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Abstract: The geochemical composition of bedrock is the key feature determining elemental concentra-
tions in soil, followed by anthropogenic factors that have less impact. Concerning the latter, harmful
effects on the trophic chain are increasingly affecting people living in and around urban areas. In the
study area of the present survey, the municipalities of Cosenza and Rende (Calabria, southern Italy),
topsoil were collected and analysed for 25 elements by inductively coupled plasma mass spectrom-
etry (ICP-MS) in order to discriminate the different possible sources of elemental concentrations
and define soil quality status. Statistical and geostatistical methods were applied to monitoring the
concentrations of major oxides and minor elements, while the Self-Organizing Maps (SOM) algorithm
was used for unsupervised grouping. Results show that seven clusters were identified—(I) Cr, Co,
Fe, V, Ti, Al; (II) Ni, Na; (III) Y, Zr, Rb; (IV) Si, Mg, Ba; (V) Nb, Ce, La; (VI) Sr, P, Ca; (VII) As, Zn,
Pb—according to soil elemental associations, which are controlled by chemical and mineralogical
factors of the study area parent material and by soil-forming processes, but with some exceptions
linked to anthropogenic input.

Keywords: soil; potentially harmful elements; contamination; multidimensional spatial analysis; Calabria

1. Introduction

Soil is a dynamic natural resource which, being the basic constituent of the trophic
system, has a variety of vital functions for human and environmental life [1–3]. These
functions are the result of the soil’s ability to control and maintain the materials and energy
cycles between the atmosphere, groundwater and plant cover.

Many factors are responsible for the content, distribution and the behaviour of the
chemical elements in soil, the first of which is the mineralogical and geochemical com-
position of the bedrock [4–6], followed by weathering [7,8] and soil formation processes
(physical, chemical and biological), In addition, soils can be affected by the influence of
phenomena such as the anthropogenic pollution [9–14] and the ratio and chemical com-
position of atmospheric depositions [15,16]. These latter sources of pollutants are widely
distributed in urban soil, which is a repository of rainfall and wastewater discharge as well
as atmospheric pollutants accumulated via deposition, Hence, the soil is an indicator of
environmental contamination [17,18].

Differing to natural soils, which have a profile consisting of degrading vertical hori-
zons, urban soils do not have a profile, and present great variability, both vertical and
horizontal, because during their formation there are no pedogenetic processes, but instead
the layering of debris, landfill, construction, and the remains of excavations of founda-
tions [19,20]. Therefore, soils in the urban environment are the result of anthropogenic
activities. Rapid industrialization and urbanization have occurred in most parts of the
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world during the last decades, and have stressed the soil with a growing pool of pollutants
from different sources, posing a significant risk to humans and ecosystem [21,22]. The
difference between soil pollution and air and water pollution lies in the fact that, in the first
case, the pollutants remain for a long time in direct contact with the soil. Thus, the soil is
continuously subject to pollution by toxic materials and dangerous micro-organisms which
enter the air, water and the food chain [23,24]. Contact with contaminated soil may be
also direct (inadvertent hand to mouth administration by children from using soil of parks
and schools) or indirect (by inhaling soil contaminants which have vaporized) [25–28].
Longer contact with pollutants causes their accumulation in bones and organs. During
this exposure, organ activities are disturbed, the nervous system is affected, and tumour
diseases mature [29–32]. There are different types of environmental pollutants, and their
potentially harmful elements (PHEs) are those that are particularly dangerous due to their
ubiquity, toxicity, and persistence [33,34].

Therefore, evaluating soil pollution is of great concern. Due to urban soil spatial
heterogeneity, a valuable approach to assess its quality is the application of multivariate
statistics, since the environment is considered multivariate. According to many available
recommendations [35], among the most effective data mining tools, those which enable
unsupervised grouping based on mutual relationships between features of the analysed
matrix, both of linear and nonlinear nature, are the most desired. One of the most powerful
techniques for this purpose is use of the Self-Organizing Maps of Kohonen [36] because they
enable display of the pattern present in multidimensional data sets on two-dimensional
surface plots, are resistant against missing data and outliers, and their results are easily
interpretable by decision-makers. In light of these issues, the aims of this study are (i) to
individuate different types of pollution fonts controlling for a structure of monitoring data
sets in a southern Italy area; (ii) to visualize geographical distribution of potentially harmful
elements, and (iii) to identify high-risk areas that can be targeted for environmental risks
and public health. These outcomes could be used by decision-makers working in the field
of sustainable development implementation.

