
Citation: Wang, D.; Gao, F.; Wang, X.;

Ning, X.; Wang, K.; Wang, X.; Wei, Y.;

Fujita, T. Detection of Cd2+ in

Aqueous Solution by the Fluorescent

Probe of CdSe/CdS QDs Based on

OFF–ON Mode. Toxics 2022, 10, 367.

https://doi.org/10.3390/

toxics10070367

Academic Editor: Roberto Rosal

Received: 13 May 2022

Accepted: 29 June 2022

Published: 3 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Detection of Cd2+ in Aqueous Solution by the Fluorescent
Probe of CdSe/CdS QDs Based on OFF–ON Mode
Dengpeng Wang 1,2, Feng Gao 1,2,* , Xianran Wang 1,2, Xiaomei Ning 1,2, Kaituo Wang 1,2, Xinpeng Wang 1,2 ,
Yuezhou Wei 3 and Toyohisa Fujita 1,2,*

1 Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory
of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University,
Nanning 530004, China; 1915391031@st.gxu.edu.cn (D.W.); 2015301071@st.gxu.edu.cn (X.W.);
2115391053@st.gxu.edu.cn (X.N.); wangkaituo@gxu.edu.cn (K.W.); wangxinpeng@gxu.edu.cn (X.W.)

2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
3 School of Nuclear Science and Technology, University of South China, Hengyang 421001, China;

yzwei@gxu.edu.cn
* Correspondence: gaofeng@gxu.edu.cn (F.G.); fujitatoyohisa@gxu.edu.cn (T.F.); Tel.: +86-151-774-620-06 (F.G.);

+0771-323-2200 (T.F.)

Abstract: The detection of heavy metals in aqueous solutions has always attracted much attention
from all over the world. A fluorescent probe of CdSe/CdS core-shell quantum dots (QDs) was
designed to detect trace Cd2+ in aqueous solutions using the OFF–ON mode rapidly and efficiently,
likely based on adsorption and desorption reactions between ethylenediaminetetraacetic acid dis-
odium salt (EDTA) and CdSe/CdS QDs. In the OFF mode, the optical shielding function of EDTA
results in fluorescence quenching owing to the strong adsorption ability of EDTA with Cd2+ on the
sites of CdSe/CdS QDs surface. In the ON mode, the introduction of Cd2+ promotes the desorption of
EDTA from the EDTA-CdSe/CdS QDs and restores the fluorescence intensity. There were two linear
response ranges which were 0.1–20 µmol/L and 20–90 µmol/L for the EDTA-CdSe/CdS system to
detect Cd2+. The detection limit was 6 nmol/L, and the standard deviation was below 4% for the
detection of Cd2+ concentration in tap water.

Keywords: QDs; fluorescence quenching; fluorescence restore; Cd2+ detection; adsorption; desorption

1. Introduction

Water pollution includes heavy metal pollution [1–3] and radionuclide pollution [4,5].
Due to the non-biodegradable nature, heavy metal pollution has always been a problem,
until now. The influence of Cd2+ pollution should not be underestimated [6]. As a heavy
metal ion, Cd2+ has a long biological half-life period of 20–30 years and is accumulated
in the human body via polluted water, air, soil, or other ways, causing many diseases
of the kidney, liver, heart, lung, or other organs. Studies have shown that it can cause a
series of health problems, including several fatal diseases such as diabetes, cancer, and
chondropathy, even if the accumulated Cd2+ content in the body is very low [7].

Currently, there are several effective techniques to detect Cd2+: atomic absorption
spectrometry (AAS) [8], atomic fluorescence spectrophotometry (AFS) [9], inductively
coupled plasma mass spectrometry (ICP-MS) [10], the electrochemical method [11,12], and
the fluorescence probe method [13–15]. Compared to the fluorescent probe method, AAS
cannot be used for simultaneous analysis of multiple elements, as AFS and ICP-MS require
expensive and complex instruments, complex sample preparation, and the electrochemical
method, which has the disadvantage of poor selectivity.

