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Abstract: More than two million people live on the floodplains along the middle and lower streams of
the Yellow River. The rapid development of industry and agriculture on both sides of the Yellow River
has caused serious pollution of the floodplain soil. Erosion by water has led to the destruction of the
floodplain which has not only compressed people’s living space but also resulted in a large amount
of sediment containing heavy metals entering the river, aggravating water pollution. To further
study the law governing the release of pollutants in soil, this work, based on field surveys of the
Yellow River floodplain slopes from Wantan town to Liuyuankou, was focused on determining the
failure mechanism and laws for the floodplain slope through the combination of a flume experiment
and numerical calculations. The results showed that the floodplain slopes, composed of clay and
silty sand, presented an interactive structure. Under the action of water erosion, the slope was first
scoured to form a curved, suspended layer structure, and then the upper suspended layer toppled.
The bank stability coefficient decreased by about 65% when the scour width increased from 0.07 m to
0.42 m, and the water content increased from 20% to 40%. For the failure characteristics, the angle
of the failure surface was negatively correlated with the scour width, and the distance from the top
failure surface to the bank edge was about 2.5 times that of the scour width.

Keywords: floodplain; slope; scour; flume experiment; numerical calculation

1. Introduction

Pollution caused by heavy metals in soil is attracting more and more attention. The
rapid development of industry and agriculture along the lower Yellow River has increased
the number of heavy metals in the soil [1,2]. When the heavy metal content in bank soil
accumulates to a certain extent, it causes damage to riparian organisms, and the numbers
of plant species significantly decrease with increases in the heavy metal concentration [3–5].
In recent years, the collapse of the bank has resulted in polluted soil continuously entering
the Yellow River, causing serious pollution in the water body. In addition, some studies
have found that the riverbank can intercept the polluted sediments carried by the upstream
river, but when the riverbank is damaged, these pollutants re-enter the river [6,7]. Zhao
surveyed ten major tributaries along the middle and lower reaches of the Yellow River and
found that all of the lower tributaries had poor water quality and that the pollutants mainly
came from industry and agriculture [8]. Walling found that 90 percent of heavy metals in
the water were associated with suspended solids and sediments [9]. Many scholars have
studied the pollution of the Yellow River [10,11]. However, there is little research on the
release law for soil pollutants resulting from erosion. This work was undertaken to lay a
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foundation for further research on the release of pollutants by studying the failure law and
failure rate for the slope of the Yellow River floodplain.

The Yellow River is about 5464 km long and is one of the longest rivers in the world [12].
Xiaolangdi Dam is the last cascade reservoir in the main stream of the Yellow River and
is located at the exit from the last gorge in the middle stream of the Yellow River. The
important roles of the dam are to store water and hold back sand. Compared to the average
from 1956 to 2016, the measured annual sediment transport volume at Xiaolangdi decreased
by 90.5% in 2021 [13]. As the sediment entering the downstream channel has been greatly
reduced, the sand-carrying capacity of the current cannot be satisfied, and the downstream
riverbank is being scoured [14–17]. The continuous collapse of the slope is causing a
number of environmental problems and increasing the risk of damage to infrastructure
along the riverbank [18–20]. It is expected that the lower reaches of the Yellow River will
continue to be strongly scoured, with the concave bank being the most strongly effected,
followed by the straight bank.

Research on failure mechanisms has developed from homogeneous to multi-layer
slopes. Das and others studied the scour damage in cohesive homogeneous slopes [21–23].
Yu conducted scouring experiments on non-cohesive and cohesive homogeneous banks,
revealing the iterative cycle of bank erosion and riverbed deformation [24]. Hazari et al.
analyzed the stability of two different cohesive soil slopes [25–27]. Dapporto studied the
failure mechanism in a riverbank with a dual structure of sand and clay [28]. Yodsomjai
studied the stability of double-layer conical slopes [29]. Li evaluated the stability of a three-
layer slope composed of two cohesive soil layers and backfill soil [30]. However, previous
studies on stratified slopes rarely go beyond three layers, while the floodplain slopes of
the lower Yellow River show an interactive structure because the numerous floods have
resulted in the silty sand and clay carried by the river being alternately deposited on the
river beach. Although the Yellow River floodplain is rapidly collapsing, the failure pattern
and characteristics of the floodplain slope composed of silty sand and clay interlayers have
not been extensively studied. The slope of the Yellow River floodplain presents a typical
interactive stratified structure, and slopes with special structures have not been widely
studied. Gusman suggested that one of the important factors in slope stability analysis is
water content [31]. Hooke and Casagli et al. stated that soil moisture content is essential
to beach erosion [32–34]. Gu highlighted the influence of different irrigation methods on
landslides [35]. In light of this work, it is necessary to consider the influence of water
content in the research process.

