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Abstract: Urban surfaces exert profound influences on local wind patterns, turbulence dynamics, and
the dispersion of air pollutants, underscoring the critical need for a thorough understanding of these
processes in the realms of urban planning, design, construction, and air quality management. The
advent of advanced computational capabilities has propelled the computational fluid dynamics model
(CFD) into becoming a mature and widely adopted tool to investigate microscale meteorological
phenomena in urban settings. This review provides a comprehensive overview of the current
state of CFD-based microscale meteorological simulations, offering insights into their applications,
influential factors, and challenges. Significant variables such as the aspect ratio of street canyons,
building geometries, ambient wind directions, atmospheric boundary layer stabilities, and street
tree configurations play crucial roles in influencing microscale physical processes and the dispersion
of air pollutants. The integration of CFD with mesoscale meteorological models and cutting-edge
machine learning techniques empowers high-resolution, precise simulations of urban meteorology,
establishing a robust scientific basis for sustainable urban development, the mitigation of air pollution,
and emergency response planning for hazardous substances. Nonetheless, the broader application of
CFD in this domain introduces challenges in grid optimization, enhancing integration with mesoscale
models, addressing data limitations, and simulating diverse weather conditions.

Keywords: urban meteorology; microclimate; street canyon; air pollution; pollutant dispersion

1. Introduction

The United Nations Department of Economic and Social Affairs projects that by
2050, 68% of the global population will reside in urban areas [1], and this is expected to
intensify various climate-related challenges, including heightened energy consumption,
increased greenhouse gas emissions, intensified urban heat island effects, elevated air
pollution, and greater susceptibility to extreme weather events. The Sixth Assessment
Report from the IPCC underscores that cities not only serve as focal points for climate
change impacts and vulnerabilities but also as pivotal arenas for climate change response [2].
Urban landscapes are marked by towering architectural structures, narrow thoroughfares,
heightened population densities, and intensified anthropogenic emissions, all while being
susceptible to ecological degradation and resource limitations. Consequently, the endeavor
to construct sustainable cities emerges as a paramount priority in realizing the United
Nations Sustainable Development Goals [3].

When contrasting urban environments with natural landscapes, it becomes evident
that urban surface alterations wield substantial influences over localized energy exchange
processes, giving rise to unique climatic and environmental conditions [4]. Within urban
areas, particularly within the atmospheric boundary layer beneath the rooftops, known
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as the urban canopy layer, dynamic thermal processes are significantly shaped by the
presence of buildings, resulting in microscale processes [5]. Urban microscale climate and
meteorology typically operate on spatial scales measuring less than 1 km and with time
scales often shorter than 1 day, which are notably smaller than the spatial and temporal
scales of large and mesoscale atmospheric motions [6]. At the microscale, within a city, the
interplay of the built environment, local climate, and human activities is complex, and its
impacts are wide-ranging, including buildings’ energy consumption, the dispersion of air
pollutants, environmental thermal comfort, and human health [7]. Therefore, conducting
comprehensive research into the physical processes and evolving dynamics of an urban
microscale climate and meteorology is of the utmost significance, which will not only
contribute to the informed and scientific development of cities, but will also play a critical
role in achieving environmental management goals and mitigating the adverse impacts of
urbanization on climate change.

The principal methods of studying the urban microscale processes include conducting
field observations and laboratory-based physical experiments (e.g., wind tunnel and water
tank experiments), and the use of computational fluid dynamics (CFD) models. However,
when it comes to conducting direct field observations within urban areas, challenges arise
because of limited resources (e.g., specialized equipment and personnel) and site-specific
characteristics [8]. Nevertheless, well-designed, scaled-down field experiments offer viable
alternatives by allowing for the deployment of a greater number of sensors [9,10]. These
experiments facilitate the examination of phenomena like the urban heat island effect,
urban canopy ventilation, and the urban thermal environment [9–12]. In addition to field
observations, laboratory-based physical experiments offer controlled environments, allow-
ing for the isolation and manipulation of specific variables for in-depth analyses [13–16],
but they may not fully capture the complexity and diversity of actual urban environ-
ments. In contrast, CFD provides distinct advantages in tackling the intricacies of urban
environments, including three-dimensional (3D) wind patterns, turbulence, and matter
dynamics [17]. This capability effectively complements the inherent limitations associated
with field observations and laboratory experiments, and it enables a detailed examination
of factors such as the building heat capacity and the street canyon aspect ratio, shedding
light on their impacts on near-surface turbulence and temperatures within actual urban
environments. By combining these three methods, a multifaceted approach to the study of
the urban microscale climate and meteorology becomes possible.