The biggest advantage of the fluorescent probe method is its rapid response, visibility,
and high sensitivity. In addition, low cost, simple operation, and a wide linear range
for detecting heavy metal ions are also obvious advantages. These advantages make
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for attracting much attention from researchers, and they have been widely used in the
biomedical and analytical chemistry fields [16,17].

Fluorescence probes can be divided into organic fluorescence probes and inorganic
fluorescence probes [18]. Inorganic quantum dots (QDs) have been widely used in fluo-
rescence detection in recent years on account of the following merits: high fluorescence
quantum yield, size-tunable fluorescence emission spectrum, and visibility. There were
several reports about fluorescent QDs probes for detecting Cd2+, such as CdX (X = Te, Se,
S) QDs, ZnS QDs, C QDs, and Au QDs [19–22]. According to the spectral characteristics,
some QDs fluorescent probes are based on the intensity change of a single fluorescence
peak, while others are ratiometric fluorescent probes based on the relative intensities of
double emission peaks. According to the structure of the QDs, the probes have single
crystal, core-shell, or composite crystal [23–25]. Usually, the detection of Cd2+ by QDs
has two methods, i.e., TURN–OFF and OFF–ON [16,26]. So far, a considerable number of
defects were caused by the TURN–OFF mode. In comparison, there are few detections from
OFF–ON mode. However, many results show that the OFF–ON mode is more accurate
than the ON–OFF mode in detecting Cd2+ [23].

In this work, a novel QDs fluorescence probe based on OFF–ON mode was developed.
Considering that the single-core QDs have many defects on their surface which can affect
the luminescence efficiency, CdSe/CdS QDs were designed and prepared in a core-shell
structure. A schematic diagram of Cd2+ detection in aqueous solution is shown in Figure 1.
Under UV excitation, an obvious emission band of 500–750 nm was observed in the
photoluminescence emission spectrum of the CdSe/CdS QDs. EDTA molecules were
partially dissociated into anions and cations when they were added in the aqueous solution
of CdSe/CdS QDs, and then some of the EDTA− ions were adsorbed on the surface of QDs
through electrostatic force between EDTA− and Cd2+, shielded the fluorescence excitation
and emission energy, thus resulting in the quenching of fluorescence emission. At that
moment, the detecting system turned out to be the OFF mode. When Cd2+ was added, the
EDTA− ions chelated with the Cd2+ and reduced the number of EDTA− in the solution
system. In order to maintain the chemical balance, some EDTA− ions would desorb from
the surface of the CdSe/CdS QDs and were released into the solution again, leading to
their fluorescence restoration.
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Figure 1. A schematic diagram of the detection of Cd2+ in an aqueous solution by CdSe/CdS QDs
based on OFF–ON mode through absorption and desorption processes.

2. Materials and Methods
2.1. Apparatus and Reagents

Fluorescence spectra were taken on a FL3C-111 TCSPC luminescence spectrometer
equipped with a 20-kW xenon discharge lamp as a light source (Horiba, Kyoto, Japan). X-ray
powder diffraction (XRD) spectra were taken on a Rigaku D/MAX2500V X-ray diffractome-
ter (Rigaku, Tokyo, Japan). The microstructural features of the samples were characterized
by a F200X (Semerfeld, Seattle, WA, USA) transmission electron microscope (TEM).
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Thioglycolic acid (TGA), NaBH4, CdCl2·2.5H2O, Na2S·9H2O, and ethylenediaminete-
traacetic acid disodium salt (EDTA) in analytical grade and various standard solution of
metal ions (K+, Na+, Mg2+, Ba2+, Al3+, Mn2+, Fe3+, Ca2+, Hg2+, Pb2+, Cu2+, Ag+, Ni+, Zn2+,
Cd2+) were purchased from Sinopharm Chemical Reagent Co., Ltd. Analytically pure
tris (hydroxymethyl) methyl aminomethane (Tris) was purchased from Aladdin company.
Ultra-pure water was used in the whole experiment except for particular notations in text,
and the resistivity of ultra-pure water is above 18 MΩ·cm (25 ◦C).

