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Abstract: We previously demonstrated that polybrominated diphenyl ethers (PBDEs) inhibit the
growth of axons in primary rat hippocampal neurons. Here, we test the hypothesis that PBDE
effects on axonal morphogenesis are mediated by thyroid hormone and/or reactive oxygen species
(ROS)-dependent mechanisms. Axonal growth and ROS were quantified in primary neuronal-glial co-
cultures dissociated from neonatal rat hippocampi exposed to nM concentrations of BDE-47 or BDE-49
in the absence or presence of triiodothyronine (T3; 3–30 nM), N-acetyl-cysteine (NAC; 100 µM), or
α-tocopherol (100 µM). Co-exposure to T3 or either antioxidant prevented inhibition of axonal growth
in hippocampal cultures exposed to BDE-47 or BDE-49. T3 supplementation in cultures not exposed
to PBDEs did not alter axonal growth. T3 did, however, prevent PBDE-induced ROS generation and
alterations in mitochondrial metabolism. Collectively, our data indicate that PBDEs inhibit axonal
growth via ROS-dependent mechanisms, and that T3 protects axonal growth by inhibiting PBDE-
induced ROS. These observations suggest that co-exposure to endocrine disruptors that decrease
TH signaling in the brain may increase vulnerability to the adverse effects of developmental PBDE
exposure on axonal morphogenesis.

Keywords: axonal growth; developmental neurotoxicity; neuronal morphogenesis; PBDE; reactive
oxygen species; thyroid hormone

1. Introduction

The brominated flame retardants, polybrominated diphenyl ethers (PBDEs), are con-
sidered to be likely environmental risk factors for neurodevelopmental disorders [1–4].
Epidemiologic studies have identified a negative association between developmental expo-
sure to PBDEs and executive function, motor behavior, and attention in infants and chil-
dren [5–12]. These findings are of significant public health concern given the documented
widespread human exposure to PBDEs with significantly higher body burdens in infants
and toddlers relative to adults [13,14]. However, there remains significant uncertainty
regarding the underlying mechanism(s) by which PBDEs interfere with neurodevelopment.

It has been hypothesized that PBDE developmental neurotoxicity reflects altered
patterns of neuronal connectivity [12,15,16]. A critical determinant of the patterns of
connections formed between neurons during development is axonal morphology. Inter-
ference with temporal and/or spatial aspects of axonal morphogenesis has been shown
to cause functional deficits in experimental models [17–19]. Moreover, altered patterns
of axonal growth are implicated in the pathogenesis of various neurodevelopmental dis-
orders [20,21]. Recently, we demonstrated that BDE-47, a PBDE congener that is highly
abundant in human tissues, and BDE-49, an understudied PBDE congener with levels
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comparable to BDE-47 in gestational tissues of women living in southeast Michigan [22], in-
hibited axonal growth in primary hippocampal neuron-glia co-cultures, in part by delaying
neuronal polarization [23].

BDE-47 and BDE-49 effects on axonal growth in primary hippocampal neurons were
prevented by pharmacological blockade of ryanodine receptors (RyR) or siRNA knockdown
of RyR, implicating RyR-dependent mechanisms in PBDE developmental neurotoxicity [23].
However, an unexpected finding from our previous studies was that the axon inhibitory
effects of BDE-47 and BDE-49 exhibited comparable concentration-effect relationships
despite significant differences in their potency at the RyR [24]. This observation raised the
possibility that the RyR is not the primary molecular target but rather a downstream effector
in the adverse outcome pathway (AOP) linking PBDEs to axonal growth inhibition. PBDEs
have been shown to interfere with thyroid hormone (TH) signaling and to cause oxidative
stress via increased levels of intracellular reactive oxygen species (ROS) [25,26], and both TH
and ROS are reported to modulate RyR activity [27] and to influence axonal growth [28,29].
Therefore, in this study, we leveraged a primary rat hippocampal neuron-glia co-culture
model to assess the relative contributions of TH and ROS-dependent mechanisms in
mediating the axon inhibitory activity of BDE-49 and BDE-47. Our findings support the
hypothesis that PBDEs inhibit axonal growth via ROS-dependent mechanisms, and that
the TH, triiodothyronine (T3), protects against the effects of PBDEs on axonal growth by
blocking PBDE-induced ROS.