2. Materials and Methods
2.1. Study Area

The study area is located in the NW sector of the Calabria region (southern Italy) inside
the Crati graben and covers the Cosenza and Rende municipalities territory (Figure 1). Ge-
ologically, the study area represents a tectonic depression extending over 92 km2 bordered
by NS, SW-NE and NW-SE-trending faults [37–39] associated with the horst-graben system
of the Sila-Coastal Chain [40,41]. A tick succession of Pliocenic sediments made up of light
brown and red sands and gravels, blue grey silty clays and silt interlayers, Pleistocene to
Holocene alluvial sands and gravels and very small outcrops of Miocene carbonate rocks
characterize the study area [42]. Sediments overlap a Palaeozoic intrusive-metamorphic
complex formed by paragneiss, biotite schists, grey-phyllitic schists with quartz, chlorite
and muscovite which, in some cases, are in a weathering process [43].

The soil map of the Calabria region at 1:250,000 scale [44], for the study area reports
the presence of Fluvisols, Luvisols, Cambisols, Vertisols, Calcisols, Arenosols, Leptosols,
Umbrisolsand Phaeozems. Properties, dynamics and functions of the studied soils are
highly variable. For these, the average values are 17.59% for clay content, 56.50% for sand
content, 6.84 for pH, 2.86% for organic matter, 0.25 µScm−1 for electrical conductivity,
16.14 meq 100 g−1 for CEC and 1.24 gcm−3 for bulk density.

Geomorphologically, a flat part including the urban area surrounded by hills, char-
acterizes the study area. Falling inside the Mediterranean Sea, the Calabrian climate is
typically Mediterranean, but the orography of the region affects it [45] with African warm
air currents from its Ionian side and a western humid air current from the Tyrrhenian side.
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The Cosenza-Rende area has a population of approximately 100,000 inhabitants and
typical urban land use, such as housing and intense automobile traffic, with limited pres-
ence of industries, commercial activities, parks and gardens. For these characteristics,
different potential sources of pollution can be recognized.

2.2. Soil Sampling and Analytical Methods

In this study, 149 soil samples were collected from residual and non-residual topsoil in
gardens, parks, flowerbeds and agricultural fields (Figure 1) in the study area. In addition,
two duplicate pairs were collected from every 10 sites and split in the laboratory to produce
replicates. Before collecting samples, removal of the surface litter at the sampling spot was
carried out. At each site, topsoil samples (0–10 cm depth from the surface) were collected
from five locations at the corners and at the centre of a 20 × 20 m square with a hand auger
and combined to form a bulked sample. Mixing of the samples thoroughly, and removal
of foreign materials such as roots, stones, pebbles and gravel, were carried out. The final
sample volume was 1–1.5 kg of material, reduced to about half by the following step of
quartering. Sample preparation was started in laboratory by drying soil at 40 ◦C prior to
analysis in order to obtain a water-free reference for elemental contents. Prior to further
sample processing, the soil was adequately homogenized and then sieved to fine soil of
≤2 mm. Successive soil analyses were performed on fine soil, and analyte contents were
based on fine soil as common reference for interstudy comparisons.

After appropriate preparation procedures, each soil sample was analysed by X-ray
fluorescence spectrometry (XRF) for aluminium (Al), calcium (Ca), iron (Fe), potassium
(K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorous (P), silica (Si) and
titanium (Ti), and by inductively coupled plasma mass spectrometry (ICP-MS) for arsenic
(As), barium (Ba), cerium (Ce), cobalt (Co), chromium (Cr), lanthanum (La), niobium (Nb),
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nickel (Ni), lead (Pb), rubidium (Rb), strontium (Sr), vanadium (V), yttrium (Y), zinc (Zn)
and zirconium (Zr).