2.2. Synthesis of CdSe/CdS Core-Shell QDs

The fabrication method of CdSe/CdS QDs has already been reported elsewhere [27].
In brief, a certain amount of Se, NaBH4, and 10 mL ultrapure water were added into a
three-necked flask under the N2 atmosphere, and then stirred vigorously until the solution
became colorless and clarified. The solution at this time was a NaHSe solution, which would
be used as a precursor of Se for the next step. A certain amount of CdCl2 was dissolved in
100 mL of ultrapure water, and then a certain volume of TGA solution was dropped into it,
and the solution changed from colorless to cloudy rapidly. The molar ratio of Cd:Se:TGA
in the reaction system was 1:0.5:2.5. The CdCl2 solution became clear again when the pH
value of the solution was adjusted to 11 with 1 mol/L NaOH solution, and before it, N2
had been introduced for 30 min to exclude oxygen. The prepared NaHSe solution was
quickly transferred to the CdCl2 solution, and the mixture was stirred vigorously and
heated under 80 ◦C for 30 min under N2 atmosphere to get CdSe solution. After cooling to
room temperature, a certain amount of CdCl2 solution and Na2S solution were prepared
according to the molar ratio of CdSe:CdS = 1:1. The CdSe solution was added drop by
drop under intense stirring, and the reaction system was heated to 80 ◦C and refluxed for
30 min. The final solution obtained by the above process was an orange-red solution, which
was washed with anhydrous ethanol, centrifuged 3 times, and subsequently dispersed in
ultrapure water. The solution is an as-prepared TGA-capped CdSe/CdS QDs solution.

2.3. Fluorescence Quenching Method of CdSe/CdS by EDTA

For the study on the fluorescence quenching of CdSe/CdS QDs by EDTA, the fol-
lowing series of solutions were prepared, i.e., 300 µL CdSe/CdS QDs solution, 2.4 mL
Tris-HCl buffer (10 mmol/L, pH = 8.0), 300 µL EDTA with various concentrations. All
these solutions were added into a colorimetric dish in turn to form a 3 mL solution system.
After incubation for 10 min, the photoluminescence (PL) spectra of the solution system
were tested. Fluorescence quenching degree is expressed by I/I0, in which I and I0 rep-
resent the PL intensities of QDs with the various concentrations of EDTA and without
EDTA, respectively.

2.4. Fluorescence Restore Method of EDTA-CdSe/CdS by Cd2+

In order to investigate the effect of Cd2+ on the fluorescence intensity of the EDTA-
CdSe/CdS system, the following series of solutions were prepared: 300 µL CdSe/CdS QDs
solution, 2.1 mL Tris-HCl buffer, 300 µL EDTA, and 300 µL Cd2+ aqueous solution with
various concentrations were added into a colorimetric dish in turn to form a 3 mL solution.
After incubation for 10 min, the PL spectra of the solution system were tested. The fluores-
cence restoring effect is expressed by I/I0, in which I and I0 represent the PL intensities of
EDTA-QDs with the various concentrations of Cd2+ and without Cd2+, respectively.