2. Materials and Methods
2.1. Materials

Neat certified BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether, >99% pure) and BDE-49
(2,2′,4,5′-tetrabromodiphenyl ether, >99% pure) were purchased from AccuStandard Inc.
(New Haven, CT, USA), and verified for purity and composition by GC/MS by the UC
Davis Superfund Research Program Analytical Core. Stock solutions of each BDE were
made in dry dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO, USA). 3,3′,5-Triiodo-
L-thyronine (T3), N-acetyl-L-cysteine (NAC) and DL-α-tocopherol acetate were purchased
from Sigma-Aldrich.

2.2. Animals

All procedures involving animals were approved by the University of California Davis
Animal Care and Use Committee and conformed to the NIH Guide for the Care and Use of
Laboratory Animals, and the ARRIVE guidelines [30]. Timed-pregnant Sprague Dawley
rats were purchased from Charles River Laboratory (Hollister, CA, USA) and individually
housed in clear plastic cages with corn cob bedding at 22 ± 2 ◦C under a 12 h dark–light
cycle. Food and water were provided ad libitum.

2.3. Cell Culture

Primary neuron-glia co-cultures were prepared from hippocampi harvested from
postnatal day (P) 0–1 male and female rat pups as previously described [31]. Briefly, rat
pups were separated from the dam and anesthetized by placing them on a gauze pad
on ice. Once pups ceased moving, they were euthanized by decapitation using sterile
scissors. Hippocampi were harvested from the pup’s head by sterile dissection and then
dissociated using trypsin (1 mg/mL) and DNAse (0.3 mg/mL). Dissociated hippocampal
cells were plated on poly-L-lysine (0.5 mg/ML, Sigma Aldrich) coated glass coverslips
(BellCo, Vineland, NJ, USA) and maintained at 37 ◦C in NeuralQ Basal Medium supple-
mented with 2% (v/v) GS21 (MTI-GlobalStem, Gaithersburg, MD, USA) and GlutaMAX
(ThermoScientific, Waltham, MA, USA). The concentration of T3 in the complete medium
used to maintain cultures was ~2.6 nM [32,33]. For studies of axonal growth, neurons were
plated at 27,000 cells/cm2; for qPCR and Western blot experiments, neurons were plated at
105,000 cells/cm2. Cultures were exposed to varying concentrations of BDE-47 or BDE-49
diluted in culture medium from 1000× stocks; vehicle control cultures were exposed to
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DMSO (1:1000 dilution). A subset of cultures was co-exposed to T3, NAC, or α-tocopherol
diluted 1:1000 directly into cell cultures from 1000× stocks in sterile distilled water.

2.4. Quantification of Axonal Outgrowth

Cultures were exposed to BDE-47, BDE-49, or vehicle (1:1000 DMSO) for 48 h begin-
ning 3 h post-plating, and then fixed with 4% (w/v) paraformaldehyde (Sigma Aldrich) in
0.2 M phosphate buffer. To visualize axons, hippocampal cultures were immunostained
with antibody specific for tau-1 (1:1000, Millipore, Billerica, MA, USA, RRID AB_94855).
Our previous studies [23] demonstrated that exposure to BDE-47 or BDE-49 did not alter
the expression of tau, as determined by Western blotting. Axonal lengths of tau-1 im-
munopositive neurons were manually quantified by an individual blinded to experimental
condition using ImageJ software with the NeuronJ plugin [34]. As previously defined [35],
in any given neuron, the axon was identified as the neurite whose length was >2.5× the
cell body diameter and exceeded that of the other minor processes of the same neuron.
Only non-overlapping neurons were quantified as proximity to other neurons can affect
neuronal morphology.

2.5. Quantitative Polymerase Chain Reaction (qPCR)

Total RNA was isolated from cell cultures using TRIzol Reagent (ThermoScientific) per
the manufacturer’s instructions, and cDNA was synthesized using the SuperScriptTMViloTM
MasterMix containing SuperScriptTM III Reverse Transcriptase (Invitrogen, Carlsbad, CA,
USA). Samples were mixed with Power SYBR Green MasterMix and forward and reverse
primers (see Supplemental Table S1 for primer sequences and amplification efficiencies)
and then loaded into a MicroAmp 384 Reaction Plate (ThermoScientific). qPCR plates were
run on a 7900HT System by the Real-Time PCR Research and Diagnostics Core Facility at
UC Davis. qPCR primers and probes were ordered from Integrated DNA Technologies
(Coralville, IA, USA) using PrimeTime® Predesigned qPCR Assays. Transcript levels were
normalized to the average of the reference genes Ppia and Hprt1 and expression ratios were
calculated by Pfaffl method [36] using REST 2009 software (Qiagen, Valencia, CA, USA).