Quality of the analysis was monitored by the simultaneous analysis of certified inter-
national reference materials AGV-1, BCR-1, BR, DR-N, GA, GSP-1, NIM-G, and analysis
duplicates included in analytical procedure in the range of one in twenty in each batch.
Errors of the estimate for the measured elements were determined by relative standard
deviation (<5%) based on three replicates of one sample randomly chosen.

2.3. Data Processing Methods

Evaluation of the spatial distribution of pollutants is important to assess the anthro-
pogenic burden on the environment. Numerous different chemometric approaches are
available for multidimensional data mining; however, methods which can be used for unsu-
pervised exploratory analysis and pattern recognition, as well as able to handle non-linear
problems, are the most desired.

Among the different statistical tools applied, an increasing number of studies have
used artificial neural networks to probe complex data sets, since the visual output of the
SOM analysis provides a rapid and intuitive means to examine covariance between ex-
planatory variables, especially when the relationships among them and phenomena under
analysis are unknown, and possibly nonlinear. SOMs, while extensively used in many areas,
have only recently been used in ecological applications [46]. Applications can be found in
ecological community ordination and gradient analysis [47], and in characterization and
prediction of water quality in rivers [48] and coastal areas [49]. Applications of SOMs in
oceanography are quite recent, too, and consider mostly feature extractions from univariate
data sets [50].

Self-organizing maps (SOMs), in particular, are a kind of unsupervised Artificial
Neural Network (ANN) that have been becoming increasingly popular for the analysis of
large multivariate data sets, since they provide a topology preserving nonlinear projection
of the data set in a regular two-dimensional space, and therefore constitute a methodology
for nonlinear ordination analysis.

The SOM technique, known as self-organizing maps of Kohonen, is able to deal with
big data sets with the possibility of visually exploring the outcomes of the model in versatile
2D maps in which similar samples are mapped close together on a grid [51]. SOM is often
used in association with other algorithms, such as K-means, Principal Component Analysis
and Hierarchical Cluster Analysis, for further elaborating its outcomes. However, the
majority of those associations are mainly methodological studies aimed at comparing
outputs of various data mining strategies. Since the current research is a case-study, it was
decided to use only the self-organizing map (SOM) algorithm, considering it one of the
most current neural network architectures for exploratory data analysis, clustering, and
data visualization.

Among the different statistical tools applied, an increasing number of studies have used
artificial neural networks to probe complex data sets, since the visual output of the SOM
analysis provides a rapid and intuitive means to examine covariance between variables.

SOM is a kind of artificial neural network performing a non-linear projection of the
original data space onto a two-dimensional space of neurons. It consists of two layers: the
first represents input nodes (one per variable) connected to the samples, while the second
one (an output layer) is a set of neurons organized on an array. A preliminary number
of neurons can be determined according to one of the most accepted recommendations
where n = (number of samples)ˆ(−1/2) [52], while the final map dimension ratio is usu-
ally slightly modified based on analysis of topographic and quantization errors (TE and
QE, respectively). In general, a matrix of input vectors representing the variability and
relationships of the experimental data is initialized by a series of parameters (i.e., shape
of the map, shape of the map units, number of map neurons, map initialization matrix,
distance function, neighbourhood function, number of epochs, etc.) retaining the num-
ber of variables of the experimental data. This input matrix becomes “the map”, usually
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represented in a two-dimensional plot where the map vectors are called prototypes (or
neurons). Then, each vector of the experimental data is presented to the algorithm, and it
finds the prototype most similar to the experimental vector and adjusts it together with all
surrounding prototypes to be even more similar to the experimental vector. When all the
experimental vectors are presented to the algorithm, a single iteration is finished; usually,
several iterations are needed to convergence. In the current study, the following initializing
parameters were used: rectangular shape of the map, hexagonal shape of the map unit,
66 map units, random initialization, Euclidean distance to find the best prototype and
adjust the surrounding neurons, and Gaussian neighbourhood function to establish how
the neurons around the best prototype are updated during the training process. Once the
SOM has converged, the weight vectors of the elements are fed into a non-hierarchical
K-means algorithm to extract the neurons of the best similarity. Separating by K-means
requires the user to decide the final number of k clusters the algorithm is converged into.
Diverse values of k (predefined number of clusters) were tested and the sum of square
for each run was calculated. Lastly, the best classification with the lowest Davies-Bouldin
index (D-B) was selected. D-B index is a function of the ratio of the sum of within-cluster
scatter and between-cluster separation [53]. The non-parametric Kruskal-Wallis test was
performed to evaluate the significance of the cluster pattern.