CFD, as exemplified using software packages such as Ansys Fluent and OpenFoam
(Open Field Operation and Manipulation), involves the solution of the Navier–Stokes
system of equations through the use of discretization techniques. Among the discretization
methods that are commonly employed, the finite volume method stands out for its prowess
in maintaining conservation principles and preserving lucid physical interpretations, mak-
ing it the most widely employed mesh discretization approach in CFD simulations [18].
Dealing with turbulence (Table 1) within the urban canopy presents a significant challenge
in CFD simulations. While a direct numerical simulation (DNS) effectively handles turbu-
lence problems at low Reynolds numbers [19], more commonly used indirect turbulence
numerical simulation methods include large eddy simulation (LES), Reynolds-averaged
Navier–Stokes equations (RANS), and detached eddy simulation (DES). The LES directly
simulates large-scale eddies, with small-scale eddies represented through parameterization
schemes, improving the computational efficiency while describing essential turbulence
behaviors. LES is particularly suitable for predicting flow characteristics within single or
densely packed building complexes on small scales, albeit it presents challenges when
applied to the study of whole city [20]. RANS, characterized by a lower grid resolution,
provides a time-averaged treatment of the Navier–Stokes equations, solving for individual
mean motion variables. The different mathematical models for the Reynolds stress term
give rise to various turbulence closure models [21], including the Spalart–Allmaras model
in a one-equation mode, the standard k-ε model in a two-equation mode, the realizable k-ε
model, and the SST k-ε model [22]. These two-equation turbulence models, which demand



Toxics 2023, 11, 927 3 of 14

a minimal grid accuracy and offer swift convergence, are widely adopted to study wind
field characteristics in urban microscale processes. The DES combines elements of both
approaches, utilizing the RANS to predict the boundary layer turbulence and using the
LES to simulate small-scale turbulent structures [23]. When selecting a turbulence scheme,
considerations should encompass the physical phenomena, accuracy requirements, and
available computational resource.

Overall, CFD offers flexible grid discretization, a range of turbulence modeling options,
and user-friendly visualization tools, facilitating the comprehensive analysis of physical
processes within intricate urban landscapes [24], and it serves as a powerful tool to translate
theoretical principles into practical insights. Through simulations, it is possible to explore
the specific impacts of parameters like the building heat capacity and street canyon aspect
ratio on urban microscale processes, offering valuable knowledge for urban planning and
environmental management. We conducted a search in the Web of Science database using
the keywords ‘CFD, microclimate, and urban’ and identified 258 academic publications dat-
ing from 2003 (Figure 1a). Notably, approximately 84% of these publications emerged after
2016. When analyzing the frequency of these keywords across all of the papers (Figure 1b),
it is evident that the primary focus of these publications lies in the CFD simulation process,
urban environmental characteristics, and their effects on human comfort, particularly in the
context of urban streets. While there are some review papers available that examine urban
microclimate [25,26], these mostly offer evaluations of numerical methods without delving
into CFD technology’s specificities or the thermal and dynamic physics of intricate urban
surfaces. To address this gap, our review will primarily concentrate on numerical studies of
microscale urban airflow and pollutant distribution utilizing CFD. The subsequent sections
will provide an exhaustive summary of the research findings from urban microscale CFD
simulations, encompassing both idealized scenarios and real-world conditions.
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Table 1. Summaries of different CFD turbulence models.

Turbulence
Models Advantages Disadvantages Ref.

DNS

The DNS is far more accurate than any
numerical method to solve the

Navier–Stokes equations, and it is a useful
tool in fundamental research on turbulence.

The computational cost of the DNS is very
high, even at low Reynolds numbers.

Moin and
Mahesh [19]

RANS

The RANS methods offer the most economic
approach to compute complex turbulence,

and they are suitable for many urban
meteorology applications and typically
provide the level of accuracy required.

The modeling assumptions used to derive
the mathematical formulation limit the

simulation accuracy.

