical–species prediction, the median half-life of the training data in each
bin was used as the predicted t 1

2
. For Bin 1 (<12 h) the median was 4.9 h; for Bin 2 (<1 week)

2.2 days; for Bin 3 (<2 months) 33 days; and for Bin 4 (>2 months) the median used was
3.3 years.

3.3.1. t 1
2

Predictions for CCD PFAS List

In Figure 3, we show predictions of t 1
2

across species and sex. Of the 8163 PFAS
on the CCD PFAS master list, 6603 had sufficient information for model application. The
applicability domain (AD) characterizes the range of chemicals for which we expect accurate
predictions [115]. Using the method of Roy, Kar and Ambure [111], we found that the
majority (63%) of these chemicals fall into the domain of the model. Across the four species,
4136 PFAS were within the AD (Figure 3A). For humans (over both sexes and dosing
methods), 3890 chemicals were estimated to be within AD. Of these, 56% were classified in
t 1

2
Bin 4, 7% were classified in Bin 3, and 37% were classified in Bin 2. We can further restrict

predictions to only those chemicals within the ADs of the OPERA models (described as
the AM domain; that is, intersection of All Model ADs). The AM domain further reduces
the list to 2645 of the 6603 chemicals. For humans, a majority (47%) of this subset of
chemicals were predicted to fall into Bin 4, followed by 45% in Bin 2 and 9% in Bin 3. Using
the ClassyFire chemical structure ontology [56], the training set could be split into three
classes: alkyl halides (9 chemicals), carboxylic acids and derivatives (GenX), and organic
and sulfonic acids and derivatives (F-53B). A total of 921 of the PFAS were in these three
classes (Figure 3B). For humans, a majority (60%) of this subset of chemicals were predicted
to fall into Bin 4, followed by 34% in Bin 2 and 5% in Bin 3.

For chemicals in the domain, t 1
2

values tended to increase with relative body size.
Mice (0.022 kg) and rats (0.225 kg) had more t 1

2
values in the two fastest bins. Monkeys

(3.8 kg), humans (70 kg), and dogs (20 kg) tended to have t 1
2

values in the three slower
bins (Figure 3A). When considering only those chemicals in the AM domain that also align
with the three ClassyFire-based classes of the training set (Figure 3B), a similar pattern
associated with body size emerges.

The differences in t 1
2

predictions between species are driven by those parameters in
Table 3 that vary between species. From most to least important, these are Glomerular
Surface Area (SA) to Kidney Weight Ratio, Proximal Tubule Diameter, and Glomerular
Surface Area to Proximal Tubule Volume Ratio. We note that, while overall body weight was
included as potential descriptor, it was eliminated during the variable selection process for
being highly correlated with these more informative parameters. While these parameters
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explicitly describe the geometry of the kidney nephron, they are also potential surrogates
for multiple aspects of TK. Geometry impacts the flow through the nephron and extent
of glomerular filtration, both of which can, in turn, impact the efficiency of clearance
of PFAS from the blood. Additionally, since secretion/resorption transporters line the
surface of the proximal tubule, the geometry of the proximal tubules (amount of surface
area) provides an upper limit on the amount of transporter expression. Albumin binding
affinity has the potential to vary between species [116], but species-specific data were
not available for enough chemical–species combinations to be used as descriptors here.
The number of chemicals within the domain of applicability in Figure 3 varies between
species. This is because we calculated the domain of applicability as a function of both
chemical and species descriptors, so that similarity to the training set depends on the
specific PFAS-species combination.
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Figure 3. Distributions of predicted t 1
2

for (A) 4136 PFAS within the AD of the RF Classification
model, and (B) 921 PFAS classified in the same 3 classes as the 11 training set chemicals via ClassyFire.
Shown are the number of chemicals predicted to fall within half-life categories by sex (male = ♂,
female = ♀) for 5 species. Bins are denoted by color, with pink ≤ 12 h, green = 12 h−1 week,
blue = 1 week−2 months, and purple ≥ 2 months.
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For humans, no chemicals were predicted to fall within the fastest bin (<12 h). For Per-
fluoroundecanoic acid (PFUnDA, DTXSID8047553), Zhang, Beesoon, Zhu and Martin [35]
observed a half-life of 12 years for men and a half-life of 4.5 years for women. Our model
correctly predicted the longest bin (>60 days, median 3.32 years) for both sexes. PFUnDA
was not included in our data set because a value was available for humans only.

The model predicts that two ether PFAS, Perfluoro-2,5-dimethyl-3,6-dioxanonanoic
acid (DTXSID00892442) and Perfluoro(2-((6-chlorohexyl)oxy)ethanesulfonic acid
(DTXSID80892506), are bioaccumulative, but that a third is not (Perfluoro-2-methyl-3-
oxahexanoic acid, DTXSID70880215). These predictions for ether PFAS are consistent with
fish bioconcentration factors for these three chemicals [117].