All calculations in this study were performed by applying Matlab 2020 (Mathworks,
Inc., Natick, MA, USA) and TIBCO Statistica 13.0 (TIBCO Software, Palo Alto, CA, USA)
running on a Windows 10 platform.

3. Results and Discussion

Table 1 presents the descriptive statistics for the soil data. Except for Na and Si,
a positive skewness is observed for all elements (Table 1), and a kurtosis which ranges from
slight (0.04) to high (46.74).

Table 1. Basic statistics for soil samples.

Unit Min Max Mean Median Lower
Quartile

Upper
Quartile S.D. Skewness Kurtosis

Al2O3 % 11.19 23.79 15.89 15.38 13.65 17.48 2.80 0.69 0.04
CaO % 0.66 17.97 4.76 3.84 2.39 6.19 3.39 1.56 3.27

Fe2O3 % 3.11 10.58 5.47 5.13 4.42 6.16 1.47 1.03 1.01
K2O % 1.32 3.45 2.41 2.40 2.22 2.60 0.34 0.06 1.28
MgO % 1.45 6.47 2.81 2.74 2.32 3.06 0.81 1.45 3.27
MnO % 0.05 0.54 0.13 0.10 0.09 0.14 0.08 2.67 8.4
Na2O % 0.44 2.08 1.23 1.23 1.02 1.46 0.34 −0.03 0.31
P2O5 % 0.10 0.64 0.29 0.26 0.19 0.36 0.12 1.00 0.72
SiO2 % 33.45 68.98 55.72 56.31 51.98 59.46 5.89 −0.52 0.87
TiO2 % 0.45 1.18 0.73 0.71 0.61 0.83 0.15 0.47 0.2

As mg kg−1 3 22 7 7 5 9 3 2 3.47
Ba mg kg−1 335 2000 603 592 530 643 153 5 46.74
Ce mg kg−1 34 127 73 70 60 82 19 1 0.57
Co mg kg−1 6 40 17 16 13 20 6 1 2.02
Cr mg kg−1 46 309 91 86 73 103 32 3 15.44
La mg kg−1 13 80 38 37 31 42 11 1 1.91
Nb mg kg−1 6 35 14 14 11 15 5 2 3.87
Ni mg kg−1 18 82 35 33 28 40 10 1 2.95
Pb mg kg−1 8 708 64 31 20 69 85 4 22.56
Rb mg kg−1 62 154 105 105 92 114 18 0 0.2
Sr mg kg−1 109 514 234 233 194 271 64 1 1.66
V mg kg−1 54 239 107 102 87 123 31 1 2.46
Y mg kg−1 0 55 25 26 19 30 8 0 1.08