There has been much research undertaken on river scour [36,37]. Pandey studied the
erosion of piers by water flow [38]. Huang established a model for sediment transport
caused by flooding [39]. Yang studied the operational impact of the Three Gorges Dam on
river scour [40]. Yan et al. studied the protective effect of vegetation on gully banks through
scouring experiments [41]. Another study discussed the sediment transport trajectory [42].
Dey conducted a scouring experiment with a bend flume and found that cross flow is
an important factor in bank erosion [43]. Limit analysis theory with strict upper- and
lower-limit solutions is often used in slope stability research [44,45]. Rao proposed a
three-dimensional slope stability analysis method based on limit analysis [46]. Maghous
analyzed the stability of rock slopes [47]. Huang used the upper limit theorem from limit
analysis to draw a hazard map of shallow landslides [48]. Vasquez used a two-dimensional
model to simulate scour and deposition along curved channels [49]. Karssenberg studied
sediment transport in flood plains using a three-dimensional numerical model [50]. It can
be seen from the previous studies that the research methods used are mainly numerical
simulation and experimental methods. In this paper, soil collected from a field investigation
was used to conduct a reduced model erosion test to study the failure mechanism for the
floodplain slope. However, the physical model test is easily limited by size, resulting in
different results [51,52]. Although parameters can be set according to different situations in
the numerical simulation, the actual working conditions are complex [53,54]. In this paper,
to take full advantage of both methods, the flume experiment and numerical calculation
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are combined to study the failure mechanism and pattern of floodplain slope. To make the
conditions of the experiment closer to those of the slope in its natural state, soil collected
from field investigation is used.

2. Materials and Methods
2.1. Study Area

The study area is located between Zhengzhou and Kaifeng (113◦58′~114◦23′ E,
34◦50′~35◦ N), the core development cities of the Central Plains, and is an important
agricultural planting area (Figure 1) [55,56]. Due to the flat terrain, sediment carried by
the Yellow River from the upper reaches is constantly deposited in the area, forming the
famous overhanging river. The climate in this region is a temperate monsoon climate,
characterized by cold and dry winters and high temperatures and rain in summer.
The average annual precipitation and temperature are 636 mm and 15 ◦C, respectively,
and this area is rich in biological resources, with nearly 800 and 60 kinds of plants
and animals, respectively. The economic development of the region is dominated by
traditional industries, such as the chemical and energy industries, and crop cultivation,
which have a significant impact on the ecological environment of the lower Yellow
River [57]. Cultivated land is widely distributed in this area, and the soil is mainly loam,
clay, and silt. However, due to the influence of climate and precipitation, wheat and corn
are the main crop in winter and summer, respectively. Meanwhile, the sediment from
the Loess Plateau is deposited to form floodplains which also have become significant
land resources for agriculture. However, due to the operation of the Xiaolangdi Dam,
the floodplain keeps retreating. Wang analyzed satellite images of the Yellow River
from Huayuankou to Liuyuankou and found that nearly 32.08 km2 of farmlands on the
floodplain were destroyed over 13 years [58].
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2.2. Field Investigation