3.3.2. Prediction of Whole-Body Clearance and Steady-State Concentration

t 1
2

predictions were combined with an estimate of Vd to calculate steady-state con-
centrations (Css) using Equations (1)–(3). The application of our ML methodology did not
support a model for Vd (see Supplemental Information S1.2). Instead, for all PFAS, we used
the median across ~100 PFAS-by-species measurements (see Supplemental Information S2),
0.202 L/kg bodyweight. Based on the available kidney descriptors [101], we made predic-
tions for a total of eight species (human, cattle, chicken, dog, horse, monkey, mouse, rabbit
and rat) across chemicals falling into the AM domain. Clearance predictions in units of
L/kg bodyweight/day are provided by column “CLtot.Lpkgbwpday” in Supplemental
Information S3 (see Dawson et al._ML PFAS_HL_101722.zip). We anticipate that these
predictions may be useful in cross-species extrapolation [118]. For humans, predictions for
the chemicals PFOS and PFOA fell into same t 1

2
bin, corresponding to an average clearance

of 1.15 × 10−4 L/kg BW/day. The 2016 EPA Drinking Water Health Advisories used
8.1 × 10−5 and 1.4 × 10−4 L/kg BW/day for these chemicals, respectively [42]. Those
values were calculated using measured estimates of t 1

2
from exposed populations and

similar values of Vd (0.23, 0.17 L/kg bw) [42]. Thus, model predictions for these chemicals
fell reasonably close (that is, within an order of magnitude) of values calculated using
measured data. PFOS and PFOA are the only two PFAS for which regulatory clearance
estimates are available at the time of this analysis.

3.3.3. Domain of Applicability

Based on the range of properties of the training data (using the method of Roy, Kar and
Ambure [111]), we found that 4136 PFAS were within the AD. Restricting predictions to only
those chemicals whose properties were within the ADs of the OPERA predictors reduced
this to 2645 PFAS. Alternatively, using the ClassyFire chemical structure ontology [56]
restricted predictions to 921 PFAS. Expansion of the AD will require additional PFAS data
both for t 1

2
and physico-chemical properties. It is hoped that both the t 1

2
model predictions

and estimated AD can guide the selection of candidates’ PFAS for additional testing.
Many PFAS are anions at physiologic pH. The distribution coefficient LogD character-

izes the extent to which ionization impacts tissue partitioning. Initial work showed that
LogD (as predicted by OPERA), which describes the distribution of substances as a function
of lipophilicity and ionization state, was a predictor of t 1

2
[119]. Unfortunately, most of the

PFAS without t 1
2

were calculated to not fall within the AD as calculated from the training
set with respect to LogD. Thus, omitting LogD as a descriptor here slightly reduced the
final model accuracy (from 87.2% to 86.4%), but increased the number of chemicals for
which predictions could be made (from 1598 to 4136).

Though ionization has often been considered in drug development [120,121], the treat-
ment of ionization equilibria has typically lagged for non-pharmaceutical chemicals [122].
Instead, success has been found considering other aspects of distribution [123–125]. The
presence of molecular fluorines is thought to increase bioavailability through the modu-
lation of ionization in medicinal chemistry [126]. Unfortunately, neither proprietary nor
open-source ionization models include many PFAS in their training sets because the data
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to do so do not yet exist. Additional measurements for PFAS with more varied LogD might
enhance predictivity and provide an evaluation of whether this is an actual applicability
domain issue. Other, similar issues are expected to be identified as the t 1

2
data are ex-

panded. Ultimately, environmental decision makers may not have the luxury of waiting
for more data, but might rather identify suitable chemical analogs [127]. It is hoped that
this model provides a tentative tool for classifying PFAS TK t 1

2
on the basis of four bins of

“analog” PFAS.
Using the ClassyFire chemical structure ontology, the total set of 6603 PFAS spanned

150 classes. As we calculated AD based on predictor values, the subset within the t 1
2

model domain spanned 149 classes, and the further subset within the AM domain spanned
121 classes. Alkyl halides made up the largest class of both subsets, with (14%). The
other two training set classes, carboxylic acids and derivatives, and organic sulfonic acids
and derivatives, made up 9% and 3%, respectively. As estimated from the predictors,
there are diverse PFAS included in the t 1

2
model and AM domains, despite the narrow

training diversity employed. This suggests that the predictors included were successful
in capturing key drivers of t 1

2
variability. The most commonly occurring classes that were

within the domain of the predictor values but that were not represented in the training
set were organofluorides (13%), organooxygen compounds (11%) and fatty acyls (7.5%).
These classes make good targets for future data collections. PFAS chemicals outside the
AD included 44 classes, with the largest class (17% of chemicals) consisting of benzene and
substituted derivatives.

See Supplemental Information S3 for model predictions, applicability domain status,
ClassyFire classifications, and steady-state TK predictions for all CCD PFAS list chemicals
for which sufficient information was available for model application. All the code to
reproduce models and results is available from: https://github.com/USEPA/CompTox-
PFASHalfLife (accessed 17 January 2023).