Zn mg kg−1 38 871 167 127 93 189 131 3 8.7
Zr mg kg−1 121 383 209 209 186 233 41 0 1.74
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To analyse the spatial variations of elemental concentrations, the data set, consisting of
analytical results from urban and peri-urban soil samples, was arranged in a two-way array
of 25 variables, and the SOM algorithm was deployed. Apart from the methodological
information presented in the section above, the detailed theoretical background of the SOM
approach can be found elsewhere [54–57]; however, it is worth mentioning that here the
SOM was successfully applied in assessment of soil pollution with PHEs [58], and heavy
metals [59–63] as well as PCDD and PCDFs [64]. In Tao et al. [58] the distribution of PHEs
in surface soil was examined. Yotova et al. [59] focused on toxic elements present in soil
and their phytoavailability in an industrial area with copper mining factories and a smelter.
In Yang et al. [60], soil samples were collected in several sites in a vast Chinese region and
analysed for toxic elements presence. Kosiba et al. [61] compared the use of SOM with
three other statistical techniques for assessing soil quality in a Polish area and its impact
on the diffusion of a pathogen on a specific plant species. Dai et al. [64] evaluated the
dioxin content in soil at different depths and in different years in a river floodplain, while
in Nadal et al. [62] the use of the SOM allowed identification sites differently impacted
by heavy metal pollutants in a petrochemical industrial area. Cheng et al. [63] proposed
a SOM model built from a dataset composed of toxic metal content of soil and sediment
samples collected at different depths from cascading reservoir catchments of a Chinese
river. Having in mind the facts mentioned above, in the present study, exploratory data
analysis, clustering and data imagining were approached by the self-organizing map (SOM)
algorithm, which represents a powerful neural network architecture for these topics.

According to one of the most accepted recommendations [52], the total number of
Kohonen’s map neurons was estimated as n = 5 * (149)ˆ(−1/2) ≈ 61. Since there was more
than one possible combination of the final dimension which was close to the dimension
obtained by Vesanto’s formula (i.e., 10 × 6, 8 × 7, 9 × 7, 11 × 6), quantization (QE) and
topographic errors (TE) were calculated in all cases. Finally, the chosen dimensionality of
the 11 × 6 had the lowest values of errors (QE = 0.231, TE = 0.011). Once the SOM’s grid
has been optimized, the U-matrix and the individual variable planes based on hexagonal
lattice were visualized (Figure 2).

A component plane, scaled to represent the range of changeability of a parameter, is
associated to each variable while the corresponding hexagon (i.e., top-left one of coordinates
row × column = 1 × 1) of the consecutive plane represents the changeability of the given
parameters for the same set of samples. Based on this, the component planes can be used
to visualize possible correlation among the variables, while the U-matrix can be used to
identify the possible presence of different clusters of data. By the analysis of planes, high
concentration values of Al, Ti, Fe, Y, Rb, Cr, V, La and Ce, which are generally located in the
top of the planes, and the highest concentration values of Pb and Zn in the bottom-left part
of the planes, were observed.

Since PHE concentration in soils depends both on the nature of bedrock, on abiotic and
biotic factors, and human activities, accurately extracting key features and characteristic
patterns of variability from an elemental large data set is essential to correctly determining
the sources. For this, the relationship between elements in the soil matrix gives information
on PHE sources and pathways in the geo-environment. In fact, positive correlations
between elements, inspected by comparing component planes, suggest that pairs in the
soil samples are from the same source. Conversely, negative correlations suggest different
origins between the element’s pairs which, therefore, can be considered unrelated to their
geochemical dynamics.

Scaling the weights vectors of each plane in the range between 0 (the least positive)
and 1 (the most positive), the set of variables could be separated into several groups of
similarity representing their mutual directly or inversely proportional correlations.

I. Cr, Co, Fe, V, Ti, and Al with clear consistent patterns of the highest weights
in the top-left part of the planes and the lowest weights in the middle-bottom
section of the planes. These variables are all positively correlated and probably not
associated with anthropogenic sources, but supposedly related to the predominant
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rock-forming elements constituting the soil parental materials. Indeed, the higher
values of this group’s element concentrations were located mostly in the NW
and SE sectors of the study area where a very low road network density occurs
and where there is the occurrence of ultrabasic rocks, found below the Pliocene
deposits, in which these elements are predominant. The igneous-metamorphic
complex can be ascribed to the pile of tectonic nappes forming the mountain chain
of the northern Calabrian Arc, described in [65], which includes an intermediate
structural element made up of ophiolite-bearing units [66] that mostly extend
along the Tyrrhenian side of the arc to form a westward convex arc-shaped belt
separated from the southern Apennines by the roughly E-W trending left-lateral
strike-slip fault zone. This unit is represented by a tectonic mélange constituted
by a monotonous sequence of phyllites, quartzites, and calcschists, including
metric to kilometric lens-shaped blocks of ophiolitic rocks. These rocks are mainly
constituted by serpentinized ultramafics, and by glaucophane-bearing meta-basites,
with remnants of their sedimentary cover and rare meta-gabbros [65]. In particular,
the geochemical behaviour of V resembles that of Fe which can substitute in Fe-Mg
silicates (amphiboles, pyroxenes, micas). This elemental association confirms that
the soils are controlled by the same typically lithogenic elements associated with
silicate minerals.