Thorne and Xia found that the shear strength reflects the slope stability [59,60]. To
better understand the floodplain soil structure and mechanical properties, a field investi-
gation, including soil sampling and scanning with SIR4000 geological radar, was carried
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out on the floodplain slopes from Wantan Town to Liuyuankou. Simultaneously, according
to the erosion situation in the area, an investigation point was selected in Wantan Town,
Heigangkou, and Liuyuankou, respectively (Figure 1). As shown in Figure A1, the geologi-
cal radar was used to scan the floodplain slope parallel to the failure surface, and a total of
18 cross-sections from Wantan Town, Heigangkou, and Liuyuankou were swept. Given the
actual situation of the floodplain, the sampling points were selected in the places where
the collapse is prominent, and six cross-sections were selected for sampling (Table A1).
Layered sampling was used, as the floodplain slope presents an interactive structure. To
correspond to the scan results of geological radar, the sampling position and altitude were
recorded strictly for each sampling. Undisturbed soil was sampled with a ring knife and
sealed with plastic film, then placed in a plastic box. Additionally, the scattered soil was
placed in a well-sealed plastic bag.

2.3. Laboratory Tests and Soil Types

The laboratory test is a standard method for classifying soil and understanding the
physical and mechanical properties of soil, and the test procedure followed the geotechnical
test method standards strictly [61]. The contents measured mainly included moisture
content, density, specific gravity, shear strength index, and plasticity index.

2.4. The Scouring Experiment

The collapse of the floodplain slope directly threatens the safety of the Yellow River
levee. Additionally, Heigangkou is located in Kaifeng, where levees have repeatedly broken
in the past. The S-shaped flume following the actual bank size of the Heigangkou section
was used to simulate the erosion process of the convex, concave, and straight banks, to
study the failure pattern and mechanism of the floodplain slope (Figure 2).
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Figure 2. Schematic diagram of flume size.

Three profile positions were selected in this experiment, as shown in Figure 3a. A
camera was set up on the convex, concave, and straight banks to capture the failure process.
Earth pressure sensors were buried at the bottom of the concave and straight banks, and
the measuring accuracy of the earth pressure box is 0–0.4 MPa. To prevent water from
scouring the start and end of the slope, gravels were paved in the water inlet and outlet
of the flume (Figure 3). The water outlet of the flume was provided with a water baffle
which was used to control the water level height by changing its position at the same time
(Figure 3a). The detailed description of the experiment equipment is shown in Table A2.
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(b) side views of the flume.

The river gradient and incoming water flow were taken as variables, and three working
conditions were designed as a control. Each working condition was scoured for 1 h (the
specific experimental design is listed in Table 1). Simultaneously, to simulate scouring
damage when the water level changes, the water level was set to two heights (5 and 10 cm)
and changed every 10 min. Each working condition required 75 kg of soil, collected
from Wantan Town to Liuyuankou, and the size of the final experiment bank structure
is illustrated in Figure 3b. The floodplain slopes present an interactive layered structure
in their natural state; however, it was difficult to lay the clay directly. Therefore, the silty
sand and clay were mixed as the experiment soil. To achieve the actual working condition
density, it was necessary to tamp when laying the mixed soil.

Table 1. The detailed arrangement of experimental groups.

Working Condition Bank Height (cm) Flow (L/s) Bank Angle (◦) River Gradient Scouring Time (h)

1 14 0.5 90 0.01 1
2 14 0.5 90 0.02 1
3 14 0.5 90 0.03 1
4 14 0.8 90 0.01 1
5 14 1.2 90 0.01 1

2.5. Numerical Simulation

The limit analysis method was used to validate the failure pattern of a straight bank.
Additionally, the effects of the scour width on the stability of the interactive layered slope
were also analyzed. OptumG2 is a geotechnical software that integrates limit and finite
element analysis and can simulate complex problems with nonlinear failure criteria [62–65].
Tschuchnigg and Sloan introduced the principle, advantages, and disadvantages of software
in detail [45,66]. Every simulation in this paper required five iterations, and when the iteration
number raised, the unit number increased from 5000 to 10,000.
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3. Results
3.1. Field Investigation and Geotechnical Test Results

The bank presents a vertical stratified structure, and bank soil is roughly divided into
brown and yellow soils (Figure 4). A scan result in Wantan Town is presented on the right
side of Figure 4. Because different soils correspond to individual conductivity properties,
nearly all the scan results of 18 sections showed a vertically layered structure.
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Owing to the plasticity indexes above 17 (shown in Table 2), the soil was classified as
clay in combination with relevant classification standards [67]. The yellow soil was first
subjected to a sieving test, and then the particle gradation of the soil with particle size
below 0.075 mm was determined by the densitometer method. Finally, the drawn particle
gradation curve is shown (Figure 5). The particle size greater than 0.075 mm and smaller
than 0.005 mm did not exceed 50% and 10% of the total weight, respectively. The plasticity
index obtained from the liquid–plastic limit test was less than 10, so this soil was classified
as silty sand according to the standard [67].
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Table 2. Part test results of the brown soil.