Hussain et al. [22]
Van Hooff and

Blocken [27]
Gao et al. [28]

Blocken et al. [29]
Baik and Kim [30]

Flaherty [31]

LES
The LES is capable of handling flow

instabilities and intermittencies and provides
detailed information about

turbulence structures.

The computational cost of LES is high. The
LES models are primarily viewed as research
tools rather than practical solutions for real

urban meteorology applications.

Xie and Castro [32]
Lim et al. [33]

Buccolieri
et al. [34]

DES

These methods are hybrid RANS-LES
models, and they overcome some of the

limitations of the RANS models and reduce
computational cost compared to a fully

fledged LES approach.

The DES may have inaccurate velocity and
stress values at the RANS and LES interface. Breuer et al. [23]

2. Idealized Simulations of Microscale Meteorological Processes

The urban landscape is a dynamic interplay of elements, featuring elongated street
canyons, strategically positioned street trees, and buildings of varying heights [35]. To
grasp the fundamental principles driving urban microscale processes, a common approach
involves simplifying building configurations. This allows for the elucidation of fundamen-
tal laws through idealized CFD simulations, which may encompass scenarios with single
buildings and 2D or 3D street canyons, as well as regular arrays of buildings.
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In the vicinity of a single building, the flow field (Figure 2) is characterized by distinct
regions, including the upstream recirculation, rooftop recirculation zone, near-wake zone,
and far-wake zone [36]. When multiple buildings encircle an individual structure, the flow
fields intersect and interact, giving rise to intricate flow patterns both among the buildings
and within the building array.
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Street canyons, defined as narrow spaces enclosed by urban roads and adjacent
buildings, represent an elemental unit of urban infrastructure. Street canyons serve as
critical interfaces between indoor and outdoor environments, and they function as vital
activity spaces for urban residents [37]. Assuming a street canyon to be infinitely long, its
shape can be further simplified to a 2D state, and the flow field within is characterized by
the presence and intensity of vortices, which are influenced by the geometric configuration
of the canyon. Taller buildings within a street canyon possess the capacity to accelerate
and guide winds, while shorter structures may cause the disruption and redirection of the
flow. Additionally, increasing the aspect ratio can induce channeling effects, heightening
the wind speeds and turbulence within the canyon, and leading to various flow field states,
including isolated rough flow, wake interference flow, and climbing flow, within the street
canyon [38]. With a fixed aspect ratio, higher background wind speeds amplify the vortex
activity in the street canyon [30]. Furthermore, the roof’s structure also plays a crucial role
in shaping the vortex patterns within the street canyon [39,40]. Various roof shapes, such
as downwind wedges, upwind wedges, trapezoids, and circles, among others, as well as
roof slopes, can impact the vortex morphology and the pollutant dispersion conditions in
the street canyon [41–44].

Compared to 2D simulations, the utilization of 3D CFD simulations offers the capa-
bility of assessing more intricate meteorological conditions and building configurations,
including variables like the ambient wind direction and building length. The simulation
results for 3D street canyons indicate that deeper street canyons can lead to longer residence
times for pollutants, allowing for enhanced secondary processes such as photochemical
reactions [45], and asymmetrical street canyon layouts generally facilitate superior ventila-
tion conditions compared to symmetrical configurations [46]. When buildings downstream
of a street canyon are elevated, the airflow within the street canyon is obstructed, leading to
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an augmented downdraft on the windward side of these buildings [46], consequently
intensifying the vertical vortex within the street canyon. Furthermore, the prevailing
wind direction can significantly influence the wind characteristics within the 3D street
canyon [47]. When the wind direction is perpendicular to the street canyon, it results
in low wind speeds and poor ventilation, whereas an alignment of the wind direction
parallel to the street canyon leads to elevated wind speeds and a more uniform pressure
distribution [48,49]. In addition, the stability of the atmospheric boundary layer, which
is used as an inflow condition in CFD simulations, also exerts an influence on the flow
field within the 3D street canyon. Increased instability in the atmospheric boundary layer
leads to amplified wind and turbulence fields within the street canyon [50]. Higher ground
temperatures may lead to the formation of multiple vortex structures within the built-up
areas, facilitating pollutant dilution and removal [51,52].