II. Ni and Na with clear opposite patterns of the highest and the lowest weights of
Ni and Na occur, respectively, in the top-left triangle of hexagons. By contrast, the
lowest and the highest weights of Ni and Na, respectively, cover the bottom-right
triangle of hexagons. One important observation that arises from the calculation of
the correlations for these elements is that Ni does not have any positive relation
with Na. The absence of this correlation could be attributed to the influence of the
distribution of these elements by anthropogenic activities.

III. Y, Zr and Rb with consistently increasing weights occur in the top-half part of
the planes and descending weights in the bottom-half. Such a pattern indicates
that Y, Zr and Rb are positively correlated and considered to indicate provenance
compositions as a consequence of their immobile behaviour [67]. Zr is enriched in
silica rich sediments compared to the associated shales, which suggests its propen-
sity to be preferentially concentrated in coarser sediments. Many soil samples
can be attributed to the compositional field in which the local content of marbles,
sandstones, and gneisses are part, indicating a strong lithological influence on ele-
ment concentrations. Therefore, Y, Zr and Rb association prove to be of undoubted
geogenic origin.

IV. Si, Mg and Ba have patterns that, in general, are similar to the patterns observed in
the case of Ni and Na. The highest weights for Mg and Ba are observed only for
single hexagons of coordinates 1 × 1, 1 × 2 and 2 × 1, while for those hexagons,
relatively low weights of Si occur. By contrast, in the bottom-right triangle of
hexagons, high weights for Si correspond with low weights for Mg and Ba. Gener-
ally, such patterns indicate that Si is negatively correlated with Mg and Ba, while Ba
is positively correlated with Mg. Ba is a trace element common in alkali feldspars
and biotite. The lack of a clear correlation between Al, Rb and Sr and Ba indicates
a relationship between Ba and mica components, or that Ba was lost at an early
stage in weathering of feldspars.

V. Nb, Ce and La, with the highest values of weights, occur in only a few hexagons in
the top-right triangle of the planes. Nb, Ce and La, belonging to the rare earth ele-
ments (REEs), show positive correlations, explaining their similar behaviour in soil
samples. Their primary source is accessory minerals in magmatic rocks, e.g., mon-
azite, xenotime and allanite. This could explain their common geogenic sources.

VI. Sr, P and Ca, with compatibly the highest weights, occur in a thinly vertical belt
of hexagons located on the left-hand side of the planes. Such a pattern indicates
a strong positive correlation between Sr, P and Ca, which confirms a mineralogical
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common source of elemental association. This may be due to Sr geochemical
affinity with Ca [68]. Sr is a relatively common element that substitutes for Ca in
crystal lattices of rock-forming minerals, including feldspars and plagioclase, as in
the study area.
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of the U-matrix indicate a cluster border, uniform areas of low values indicate clusters themselves;
each component plane shows the values of one variable in each map unit. Both grey-tone pattern
and grey-tone bar labelled as “d” deliver information regarding compounds/element abundance
calculated through the SOM learning process.

VII. As, Zn, Pb, with compatibly the highest weights. occur in only a few hexagons
located in the bottom-left triangle of the planes. The consistent colour indicates
that As, Zn and Pb have a strong positive correlation, and their concentrations are
higher in soil next to roads than in the soils away from them. This indicates that
larger concentrations of these elements are related to road traffic. Consequently,
their positive correlation allows us to draw conclusions about their common source
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linked to anthropogenic activities conducted in urban environments. These el-
ements are, indeed, present in vehicle fuel, being used for increasing gasoline
antiknock.