2.6. ROS Measurements

Rat hippocampal neurons cultures were exposed to BDE-47, BDE-49, or vehicle (1:1000
DMSO) in the absence or presence of T3, NAC, or α-tocopherol 3 h post-plating. Global
ROS production was measured 1 h following exposures using ROS-Glo assay (Promega,
Madison, WI, USA) according to manufacturer’s protocol, which specified using H2O2 as
a positive technical control. Luminescence was recording using an H1 hybrid microplate
reader (BioTek Instruments, Winooski, VT, USA).

2.7. Mitochondrial Metabolism Kinetics

Primary rat hippocampal neuron cultures were plated in 96-well plates at 27,000 cells/cm2

for 48 h. Cells were then exposed to BDE-47, BDE49, or vehicle (1:1000) in the absence or
presence of T3 in combination with a mitochondrial substrate library, MitoPlate-S (Biolog,
Inc., Hayward, CA, USA). Mitochondrial substrate metabolism was characterized according
to the manufacturer’s protocol. Kinetics was recorded on the H1 hybrid microplate reader
at a wavelength of 590 nm.

2.8. Statistics

All data are presented as mean ± SE unless otherwise indicated. Graphs were created
in GraphPad Prism 8.3.0. Statistical analyses were performed with GraphPad Prism using
one-way ANOVA with post hoc Tukey’s or Dunnett’s or post hoc Kruskal–Wallis with
Dunn’s as appropriate for the normality of the data as measured by Shapiro–Wilk. qPCR
data were analyzed using SDS 2.4 (ThermoScientific) and REST 2009 software (Qiagen, Va-
lencia, CA, USA) with statistical analyses performed using REST 2009 pairwise reallocation
randomization test. Significant differences between single and co-exposures or positive
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controls and vehicle were determined using Student’s t-test. Statistical significance was
defined as p < 0.05.

3. Results
3.1. T3 Blocked the Axon Inhibitory Effects of BDE-47 and BDE-49

We previously demonstrated that exposure to either BDE-47 or BDE-49 at concentra-
tions ranging from 200 pM to 2 µM inhibited axonal growth in primary rat hippocampal
neurons [23]. To address the question of whether these PBDE congeners modulated axonal
growth via effects on TH signaling, we first tested whether the axon inhibitory activity
of PBDEs could be blocked by supplementation of the culture medium with T3. Axon
lengths were quantified on day in vitro (DIV) 2 after a 48 h exposure to BDE-47 or BDE-49
at 2 or 200 nM in the absence or presence of exogenous T3 at 3 or 30 nM. Consistent with
our previous findings, BDE-47 or BDE-49 did not alter the number of axons extended
by an individual neuron, but these PBDEs did significantly reduce axonal length relative
to vehicle controls (Figure 1A,B). Addition of exogenous T3 at 3 or 30 nM, which raised
T3 concentrations in the culture medium to ~5.6 and 32.6 nM, respectively, prevented
the inhibition of axonal growth by BDE-47 or BDE-49, as indicated by the fact that axon
lengths of neurons exposed to PBDEs in culture medium supplemented with T3 were not
significantly different from those of vehicle controls (Figure 1A,B).
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hippocampal neurons. Primary neuron-glia co-cultures dissociated from the hippocampi of P0-1 rats
were exposed to vehicle (DMSO diluted 1:1000) or varying concentrations of BDE-47 or BDE-49 in the
absence or presence of T3 beginning 3 h after plating. After 48 h exposure, cultures were fixed and
immunostained for the axon-selective cytoskeletal protein tau-1. (A) Representative photomicrographs
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of DIV 2 hippocampal neurons exposed to vehicle, BDE 47 at 2 nM ± exogenous T3 at 3 nM. Scale
bar = 25 µm. (B) Quantification of axon length in tau-1 immunopositive neurons. Data presented as
the mean± SE (n = 70–90 neurons from three independent dissections). *** Significantly different from
vehicle at p < 0.001; # significantly different from the corresponding BDE treatment in the absence of
T3 at p < 0.05 as determined by one-way ANOVA followed by Tukey’s post hoc test. (C) Fold-change
in transcript levels of Klf9 (as a % of vehicle control). Data are presented as the mean ± SE of Klf9
expression normalized to the average of the reference genes Ppia and Hprt1. * Significantly different
from vehicle at p < 0.05 as determined by REST 2009 pairwise randomization test.