The recent upsurge in CFD studies focusing on urban greening expands our under-
standing of microscale meteorology in street canyons, significantly impacting urban areas.
Street trees have notable impacts on the flow patterns within canyons [53], as they introduce
an added surface roughness and act as physical wind obstructions, causing the airflow to
bifurcate and circumvent the tree canopy, and they give rise to vortices and eddies within
the flow. When positioned along the street canyon’s sides, tree canopies act as buffers,
effectively reducing the wind speeds [54]. Optimizing the spacing between trees and the
distances between trees and adjacent buildings may further enhance the ventilation within
the street canyon [55]. The size of the tree canopy and the gaps between trees critically
influence shading and, consequently, the thermal environment within the canyon [56].
Broad canyons benefit from street trees that are particularly adept at reducing wind speeds,
while narrower ones enjoy the cooling and shading effects of these trees [57,58]. In prac-
tical scenarios, Buccolieri employed CFD to model wind fields and pollutant dispersion
in vegetated street canyons, finding that the aerodynamic effect of vegetation on pollu-
tant concentration varied with the wind direction, decreasing with higher aspect ratio in
perpendicular wind conditions but notably increasing with inclined winds [34].

3. Realistic Simulations of Microscale Meteorological Processes

Simulating urban microscale meteorological processes in realistic urban environments
(Figure 3) is a complex endeavor that involves several interacting factors and presents
a range of challenges, including geometrical/thermal heterogeneity [59,60], mesoscale
interactions [61,62], and complex surface effects [63].

To engage in real simulations of urban microscale processes using CFD, it is imperative
to establish appropriate initial and boundary conditions [31]. The ambient wind field and
turbulence intensity within a simulation domain can be determined using a combination of
actual observational data or fitted mathematical functions [64,65]. Flaherty and team de-
signed the wind speed profile at the inlet boundary based on a fitted logarithmic law wind
profile derived from empirical observations, and they found that low buildings exerted
minimal influences, while a few high-rise structures significantly affected the transport and
diffusion processes [31]. In downtown Singapore, high-resolution CFD simulations demon-
strated that the heterogeneous urban morphology (i.e., the local building typology and
height) significantly impacted the local pollutant concentration (Figure 4) [65]. Moreover,
refining the computational grid, setting rational boundary conditions, and selecting appro-
priate turbulence models has enabled CFD to address various topics, including near-surface
wind comfort [66], the design of the natural ventilation systems in urban areas [67–69], the
analysis of indoor and outdoor air exchange dynamics [70,71], and the evaluation of wind
power resources within urban settings [72,73].



Toxics 2023, 11, 927 7 of 14
Toxics 2023, 11, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. A multi-scale diffusion model of air pollutants passing through a building cluster from the 
outdoor environment into the indoor scale [62], including (a) neighborhood scale, (b) block/street 
scale, (c) building scale, and (d) indoor scale. D, W, and H are the length, width, and height of the 
target building, respectively. 

These abovementioned CFD simulations relied on limited field data or theoretical 
wind profiles, affecting the precision and representativeness. The integration of CFD mod-
els with larger-scale meteorological models has significantly improved the provision of 
realistic starting parameters for CFD applications, enabling a more comprehensive under-
standing of the interactions between micro- and mesoscales [74]. For instance, in regions 
like Beijing [75], Hebei Province [76], and Shenyang [77], researchers have successfully 
simulated and studied wind and turbulence fields by integrating models at various scales. 
Tewari et al. demonstrated that coupling the Weather Research and Forecasting Model 
(WRF) with CFD can faithfully replicate wind field variations in the lower portion of the 
urban boundary layer [78], and they further highlighted that fine-tuning the parameteri-
zation scheme of the urban canopy within the WRF can further enhance the performance 
of the coupled model [78]. The multi-scale simulations reveal that an increased wind 
speed enhances the natural ventilation and air pollutant dispersion within built-up areas 
[79], while stable boundary layer conditions lead to pollutant retention around individual 
buildings [80]. Based on the simulations, it was recommended to implement strategies 

Figure 3. A multi-scale diffusion model of air pollutants passing through a building cluster from the
outdoor environment into the indoor scale [62], including (a) neighborhood scale, (b) block/street
scale, (c) building scale, and (d) indoor scale. D, W, and H are the length, width, and height of the
target building, respectively.