All PL spectra were measured under the same conditions: the excitation and emission
slit were set to 3 nm, and the excitation wavelength was set to 397 nm. The monitoring
emission range was 420–780 nm. The fluorescence intensity values were not corrected for
inner-filter effects.
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3. Results and Discussion
3.1. Characterization of CdSe/CdS QDs

Figure 2a shows the X-ray diffraction (XRD) pattern of the CdSe/CdS QDs. Three
wide diffraction peaks centered at 2θ = 25.8◦, 43.2◦ and 50.5◦ were observed, corresponding
to the characteristic peaks of (111), (220) and (311) lattice planes of cubic CdSe or CdS.
There were mutual stresses between the core of CdSe and the cell of CdS that caused the
lattice parameters to change, and thereby the shifts of the diffraction peaks happened
specifically for the two peaks at a higher angle. A similar diffraction pattern was observed
in CdSe/CdS nanoparticles in which CdS was epitaxially grown on a CdSe core [28].
These obvious wide peaks reflect the basic characteristics of nanoparticles. The micro-
morphology of TGA-capped CdSe/CdS QDs is shown in Figure 2b,c. These QDs, with a
nearly spherical shape, display a good dispersion property. The insert graph in Figure 2c
shows the HRTEM (high-resolution transmission electron microscopy) image obtained by
focus on a nanoparticle within the view field and the spacing of the neighbouring lattice
fringe is 0.35 nm, corresponding to the (111) lattice plane of CdSe, which further proves
the final prepared products in this work to be CdSe/CdS nanoparticles. By counting the
particle size of all the nanoparticles in Figure 2c, the size distribution of the QDs is shown
in Figure 2d. The particle size is mainly in the range of 4–20 nm, and the average particle
size is about 12 nm.
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3.2. Fluorescence Quenching Effect of EDTA on CdSe/CdS QDs

The introduction of EDTA can effectively reduce the PL intensity of CdSe/CdS QDs,
as shown in Figure 3a. There is a broad emission band centered at about 600 nm for all
the CdSe/CdS QDs systems with various EDTA concentrations. As the concentration of
EDTA increases, the PL intensity of the EDTA-CdSe/CdS QD system decreases gradually,
with a red shift of the emission band in the spectra. This is because EDTA was chemically
absorbed on the surface of QDs, which caused QDs to cluster [29]. The change trend of
PL intensity can be expressed by the relationship between I/I0 and the concentration of
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EDTA in Figure 3b, in which I and I0 represent the PL intensities of QDs with the various
concentrations of EDTA and without EDTA, respectively. It can be seen that the PL intensity
decreases gradually with the increase of EDTA concentration. The fluorescence quenching
is fast when the EDTA concentration is less than 35 µmol/L, but becomes slow when
the EDTA concentration is more than 35 µmol/L. This is because some Cd2+ sites on the
surface of CdSe/CdS QD were occupied with the increasing concentration of EDTA, and
the more the combination between EDTA and CdSe/CdS QD becomes difficult, the more
the fluorescence quenching slows down. The fluorescence intensity response curve of
CdSe/CdS QDs can be divided into two stages, as shown in Figure 3c,d, respectively. In
the concentration range of 0–35 µmol/L EDTA, the linear relationship between I/I0 and
the EDTA concentration (CEDTA) can be expressed by Equation (1),

I/I0 = 0.98788 + (−0.02182)CEDTA (1)

and the correlation coefficient (R2) of Equation (1) is 0.994. In the range of 35–60 µmol/L
EDTA, the correlation equation can be expressed as Equation (2),

I/I0 = 0.39829 + (−0.00582)CEDTA (2)

and the correlation coefficient (R2) is 0.976.
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As a common metal chelating agent, EDTA will be chemically adsorbed on the surface
of QDs to chelate with Cd2+ sites of CdSe/CdS QD when it was added to the CdSe/CdS
QD solution, and a large area of optical active sites on the surface of these fluorescent
CdSe/CdS QDs were masked, resulting in the fluorescence quenching. It caused a blue
shift in the absorption spectra, as shown in Figure 4. After the introduction of Cd2+, the
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absorption peak was red shifted, which was due to the partial leakage of the photon into
the shell matrix [30].
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In order to further explore the quenching mechanism of QDs by EDTA, temperature
experiments and measurement of the fluorescence lifetime were conducted. The results
are shown in Figure 5. The fluorescence quenching data were analyzed by Stern–Volmer
Equation (3) [29],