T3 is a component of many neuronal cell culture medias [34,35], and the medium used
in these studies contained T3 at ~2.6 nM [34,35]. Thus, our observation that T3 supple-
mentation protected against PBDE inhibition of axonal growth raised the possibility that
PBDEs inhibited axonal growth by interfering with TH signaling. As one test of this possi-
bility, we determined whether PBDEs interfered with TH-mediated gene expression. The
gene Kruppel-like factor 9 (Klf9), previously known as Basic transcription element-binding
protein (Bteb), has been shown to be a sensitive TH-responsive gene in the developing
brain [36,37]. Analyses of Klf9 transcripts in 2 DIV hippocampal cell cultures confirmed
that Klf9 expression is significantly upregulated in cultures exposed to exogenous T3 at
3 nM for 48 h (Figure 1C). In contrast, exposure to BDE-47 or BDE-49 at 200 nM for 48 h
had no significant effect on Klf9 transcript levels relative to vehicle control cultures and did
not inhibit the upregulation of Klf9 by T3 (Figure 1C).

To determine whether the protective effect of T3 on PBDE inhibition of axonal growth
was mediated via direct effects of T3 on axonal growth, we quantified the effect of supple-
menting the culture medium with T3 on axonal growth in cultures not exposed to PBDEs.
As seen in representative photomicrographs (Figure 2A), supplementation with T3 at either
3 or 30 nM had no obvious effect on axonal morphology in terms of the number, length, or
branching of axons in DIV 2 hippocampal neurons. Quantification of axon length confirmed
that 48 h exposure to medium supplemented with T3 did not significantly alter axon length
relative to that observed in vehicle control cultures (Figure 2B).
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BDE-47 or BDE-49 beginning 3 h after plating. After 48 h exposure, cultures were fixed and immunos-
tained for tau-1. Representative photomicrographs (A) and quantification of axon length (B) in tau-1
immunopositive neurons at DIV 2. Data are presented as the mean ± SE (n = 30–40 neurons per
group from one dissection; results repeated in 3 independent dissections). There were no significant
differences between neurons exposed to vehicle vs. T3 as determined by one-way ANOVA (p < 0.05).
Scale bar = 25 µm.

3.2. Antioxidants Blocked PBDE Inhibition of Axonal Growth

Previous reports have demonstrated that PBDEs increase levels of ROS in cultured
neurons [38–40] and that PBDE-induced ROS can be blocked by mechanistically diverse
antioxidants, specifically the NADPH oxidase inhibitor, NAC, or the ROS scavenger,
α-tocopherol [41,42]. To evaluate a role for ROS in the axon inhibitory effects of PBDEs,
we thus determined whether co-exposure to NAC or α-tocopherol blocked the inhibition
of axonal growth by BDE-47 or BDE-49. No significant changes in axon length were ob-
served with antioxidant treatment alone (Supplemental material Figure S1). As shown in
representative photomicrographs (Figure 3A) and confirmed by quantitative morphometric
analyses of axons (Figure 3B), axon lengths of hippocampal neurons exposed to BDE-47
or BDE-49 at 200 nM in the presence of 100 µM NAC or 100 µM α-tocopherol were not
significantly different from those of vehicle control neurons. Cultures co-exposed to PBDEs
and antioxidants were significantly longer than axon lengths of hippocampal neurons
exposed to the corresponding BDE alone.
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mined by one-way ANOVA followed by Tukey’s post hoc test; †significantly different from individual
PBDE treatment at p < 0.05 as determined by Student’s t-test.

To determine whether nM concentrations of BDE-47 or BDE-49 that inhibit axonal
growth increased intracellular ROS, ROS were measured in cultures acutely exposed to
BDE-47 or BDE-49. Both BDE-47 and BDE-49-exposed cultures had higher amounts of ROS
compared to vehicle control cultures (Figure 3C). We next evaluated whether antioxidants
blocked the inhibitory effects of PBDEs on axonal growth by providing protection against
ROS generation (Figure 3D). In the presence of NAC or α-tocopherol, PBDEs did not
produce significant amounts of ROS compared to vehicle. However, ROS production was
substantially reduced compared to BDE-47 or BDE-49 alone.

It is posited that ROS generation largely originates from mitochondrial damage [43].
BDE-47 can disrupt the mitochondrial membrane potential [44], while both BDE-47 [45,46]
and BDE-49 [47] can decrease mitochondrial bioenergetics. Thus, we next sought to de-
termine whether acute exposure to nM concentrations of BDE-47 or BDE-49 altered mito-
chondrial metabolism. Compared to vehicle control cultures, mitochondrial metabolism
was significantly impacted in cultures acutely exposed to either BDE-47 or BDE-49 at
200 nM (Figure 4B).