Soil Label Sampling Location Depth (cm) Moisture Content (%) Dry Density (g·cm−3) Wet Density (g·cm−3) Ip
Shear Strength

C (kPa) ϕ (◦)

1 Wantantown 25 21.15 1.66 2.009 18.2 36.5 28.6
2 Wantantown 86 35.61 1.40 1.851 23.6 26.36 18.56
3 Heigangkou 30 16.7 1.57 1.836 21.1 49.1 32.3
4 Heigangkou 55 25.55 1.71 2.113 19.4 31.3 26.5
5 Liuyuankou 93 28.81 1.63 2.232 21.7 39.1 23.63
6 Liuyuankou 137 39.71 1.49 1.910 18.8 36.51 25.1

Symbols: Ip = Plasticity index.

3.2. Scouring Experiment Result
3.2.1. Failure Pattern

Figure 6a shows the bank failure schematic diagram of concave, straight, and convex
banks under working condition 2. The erosion degree of the concave bank is greater than
that of the straight bank and the convex bank, and the convex bank is silted. According
to Figure 6b, it can be found that the slope toe was scoured to form an arc-shaped
scouring surface, which was attributed to the presence of clay and the pseudo-cohesion
of silty sand. To further understand erosion characteristics under the different variables
and compare with previous studies, the scour height, L1 and width, L2, accurate to
millimeters, were introduced.
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Figure 6. Bank failure pattern: (a) failure schematic diagram of slopes under working condition 2; (b) actual
diagram of the concave bank under working condition 2 (L1: the scour height, L2: the scour width).

3.2.2. Variation of Scour Width and Height

Figure 7a shows that when the channel gradient equaled 0.01, the concave and straight
banks were all eroded because of the weak circulation intensity caused by the low water
velocity. As the channel gradient increased from 0.01 to 0.03, the scour width of the concave
bank gradually enhanced. On the contrary, the convex bank which kept depositing from
the channel gradient equaled 0.03.

Figure 7b shows that with the increase in incoming water flow, there was no deposition
in the straight and convex banks. Wang found that when the water flow increased to a
certain extent, the straight and convex banks were eroded [68].
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3.2.3. Variation of Earth Pressure

The change of the internal earth pressure from the experiment’s start to the experi-
ment’s end is shown in Figure 8. Two factors affect earth pressure in the experiment process;
earth pressure increases with an increase in soil water content, but water erosion decreases
earth pressure. The earth pressure increased first and then decreased (Figure 8). This
appearance indicated that the water content in the early stage had a more significant impact
than water flow erosion. In the later period, the earth pressure decreased when the water
content changed very little. In combination with the video recorded for the experiment, the
slope collapsed when the earth pressure was less than before the experiment.
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3.3. Numerical Results
3.3.1. Establishing the Slope Model

According to the flume experiment, the vertical slope formed an arc-shaped suspended
layer under water flow scour. An equal proportional slope model, based on the size of the
arc-shaped suspended layer, was established using OptumG2. A generalized model of slope
collapse was established, wherein H, H1, b, and α represent bank height, water level, the
length of the failure surface to the bank edge, and the failure surface angle, as seen in Figure 9.



Toxics 2023, 11, 79 9 of 16

Toxics 2023, 11, 79 9 of 17 
 

 

3.3. Numerical Results 

3.3.1. Establishing the Slope Model 

According to the flume experiment, the vertical slope formed an arc-shaped sus-

pended layer under water flow scour. An equal proportional slope model, based on the 

size of the arc-shaped suspended layer, was established using OptumG2. A generalized 

model of slope collapse was established, wherein H, H1, b, and α represent bank height, 

water level, the length of the failure surface to the bank edge, and the failure surface an-

gle, as seen in Figure 9. 