I0/I = 1 + Ksv[Q] (3)

where Ksv is the quenching constant and [Q] is the concentration of quenching agent. As
shown in Figure 5a, when the temperature is 298 K and 308 K, the relationship between
I0/I and Q conforms to the Stern–Volmer equation. The value of slope decreases with
the increase of temperature, indicating that static quenching occurs between EDTA and
QDs. As shown in Figure 5b, the fluorescence lifetimes of QDs, QDs + 10 µmol/L EDTA
and QDs + 20 µmol/L EDTA are 27.3 ns, 24.4 ns and 23.7 ns, respectively. The change of
the lifetime is not obvious with the increase of Cd2+ concentration, consistent with the
characteristics of static quenching. When the temperature is 298 K and 308 K, the quenching
constants Ksv were calculated to be 4.49 × 104 L/mol and 3.82 × 104 L/mol. According to
the Formula (4) [31],

Kqτ0 = Ksv (4)

where, τ0 is the lifetime of CdSe/CdS QD, the bimolecular quenching rate constant (Kq) is
1.64 × 1012 L·mol/s and 1.39 × 1012 L·mol/s, respectively, much higher than the maximum
dynamic quenching rate 2.0 × 1010 L·mol/s. Therefore, it can be concluded that the
quenching mechanism of the QDs by EDTA belongs to a static quenching process.

The concentration of EDTA has great influence on the sensitivity of EDTA-CdSe/CdS
QDs to Cd2+ detection when Cd2+ concentration lies in a proper range. The quenching
effect is not obvious when the concentration of EDTA is too low, while the detection of Cd2+

was not accurate when the concentration of EDTA is excessive. The fluorescence quenching
efficiency (1 − I/I0) for the CdSe/CdS QDs system reaches 90% when 50 µmol/L EDTA is
added. Furthermore, the quenching efficiency of CdSe/CdS QDs increases to 99.5% when
the EDTA concentration increases to 60 µmol/L, meaning that the fluorescence is almost
completely quenched. For comparison, 50 µmol/L EDTA was selected for subsequent
fluorescence restoration experiments to detect Cd2+.
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3.3. Relationship between Fluorescence Intensity and Incubation Time and pH of Solution

The fluorescence stability of CdSe/CdS QDs, the quenching rate of CdSe/CdS QDs
by EDTA, and the fluorescence restoration efficiency for the EDTA-CdSe/CdS system by
Cd2+ were determined by the changes of PL intensity of these three systems over time. The
experimental results are shown in Figure 6. The fluorescence intensity of CdSe/CdS QDs
remains stable with the prolongation of incubation time, indicating a good fluorescence
stability for the QDs system. After the addition of EDTA, the fluorescence quenching
of CdSe/CdS QDs is very significant, and the PL intensity begins to be stable within
5 min, indicating that the reaction between EDTA and CdSe/CdS QDs is rapid, and that
the fluorescence quenching is very effective. After Cd2+ was introduced into the EDTA-
CdSe/CdS QDs system, the fluorescence began to be restored, and the fluorescence was
almost completely restored within 3 min, remaining stable after that.
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The pH in the solution system can affect the fluorescence intensity of QDs, as well as
the sensitivity and selectivity of detected substances [32]. Figure 7a shows the influence
curve of solution pH on PL intensity of TGA capped CdSe/CdS QDs. When the pH
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increases from 5.5 to 8.0, the PL intensity of the QDs increases gradually, and after that,
the PL intensity tends to be stable with continual increase of pH value. This is because
the mercaptan groups of TGA capped QDs are not stable under acidic conditions, which
enhances the direct contact frequency between the QD surface and the aqueous solution.
At this time, the fluorescence is weaker. Figure 7b shows the effect of solution pH on the
fluorescence quenching of TGA capped CdSe/CdS QDs induced by EDTA, and on the
fluorescence restoration for the EDTA-CdSe/CdS QDs system by Cd2+. With the increase
of the pH value, I/I0 first decreases and then increases until the solution pH reaches 9.0,
and at last decreases again to a higher pH range. The mechanism of the solution pH on the
fluorescence intensity is very complicated. As a weak acid, the dissociation equilibrium
constant of EDTA becomes smaller with the decrease of the solution pH value from 7.5
to 6, thus reducing the total number of EDTA− ions in the solution, which causes more
ions of EDTA− to desorb from the surface of the fluorescent QDs and re-enter into the
solution. This leads to a weaker quenching effect of EDTA, thus enhancing the fluorescence
restoration rate of the QDs system in a lower pH solution by the introduction of Cd2+.
This explains why I/I0 decreases with the increase of pH values in the range of pH 6–7.5.
However, just like the discussion regarding the results of Figure 5a, higher pH is benefit for
the stability of the mercaptan groups of TGA. The competition between these two factors
determines the increasing change trend of fluorescence intensity in pH 7.5–9.0. However,
if the solution pH value becomes too high and surpasses 9.0, Cd2+ in the solution system
tends to react with OH− to form Cd(OH)2 precipitation [30], and thus I/I0 begins to once
again decrease.
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3.4. Detection of Cd2+ in Ultrapure Water Solution