Toxics 2023, 11, 927 8 of 14

Toxics 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

such as widening streets and adjusting the aspect ratio of street canyons to enhance local 
ventilation and facilitate more effective pollutant dispersion [81,82]. In the event of a sud-
den release of hazardous gases, there is a rapid and intense surge in the concentration, 
causing immediate and significant local variations within the urban landscape, driven by 
microscale meteorological processes [83]; coupled models have proven to be invaluable 
tools to gain comprehensive insights into flow fields, offering a cost-effective and secure 
approach for risk assessment [84]. 

 
Figure 4. Simulated fields of NO2 concentration and wind vectors at the pedestrian level [65]. The 
blue-to-red shapes indicate the building heights, and the yellow-to-green shapes indicate the pollu-
tant concentrations. The circles mark the pollutant accumulation points. 

Moreover, within urban environments, the interplay of elements such as buildings, 
vegetation, and water bodies significantly shapes wind patterns and turbulence dynamics 
[85–88], while also influencing heat transfer dynamics [89]. This gives rise to dynamic, 
non-uniform heating patterns throughout the city, resulting in the delineation of distinc-
tive urban microclimate characteristics, including the formation of urban heat islands, 
which, in turn, exert profound effects on the broader environmental context [90]. Under-
standing these intricate dynamics necessitates delving deeply into a multitude of complex 
physical processes, presenting an imposing challenge. Kubilay et al. employed integrated 
models (Figure 5), including the wind-guided precipitation model (WDR), the heat–air–
moisture model (BE-HAM), and the radiation model, to dissect the intricate choreography 
of these processes within the urban environment [91]. Because urban heat islands are sig-
nificantly affected by certain materials’ limited water-absorbing capacities and their affin-
ity for capturing copious amounts of solar radiation, various strategies have been pro-
posed to mitigate heat waves [92], such as converting pavements into permeable materials 
and applying high-albedo coatings [93]. Furthermore, the exchange of indoor and outdoor 
air is pivotal in shaping human living conditions (Figure 3). Currently, two primary ap-
proaches are utilized to simulate this exchange using CFD: (1) coupled simulation, which 
models both indoor and outdoor environments within the same computational domain, 
and (2) the regional decomposition method, where indoor and outdoor domains are dis-
cretized separately, with the outdoor data serving as boundary conditions for indoor 

Figure 4. Simulated fields of NO2 concentration and wind vectors at the pedestrian level [65]. The
blue-to-red shapes indicate the building heights, and the yellow-to-green shapes indicate the pollutant
concentrations. The circles mark the pollutant accumulation points.

These abovementioned CFD simulations relied on limited field data or theoretical wind
profiles, affecting the precision and representativeness. The integration of CFD models with
larger-scale meteorological models has significantly improved the provision of realistic
starting parameters for CFD applications, enabling a more comprehensive understanding
of the interactions between micro- and mesoscales [74]. For instance, in regions like Bei-
jing [75], Hebei Province [76], and Shenyang [77], researchers have successfully simulated
and studied wind and turbulence fields by integrating models at various scales. Tewari et al.
demonstrated that coupling the Weather Research and Forecasting Model (WRF) with CFD
can faithfully replicate wind field variations in the lower portion of the urban boundary
layer [78], and they further highlighted that fine-tuning the parameterization scheme of
the urban canopy within the WRF can further enhance the performance of the coupled
model [78]. The multi-scale simulations reveal that an increased wind speed enhances the
natural ventilation and air pollutant dispersion within built-up areas [79], while stable
boundary layer conditions lead to pollutant retention around individual buildings [80].
Based on the simulations, it was recommended to implement strategies such as widening
streets and adjusting the aspect ratio of street canyons to enhance local ventilation and
facilitate more effective pollutant dispersion [81,82]. In the event of a sudden release of
hazardous gases, there is a rapid and intense surge in the concentration, causing imme-
diate and significant local variations within the urban landscape, driven by microscale
meteorological processes [83]; coupled models have proven to be invaluable tools to gain
comprehensive insights into flow fields, offering a cost-effective and secure approach for
risk assessment [84].