 

Figure 9. Generalized model of the bank collapse. 

There was a significant difference in the soil moisture content between the soaked 

part and the higher part of the floodplain slope during the flume experiment and field 

survey. To consider the effect of water content on the bank stability, the water content 

was divided into 20 and 40%, corresponding to two kinds of soil strength, according to 

the data measured in the experiment. When simulating bank stability, the shear strength 
parameters for the experiment soils under the two water contents are shown in Table 3. 

Table 3. Model parameters for simulating the failure mode. 

H (m) H1 (m) L1 (m) L2 (m) 
Moisture Con-

tent 
Soil Type C (kPa) φ(°) 

Dry Density 

(kN·m−3) 

Wet Density 

(kN·m−3) 

1.4 1 0.39 0.29 

20% 
clay 

silty sand 

35 

25 

30 

35 

17 

16 

15 

14 

40% 
clay 

silty sand 

15 

10 

10 

20 

18 

17 

15 

14 

3.3.2. Validation of the Bank Failure Pattern 

The failure pattern of a straight bank after scouring (under test condition 5) was se-

lected for validation using the OptumG2. The erosion height and width equal 0.39 and 

0.29 m of the slope model in Figure 9, and the simulation results are stated in Figure 10. 

The failure surface of the slope was almost vertical in Figure 10a. The simulated re-

sult was very similar to the failure mode of the scouring experiment; the upper sus-

pended soil rotated and fell into the water under the action of gravity in Figure 10b . 

Figure 9. Generalized model of the bank collapse.

There was a significant difference in the soil moisture content between the soaked
part and the higher part of the floodplain slope during the flume experiment and field
survey. To consider the effect of water content on the bank stability, the water content was
divided into 20 and 40%, corresponding to two kinds of soil strength, according to the data
measured in the experiment. When simulating bank stability, the shear strength parameters
for the experiment soils under the two water contents are shown in Table 3.

Table 3. Model parameters for simulating the failure mode.

H (m) H1 (m) L1 (m) L2 (m) Moisture Content Soil Type C (kPa) ϕ(◦) Dry Density (kN·m−3) Wet Density (kN·m−3)

1.4 1 0.39 0.29
20% clay

silty sand
35
25

30
35

17
16

15
14

40% clay
silty sand

15
10

10
20

18
17

15
14

3.3.2. Validation of the Bank Failure Pattern

The failure pattern of a straight bank after scouring (under test condition 5) was selected
for validation using the OptumG2. The erosion height and width equal 0.39 and 0.29 m of the
slope model in Figure 9, and the simulation results are stated in Figure 10.
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The failure surface of the slope was almost vertical in Figure 10a. The simulated result
was very similar to the failure mode of the scouring experiment; the upper suspended soil
rotated and fell into the water under the action of gravity in Figure 10b.

3.3.3. Validation of the Influence of Scour Width on the Bank Stability

As the water flow continues to scour the slope, the scour width and height keep
increasing, and the main reason for the bank collapse is severe local scour [69]. Therefore,
it is critical to validate the influence of the scour width on slope stability. The bank
model is shown in Figure 9, and the model parameters are shown in Table 4. The other
variables remain unchanged when one variable changes. The simulation results are stated
in Figures 11–13.

Table 4. Model parameters for simulating the effect of the scour degree on the stability coefficient.

H (m) H1 (m) L1 (m) L2 (m) Moisture Content Soil Type C (kPa) ϕ(◦) Dry Density (kN·m−3) Wet Density (kN·m−3)

1.4 0.6 H / /
20% clay

silty sand
35
25

30
35

17
16

15
14

40% clay
silty sand

15
10

10
20

17
17

15
14

Toxics 2023, 11, 79 11 of 17 
 

 

 

Figure 11. The effect of the scour degree on the bank stability: (a) the influence of the scour width 

on the stability coefficient; and (b) the effect of the scour height on the stability coefficient. 