3.4. Model Limitations and Future Considerations

The knowledge of PFAS TK is essential for risk assessment of this large and important
class of chemicals. Chemicals with longer t 1

2
may bioaccumulate, and thus may warrant

closer regulatory scrutiny. The majority (56%) of PFAS were predicted to be in the longest
t 1

2
category in humans. This study is an initial attempt to use ML to organize existing data

to inform the TK of unmeasured PFAS. The accuracy (86.4%) of the ML developed here
was far better than expected by chance (y-randomized accuracy was 32.2 ± 13.3%). While
the constructed model was successful in describing the large variation in t 1

2
values of the

training set (Figure 2) across species and chemicals, its development made use of most of
the data available in the published literature. The training set consisted of only four species
and 11 chemicals, and was dominated by alkyl halides; namely, perfluoro-carboxylic acids
and perfluoro-sulfonic acids. The chemical structural space of the predicted chemicals
within the AM domain was much more diverse than the training set. The distribution of t 1

2
was more heavily weighted toward faster values when chemicals were subset to contain
only the three classes of chemicals found in the training set (Figure 3B). If the TK behavior
of other classes of PFAS are significantly influenced by factors not captured by the included
predictors, then predictions could be unreliable for those chemicals. These uncertainties
can only be disentangled with additional data to evaluate this or similar models.

t 1
2

alone is insufficient to predict the TK of PFAS, including peak and time-integrated
plasma concentrations (respectively, Cmax and area under curve/AUC). Even the simplest
approaches to TK modeling (that is, the one compartment empirical model) require the
parameter Vd. Despite compiling a dataset of ~100 PFAS-by-species measurements of Vd,
our ML model-building approach was unsuccessful (see Supplemental Information S1.2).
In comparison to t 1

2
, the compiled values for Vd varied relatively little. Median Vd val-

ues ranged across chemicals from 0.139 to 0.368 L/kg, and across species from 0.194
to 0.254 L/kg. Thus, our failure to build more compelling models for predicting inter-

https://github.com/USEPA/CompTox-PFASHalfLife
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chemical and -species differences in Vd is at least partially a function of the lack of variability
among the data relative to the strong uncertainty. Notably, the uncertainty in the literature
measurements just for PFOS in rat included Vd that ranged from 0.09 to 7.0 L/kg. This
broad uncertainty confounded attempts to build a ML model. However, it possible to use
the species-specific predictions provided in Supplemental Information S3 (see Dawson
et al._ML PFAS_HL_101722.zip) to make TK predictions for PFAS (including Cmax and
AUC) using the median dataset value of Vd (0.201 L/kg), as we did in Section 3.3.2. In addi-
tion, some PFAS have the potential to transform in vivo to a variety of metabolites—which
often include the 11 PFAS modeled here [128]. Thus, the development of data and models
to predict metabolites that could be coupled with models of t 1

2
may greatly enhance our

ability to predict the TK of PFAS.
Physico-chemical properties and albumin binding can both be measured. While

OPERA has recently incorporated measurements for PFAS into its QSARs, additional
measurements of PFAS albumin binding may be extremely useful both on their own and
as training data for QSARs. Similarly, the critical micellular concentration (CMC) could
be measured. CMC is a property that characterizes the aggregation of a chemical into
micelles of like molecules, a process that essentially sequesters the chemical away from
the rest of the body. For PFAS, the formation of a fluorous-phase of micelles is potentially
irreversible [129], and might result in longer t 1

2
with decreasing CMC. Observed PFAS CMC

tend to exceed 10 mM [130] and it remains unknown whether fluctuations or gradients
ever lead to such concentrations physiologically. Regardless, experimental values for the
CMC are not widely available and the only predictor for CMC available at the time of
this writing was omitted for being based on proprietary descriptors [130]. Therefore, the
creation of an open-source, verifiable model for CMC could provide an additional relevant
PFAS descriptor for predicting TK.

Ample opportunity remains in both the experimental and epidemiological domains
for researchers to generate the data with which to test these model predictions, as well as
develop alternative models and descriptors. Figure 3 suggests that future in vivo TK studies
in rodents might aim to investigate PFAS that are predicted to have different half-lives. This
will allow the evaluation and refinement of ML approaches such as those developed here,
as well as informing TK study design (for example, if measuring concentration changes
over weeks is required). Taken as a synthesis of the available data on PFAS TK data,
the prediction of our model might also help analysis of future TK studies by providing
informative Bayesian priors [14,16,131]. Similarly, human studies investigating exposure
changes (such as switching water supplies) might target unmeasured PFAS predicted to
clear more rapidly. Finally, analysis of human biomonitoring data might qualitatively look
for greater accumulation (that is, higher observed concentrations) of PFAS predicted to
have long t 1

2
as opposed to those PFAS predicted to clear rapidly in humans.

We hope that the resources presented here will be used as a starting point by the
broader scientific community to develop additional data and models for PFAS TK. The
term “forever chemical” has been applied to some PFAS with regard to their persistence
in the environment, bioaccumulation, and long human half-lives [132]. For humans, this
preliminary model distinguishes between those PFAS with t 1

2
greater than two months and

those that are eliminated much faster from the body. “Forever” lurks among those longer
t 1

2
PFAS.
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mdpi.com/article/10.3390/toxics11020098/s1. File S1. S1_Dawson et al._ML PFAS_HL_101322.pdf [1,
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S3. S3_Dawson et al._ML PFAS_HL_101722.zip.
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