The set of component planes, with weights scaled in the range 0–1 grouped according
to their correlations, is presented in Figure 3.
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Figure 3. Soil quality parameter similarity pattern obtained by self-organizing mapping. An analysis
of the distance between variables on the map connected with an assessment of the colour-tone
patterns provides semi-quantitative information about the nature of correlations between them.

The significant information deriving from the SOM theory, that each node of the
SOM map could be consecutively referred to one or more samples, leads to the conclusion
that the differentiated structure of PHEs abundance (reflected in different colour scales
in the planes) revealed the presence of numerous similarity clusters in the set of samples.
Consequently, weight vectors of the converged map were clustered based on a K-means
clustering mode. Some predefined numbers of clusters were tested, and the sum of squares
for each run was calculated. The best partition was gained for a seven-cluster configuration
having the lowest Davies-Bouldin index value (Figure 4).

According to SOM theory, the node (map neuron) with a weight vector closest to the
input sample vector is identified as the best matching unit, and the number of tagging is
summarized. Lastly, the distribution of the sample vectors along a Kohonen map can be
analysed by decoding the best matching unit selection events. Clusters I-VII (consecutively
named as C_I-C_VII) include numerous numbers of 149 soil samples (C_I-20, C_II-11,
C_III-22, C_IV-26, C_V-28, C_VI-19, C_VII-23). Cluster distribution of investigated soil
samples in the study area according to the local geological setting is presented in Figure 5.
Comparison of initially determined PHEs concentrations in soil samples with the clustering
results allowed for the assignment of clustering patterns to factors impacting soil quality.
Comparison of analyte concentration values according to clustering pattern is presented in
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Figure 6 (concentration at % level) and Figure 7 (concentration at mg kg−1 level) together
with a statistical assessment from the non-parametric Kruskal-Wallis test.
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collected in peri-urban soils and in areas in which Paleozoic paragneiss and biotite schists
occur. More precisely, the observed association clustered in C_I can be clarified considering
the presence in the study area of ultrabasic rocks in which these elements are principal.
Highest baseline concentrations of these elements seem to be highly associated with the
igneous-metamorphic complex found below the Pliocene deposits that outcrop mostly in
the NW and SE sectors of the territory. This structure represents the pile of tectonic nappes
forming the mountain chain of the northern Calabrian Arc and contains an intermediate
structural element made up of ophiolite-bearing units.

C_II consists of only 11 (7.4%) samples collected in peri-urban soils. These samples
were characterized by the lowest concentration of Mg and Ca, with the highest abundance
of REEs such as La, Ce, Nb and Zr. Such a phenomenon indicates that REE content is
associated with alkaline igneous rocks and carbonatites, which are igneous rocks derived
from carbonate-rich magma rather than silica-rich magma [69].