When the scouring widths are 0.14, 0.21, 0.28 and 0.35m, respectively, the failure 

surface of the river bank is as shown in Figure 12. With an increase in the scouring 

width, the failure distance b of the shore top becomes larger, and the failure surface 

angle α gradually decreases. The processing results of b and α under six scour widths 

are shown in Figure 13. It is clear that α is negatively correlated with L2, and b is about 2.5 

times that of L2. 

 

Figure 11. The effect of the scour degree on the bank stability: (a) the influence of the scour width on
the stability coefficient; and (b) the effect of the scour height on the stability coefficient.

The stability coefficient of the bank decreases significantly with an increase in the
scour width in Figure 11a. This was consistent with the scour experiment in that banks first
collapsed with large scour width when the scour height was almost the same. Contrary
to the scour width, the stability coefficient of the bank increased slightly with an increase
in the scour height (Figure 11b). The bank soil strength significantly declines when the
water content increases from 20% to 40% (Table 4). The bank stability coefficient decreases
rapidly under the dual effects of an obvious decrease in the soil strength and an increase in
scour width ( Figure 11a).

When the scouring widths are 0.14, 0.21, 0.28 and 0.35m, respectively, the failure
surface of the river bank is as shown in Figure 12. With an increase in the scouring width,
the failure distance b of the shore top becomes larger, and the failure surface angle α

gradually decreases. The processing results of b and α under six scour widths are shown
in Figure 13. It is clear that α is negatively correlated with L2, and b is about 2.5 times
that of L2.
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Figure 12. Variation of slope failure surface under four scour widths: (a) scour width is equal to 0.14 m,
(b) scour width is equal to 0.21 m, (c) scour width is equal to 0.28 m, and (d) scour width is equal to 0.35 m (a).
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4. Discussion

In the previous part of this paper, scour experiment and numerical simulations
are combined to analyze the stability of interactive stratified slopes. In this part, the
influence of water content and scour width on slope stability and bank failure law are
discussed below.

In previous studies, water content was found to be an important factor affecting
slope stability [27–31]. This article comes to the consistent conclusion from laboratory
experiments that when the water content increased from 20% to 40%, the cohesion and
internal friction angle of the clay decreased by about 60% and 67%, respectively, and
the cohesion and internal friction angle of the silt soil decreased by about 61% and 43%,
respectively (Table 4). Zhang studied the changes in water content and soil strength in
the process of bank failure by using the numerical simulation method, and found that
the water content increased rapidly in the initial stage; the change was relatively small in
the later stage, and the soil strength of the bank decreased significantly [70]. The change
in water content measured by Zhang is consistent with the results obtained by the earth
pressure box in the scour experiment (Figure 8)which indicate that the variation trend in
water content in multi-layer soil slope and single-layer soil slope is the same

According to the experimental observations, scouring is an important cause of bank
failure. Numerical simulation results show that the bank stability coefficient decreased
with the scour width increasing (Figure 11a). However, the stability coefficient of the bank
increased slightly with an increase in the scour height. Zhang performed a systematic study
on the failure of single-layer overhanging slopes and concluded that bank stability first
decreases and then increases with an increase in erosion height [70]. This is because the
stability of the sandy soil slope is poor, and the slope stability decreases rapidly after being
soaked in water.

The slope was scoured to form an arc-shaped scouring surface under the action of
water scour (Show in Figure 10), and the overhanging soil, broken through by the fissure,
toppled when the bank slope was washed to a certain extent. Zhang summarized the
failure pattern of single-layer bank slope and surmised that the length from the top failure
surface to the bank edge is about twotimes of the scour width [70], which is smaller than
the results of this paper (2.5 times). This difference may be caused by the clay layer in the
stratified bank studied in this paper, which increases the integrity of the bank and makes
the failure range of the top of the bank larger.

In this paper, failure law and the failure mechanism of floodplain slopes are studied
through a flume experiment and numerical simulation. It is important to study the influence
of scour width and water content on slope stability [27,28,70]. For now, only the general
failure laws of the floodplain slope were obtained. The next step is to summarize the failure
formulas which will also be calibrated with the bank failure data monitored in the field.
Meanwhile, three-dimensional numerical simulation to study the erosion failure of the
floodplain slope will be included in future research.