Toxics 2023, 11, 927 9 of 14

Moreover, within urban environments, the interplay of elements such as buildings,
vegetation, and water bodies significantly shapes wind patterns and turbulence dynam-
ics [85–88], while also influencing heat transfer dynamics [89]. This gives rise to dynamic,
non-uniform heating patterns throughout the city, resulting in the delineation of distinctive
urban microclimate characteristics, including the formation of urban heat islands, which,
in turn, exert profound effects on the broader environmental context [90]. Understanding
these intricate dynamics necessitates delving deeply into a multitude of complex physical
processes, presenting an imposing challenge. Kubilay et al. employed integrated models
(Figure 5), including the wind-guided precipitation model (WDR), the heat–air–moisture
model (BE-HAM), and the radiation model, to dissect the intricate choreography of these
processes within the urban environment [91]. Because urban heat islands are significantly
affected by certain materials’ limited water-absorbing capacities and their affinity for captur-
ing copious amounts of solar radiation, various strategies have been proposed to mitigate
heat waves [92], such as converting pavements into permeable materials and applying
high-albedo coatings [93]. Furthermore, the exchange of indoor and outdoor air is pivotal in
shaping human living conditions (Figure 3). Currently, two primary approaches are utilized
to simulate this exchange using CFD: (1) coupled simulation, which models both indoor
and outdoor environments within the same computational domain, and (2) the regional
decomposition method, where indoor and outdoor domains are discretized separately,
with the outdoor data serving as boundary conditions for indoor simulation [85]. CFD
simulations demonstrate that indoor airflow can be significantly influenced by external
meteorological conditions [94]. Horan and Finn observed that an increase in the outdoor
wind speed leads to a linear rise in the indoor air change rate, while the impact of the
outdoor wind direction hinges on the configuration of building vents [71].
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model. The air domain, modeling wind flow, and wind-driven rain (WDR) exchange information
with the HAM (heat and moisture transport in porous media) model, which is iterated with the
radiation model [91].

In recent years, the integration of machine learning and artificial intelligence tech-
niques with CFD has revolutionized studies in urban meteorology [95–98], which can
help refine turbulence models and capture the effects of urban surface heterogeneity. For
example, Ding et al. employed machine learning techniques to enhance the CFD model
for indoor–outdoor coupling, introducing a comprehensive index for the swift assessment
of ventilation in urban planning and design [95]. Mortezazadeh et al. combined machine
learning and CFD to achieve precise predictions of wind speeds in urban areas, evaluating
the potential for wind power utilization [96]. Additionally, Javanroodi et al. proposed
a hybrid model that combines CFD with artificial neural networks in simplified urban
settings, which was trained using multilayer perceptrons and deep neural networks, and
they demonstrated improved accuracy in predicting urban microscale wind fields [99].
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In summary, the exploration of the relationship between the urban microscale meteo-
rological processes and the physical attributes of the underlying surface is of significant
importance to enhance neighborhood air quality and improve the comfort of human settle-
ments [100–104]. However, the majority of existing studies in this field primarily focus on
meteorological conditions characterized by abundant sunshine and low humidity. Enhanc-
ing the parameterization of urban underlying surface properties in complex meteorological
conditions and precisely depicting their interactions with the surrounding environment in
CFD simulations require further refinement.

4. Conclusions

CFD has achieved a high level of maturity and is extensively utilized to investigate
urban micrometeorological processes, encompassing not only idealized city simulations
but also the intricate flow and pollution patterns within real urban environments. Signifi-
cant variables such as the aspect ratio of street canyons, building geometries, the ambient
wind direction, atmospheric boundary layer stabilities, and street tree configurations play
crucial roles in influencing microscale physical processes and the dispersion of atmospheric
pollutants. The integration of CFD with mesoscale meteorological models and cutting-edge
machine learning techniques enables the high-resolution, precise simulation of urban mete-
orology, laying a scientific foundation for sustainable city development and air pollution
mitigation. Nonetheless, its further application is accompanied by several challenges.
Firstly, while CFD offers flexibility, the diverse range of turbulence calculation methods
lacks established best practices, posing difficulties in balancing computational efficiency,
resource demands, and model performance. Secondly, issues like grid mismatches and
variations in discretization methods can complicate data interpolation and information
transfer, potentially affecting the accuracy and stability of simulation results when integrat-
ing CFD with mesoscale models. Thirdly, the limited spatial distribution and the quantity
of data points from field observations and wind tunnel experiments pose challenges in
validating the CFD simulation results. Lastly, it is imperative to conduct further research to
advance CFD capabilities of simulating a wider array of weather conditions, encompassing
scenarios like heavy rain, heatwaves, hurricanes, and other extreme events.
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