The absorption of EDTA on the surface of CdSe/CdS QDs produced a shielding
function for the optical absorption and emission of QDs, which resulted in fluorescence
quenching for the QDs system. Then Cd2+ was introduced to restore fluorescence of
EDTA-CdSe/CdS QDs, and the restoration efficiency depends on the Cd2+ concentration
in the detected water sample. As shown in Figure 8a, there is a broad emission band
centered at about 600 nm for all the EDTA-CdSe/CdS QDs systems added with various
Cd2+ concentrations. Figure 8b shows the change trend of PL intensity of EDTA-CdSe/CdS
system with the increase of Cd2+ concentration in the detected solution, and the fluorescence
restoration increases continually in the concentration range of 0.1–90 µmol/L Cd2+ of
ultrapure water.
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Figure 8c,d show the linear fitting results of the data of I/I0 and Cd2+ concentra-
tion in two regions: 0.1–20 µmol/L and 20–90 µmol/L, corresponding to the linear
Equations (5) and (6), respectively. The correlation coefficients (R2) are all above 0.99,
suggesting a good linear relationship between I/I0 and Cd2+ concentration. According to
the Equation (7) [33], where δ is the standard deviation of blank measurements (n = 11)
and S is the slope of calibration graph. The detection limit (LOD) was calculated to be
6 nmol/L.

I/I0 = 1.05536 + 0.03529CCd2+ 0.1–20 µmol/L (5)

I/I0 = 0.6664 + 0.05869CCd2+ 20–90 µmol/L (6)

LOD = 3δ/S (7)

The selectivity of EDTA-CdSe/CdS QDs system to Cd2+ in an aqueous solution was
evaluated in comparison with 13 other metal ions (K+, Na+, Mg2+, Ba2+, Al3+, Mn2+, Fe3+,
Ca2+, Hg2+, Pb2+, Cu2+, Ag+, Zn2+) under the optimal fluorescence restoration conditions.
In order to reflect the selectivity of the QD system to various impurities adequately, the
concentration of these interfering ions is set to 500 µmol/L except for Zn2+, and both of the
Zn2+ and Cd2+ concentrations are set to be 50 µmol/L. Figure 9 shows the effects of these
interfering ions on fluorescence restoration efficiency of the EDTA-CdSe/CdS fluorescence
probe. Cu2+, Ag+, Hg2+, and Pb2+ lead to fluorescence quenching of the system completely.
They could be adsorbed on QDs surface and quenched PL due to electron transfer from
QDs to Ag+, Cu2+, Hg2+, and Pb2+. In addition, a chemical displacement of surface Cd2+