C_III includes 22 samples (14.8%) with the highest concentration of K and relatively
low abundance of Zn, Mn, Ni, Ba, Pb, As. The majority of these samples were collected
in soils along the part of the Crati river falling in the study area, and their composition
indicates the presence of organic matter, suggesting that this might play a role in increasing
K adsorption rate. As can be seen, samples clustered in C_I-C-III as a set, in comparison to
the rest of clusters, were characterized by higher concentrations of Al, K, Ti, and Fe, with
lower concentration of P and Sr. Moreover, samples from C_I and C_II were characterized
by the highest concentration range for REEs. The content of REE in soil, without other
inputs, is influenced by the parent material and on geochemical processes such as mineral
weathering, which is an important input of elements into the soils [70]. Twenty-six samples
clustered in C_IV (17.4%) were, in general, grouped together based on the lowest content of
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Al and Si, relative to minimal concentrations among of the other samples, and the highest
concentration of P, Ca, Sr. According to their location, this suggests that the underlying
rocks are the major source of P. C_V, consisting of 28 (18.8%) samples, represents soils
with moderate concentrations of the majority of investigated elements. It seems they are
clustered separately due to a relatively large range of determined concentrations for Mg
and Mn. C_VI includes 19 (12.7%) soil samples in which their chemical composition is
dominated by relatively high concentration of P, Zn, and Sr. These samples were addition-
ally characterized by the highest concentration and range of values for Pb and As, and
lowest the abundance of Y. The soil samples characterized by these elemental contents are
distributed in the urban area, where road networks and vehicular traffic are intense, and,
consequently, higher Pb contents occur. Particularly, soils close to high traffic roads of the
study area showed the highest Pb and Zn baseline values. These elements are included
in vehicle fuel for increasing gasoline antiknock. The last C_VII includes 23 samples char-
acterized by the lowest concentration of the majority of elements, such as Ti, Mn, Rb, Ni,
Fe, Zr, Y, Cr, V, La, Ce and Co. In general samples clustered in C_V-C_VII show consistent
chemical composition with the exception of some elements, determining their separation in
a single cluster. As can be seen in Figure 6, a monotonic increasing trend of determined
concentration values from C_I to C_VII is observed for Si, Na, and Sr, while much more
frequently observed was a decreasing trend for Al, Ti, Rb, Ni, Fe, Y, Cr, V and Co.
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4. Conclusions

Correct monitoring and management of potentially harmful elements are key issues
for urban and peri-urban soil knowledge, linking PHE concentrations at sites in which
geogenic or anthropogenic input occur. In this study, evaluation of the usefulness of
a powerful approach, such the SOM algorithm, for multidimensional geochemical data
analysis and modelling problems of environmental pollution, was performed using data
sets obtained by comprehensive monitoring of PHE content in the municipalities of the
Cosenza-Rende area (Calabria, southern Italy). In the study area, a total of 149 soil samples,
collected in residual and non-residual areas, parks, flowerbeds and agricultural fields, were
investigated for 25 elements in order to better understand influences on soil geochemistry.

A self-organizing map (SOM) was selected as a powerful approach in soil science
application for spatial distribution and geochemical mapping. A combination of the
analysis of major metals, minor metals and PHEs, with the statistical treatment of SOMs,
showed the geolithological formations and anthropogenic pressure on the territory. The
association between the neurons and variables achieved by an unsupervised procedure
performed by the SOM technique, allows recognition of high-risk areas which can represent
environmental hazards and public health risks. By using the SOM method, the occurrence
of anomalies ascribable to anthropogenic input in urban soils, referring to elements such as
Pb and Zn, and of some geogenic anomalous high values of As, Cr, and V mainly identified
in peri-urban areas, was recognized. The SOM was employed to cluster the data, and
results presented a classification in seven clusters—(I) Cr, Co, Fe, V, Ti, Al; (II) Ni, Na; (III)
Y, Zr, Rb; (IV) Si, Mg, Ba; (V) Nb, Ce, La; (VI) Sr, P, Ca; (VII) As, Zn, Pb—mainly determined
by the chemical and mineralogical factors typical of the geological setting of the study area,
and by soil forming and weathering processes. Among them, C_II and C_VII can be linked
to anthropogenic input. However, in general, more contamination was identified in urban
soils than in peri-urban ones.

In summary, the main outcomes of the study are as follows:

1. SOM was verified as a promising approach for pattern recognition and, in particular,
for delineating pollution patterns of soil;

2. the main factors that influence PHE concentration in the Cosenza-Rende area were
associated with geological setting and human activities;

3. classification of soil patterns provides a great deal of information enhancing risk status
source identification, which can be used for decision making.

The paper contains an important methodological novelty. In fact, it proposes the
application of an existing methodology for data analysis to a new class of problems. Its
results can have a valuable role in identifying polluted areas and proposing remedial action
aimed at reducing health risks to people. Further development of this tool should also help
soil scientists to identify novel relationships about already studied phenomena, and act
as a hypothesis generator for traditional research, as well as supplying clear and intuitive
visualization of the environmental phenomena studied.
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