5. Conclusions

Scouring of water flow leads to rapid degradation of the floodplain which compresses
the production space of the people and seriously impacts the environment. In this paper,
the failure mechanism and laws of floodplain slopes are studied by combining flume
experiments and numerical simulation. A total of five conditions were designed in the
flume experiment, and the failure characteristics of concave banks, convex banks, and
straight banks in all conditions were recorded and analyzed. Meanwhile, through the
establishment of an equal-scale bank model, the bank failure results of the numerical
simulation and erosion experiment were compared. The main conclusions are as follows.

The main reasons for the floodplains’ rapid collapse were that the slope toe was
scoured, and the soil strength decreased rapidly; the bank stability coefficient decreased by
about 65% when the scour width increased from 0.07 m to 0.42 m, and the water content
increased from 20% to 40%.
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The failure depth of the bank top is greatly affected by the scour width. It is found
that the distance from the failure surface of the bank top to the edge, b, is about 2.5 times
the scour width. Meanwhile, the failure surface angle diminishes with an increase in
scour width.

Due to the rapid development of industry and agriculture on both sides of the river,
the floodplain soil is seriously polluted, and floodplain slope collapse causes polluted soil
to enter the river. The study of floodplain slope failure laws in this paper provides a new
idea for the protection of the floodplain, and also lays a foundation for further study of the
release law of pollutants in soil during floodplain slope failure.
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Figure A1. Scanning the floodplain in Wantan Town using the geological radar. 

Table A1. Soil sampling point locations. 
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Wantantown 

Yangqiaovillage 

Heigangkou 

Nie zhuang 

Liuyunkou 

113°56′41.08621″ 

34°52′52.67728″ 
25, 63, 86, 113 

113°52′4.84872″ 

34°51′54.74157″ 
13, 31, 58, 61, 123 

114°15′28.19616″ 

34°53′42.83452″ 
28, 58, 65, 131 

114°16′0.72747″ 

34°53′46.44162″ 
13, 39, 56, 113 

114°23′26.90973″ 

34°54′34.64414″ 
16, 68, 85, 140 
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Experimental Equip-
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Range of Parameter 

Variation 

S-shaped flume 
welded with the 1.5 mm thick 

iron sheet 

Simulating the erosion process of the dif-

ferent banks 
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Flow meter Electromagnetic flowmeter Controlling water flow 0.5–1.2 L/s 

Static strain tester DH3818Y Processing of earth pressure data −4.0–5.0 pa 

Earth pressure boxes 
Vibrating string earth pres-

sure box 

Measuring the change in earth pressure 

during the experiment 
— 

Cameras Sony Alpha7C Capturing the slope failure process — 

Water baffle Granite plate 
Controlling the water level height by 

changing its position 
— 

Graduated scale Steel rule Measuring the digital height 5–10 cm 
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Table A1. Soil sampling point locations.

Section Name Latitude and Longitude Sampling Depth (cm)

Wantantown
Yangqiaovillage

Heigangkou
Nie zhuang
Liuyunkou

113◦56′41.08621′′

34◦52′52.67728′′ 25, 63, 86, 113

113◦52′4.84872′′

34◦51′54.74157′′ 13, 31, 58, 61, 123

114◦15′28.19616′′

34◦53′42.83452′′ 28, 58, 65, 131

114◦16′0.72747′′

34◦53′46.44162′′ 13, 39, 56, 113

114◦23′26.90973′′

34◦54′34.64414′′ 16, 68, 85, 140

Table A2. Introduction of experiment equipment.

Experimental Equipment Style Equipment Role Range of Parameter Variation

S-shaped flume welded with the 1.5 mm thick iron sheet Simulating the erosion process
of the different banks —

Flow meter Electromagnetic flowmeter Controlling water flow 0.5–1.2 L/s
Static strain tester DH3818Y Processing of earth pressure data −4.0–5.0 pa

Earth pressure boxes Vibrating string earth pressure box Measuring the change in earth
pressure during the experiment —

Cameras Sony Alpha7C Capturing the slope failure process —

Water baffle Granite plate Controlling the water level height
by changing its position —

Graduated scale Steel rule Measuring the digital height 5–10 cm
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