by Hg2+, Cu2+, and Ag+ occurred due to the extremely low solubility of CuSe, HgSe,
and Ag2Se. Their formation would cause the PL quenching by facilitating non-radiative
electron/hole (e−/h+) annihilation for the QDs system [34–36]. Ni+, Fe3+, and Mn2+ also
have a certain fluorescence quenching effect on the system. K+, Na+, Al3+, Ba2+, and
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Ca2+ have little effect on fluorescence. However, Cd2+ shows a significant fluorescence
restoration effect on the system, and I/I0 increases by 3.6 times with the addition of Cd2+.
However, Zn2+ also shows an obvious fluorescence restoration effect, and I/I0 increases by
2.0 times with the addition of Zn2+, likely owing to similar chemical properties between
Zn2+ and Cd2+. Zn-mercaptan forming on the surface of QDs can lead to fluorescence
restoration for the system [30]. In conclusion, the CdSe/CdS QDs system has a high
selectivity for the detection of Cd2+ in an aqueous solution, but it is improper to detect
Cd2+ in a solution containing Cd2+ and Zn2+.
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3.5. Detection of Cd2+ in Tap Samples

The detection experiments of Cd2+ were conducted in tap water to evaluate the
practicability and reliability of the EDTA-CdSe/CdS QDs fluorescent probe. The tap water is
a living water from Nanning city of China. The solutions with three different concentrations
of Cd2+ (10, 20 and 30 µmol/L) were introduced into the tap water, respectively, and the
experimental results are shown in Table 1. It can be seen that the measured values are very
close to the actual concentration of Cd2+ in the aqueous solutions, with the fluorescence
restoration efficiency above 96% and the relative standard deviation (RSD) below 4%. It
suggests that the inherent ions such as Na+, Ca2+, Mg2+, and Mn2+ in the tap water cannot
constitute a barrier in the detection of Cd2+ for the EDTA-CdSe/CdS QDs fluorescent probe.
Note that the actual Cd2+ concentration in the tap water was considered to be equal to the
dosage of Cd2+ because it is not detectable in pristine tap water.

Table 1. A comparison between actual Cd2+ concentration and the measurasdfed values, and the
fluorescence restoration efficiency and relative standard deviation for the detection of Cd2+ in the
tap water.

Sample
(No.)

Cd2+ Concentration
(µmol/L)

ICP-MS
Method Proposed

Method (µmol/L)
Recovery

(%)
RSD

(%, n = 3)(µmol/L)
1 10 9.65 9.68 96.8 2.6
2 20 20.56 20.95 104.8 1.8
3 30 30.08 29.12 97.1 3.8

Mean value / / 99.6 2.8
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4. Conclusions

A CdSe/CdS QD fluorescent probe with core-shell structure was successfully syn-
thesized via solution reaction method. EDTA was proved to be an efficient fluorescence
quenching agent to realize the OFF function in the detection process of Cd2+ based on an
OFF–ON mode. Under proper conditions, the fluorescence quenching efficiency reached
99.5% within 5 min. The fluorescence of the EDTA-CdSe/CdS system was restored more
effectively when Cd2+ was immigrated in the solution system, realizing the ON function
in the detection process. The relationship between fluorescence restoration efficiency and
Cd2+ concentration was well expressed by two linear equations, which can be used for the
accurate calculation of Cd2+ concentration in the 0.1–100 µmol/L range. The QD fluorescent
probe shows a good selectivity for Cd2+ in the aqueous solution containing twelve kinds of
interfering ions such as Na+, Ca2+, Mg2+, Mn2+, and so on. However, the presence of Zn2+

would cause serious interference for the detection of Cd2+ in an aqueous solution. Finally,
the experimental results of Cd2+ detection in tap water further proved the practicability
and reliability of the EDTA-CdSe/CdS QDs fluorescent probe.
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