3.3. T3 Blocked PBDE Axon Inhibition by Blocking PBDE-Induced ROS

To determine whether T3 conferred protection against the axon inhibitory effects of
PBDEs via upregulation of endogenous antioxidant molecules, we quantified the effects of
T3, BDE-47, and BDE-49, alone and in combination, on the production of ROS (Figure 4A).
In contrast to cultures exposed to PBDEs in the absence of T3, in cultures co-exposed for
1 h to one of these PBDEs and T3 exhibited no significant change in ROS levels relative to
vehicle controls. Moreover, ROS levels were significantly reduced in cultures co-exposed to
PBDEs and T3 relative to cultures exposed to PBDEs in the absence of T3. We then explored
whether T3 protected against disrupted mitochondrial bioenergetics (Figure 4B). Following
acute exposure to either BDE-47 or BDE-49 in combination with T3, there were no marked
alterations in mitochondrial substrate metabolism relative to vehicle. In addition, any
effects observed with individual PBDE exposure were eliminated in cultures co-exposed to
PBDEs and T3.
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Figure 4. T3 normalized ROS levels and mitochondrial substrate metabolism in cultures exposed
to BDE-47 or BDE-49. Hippocampal neuron-glia co-cultures were exposed to vehicle, T3, BDE-47
and/or BDE-49 for 1 h on DIV 2. (A) Quantification of ROS production following co-exposure to T3
and PBDEs. (B) Mitochondrial substrate metabolism kinetics immediately following PBDE exposure
alone and in the presence of T3. Data presented as the mean ± SE (n = three independent dissections).
* Significantly different from vehicle at * p < 0.05, ** p < 0.01, *** p < 0.001; # significantly different from
T3 at # p < 0.05, ## p < 0.01, ### p < 0.001, #### p < 0.0001 as determined by one-way ANOVA followed
by Dunnett’s post hoc test; †significantly different from individual PBDE treatment at † p < 0.05,
††† p < 0.001 as determined by Student’s t-test.

4. Discussion

The findings from this study extend our previous report that BDE-47 and BDE-49
inhibited axonal growth in primary rat hippocampal neurons [23] by demonstrating that
the axon inhibitory activity of these PBDE congeners is mediated by increased levels of
intracellular ROS. The evidence in support of this conclusion includes: (1) BDE-47 and
BDE-49 increased ROS in primary rat hippocampal neurons at nM concentrations that
also inhibited axonal growth; and (2) co-exposure to either the NADPH oxidase inhibitor,
NAC, or the ROS scavenger, α-tocopherol, blocked the axon inhibitory effects of BDE-47
and BDE-49. Additionally, we observed that supplementation of the culture medium
with exogenous T3 blocked the inhibition of axonal growth in PBDE-exposed neuronal
cultures, coincident with mitigation of PBDE effects on intracellular ROS and metabolic
substrate production from the mitochondria. These findings suggest a role for T3 in
maintaining intracellular redox homeostasis in response to pro-oxidants, which if true,
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represents a novel mechanism by which thyroid hormone disruption contributes to adverse
neurodevelopmental outcomes.

Our observations are consistent with previous reports that PBDEs upregulated biomark-
ers of oxidative stress in the brain of adult and developing rodent models [48,49] and
increased intracellular ROS levels in cultured neural cells [38,39,50,51]. This earlier work
demonstrated that µM concentrations of PBDEs increased intracellular ROS in cultured
neurons to levels that triggered apoptosis [24,52,53]. Here, we found that exposure of
primary hippocampal neuron-glia co-cultures to BDE-47 or BDE-49 at nM concentrations
also increased intracellular ROS, but this was associated with inhibited axonal growth.
Our data extend reports in the literature indicating that physiologic levels of ROS regulate
axonal specification and axonal growth in primary hippocampal neurons, and modulation
of ROS synthesis in axonal growth cones cause cytoskeletal rearrangements that alter
axonal morphogenesis [54]. Collectively, these observations suggest a model in which nM
PBDE concentrations increase ROS locally in the axonal growth cone to modulate signaling
pathways that regulate axonal growth [55,56], whereas µM PBDE concentrations increase
intracellular ROS globally to trigger cell death. Confirmation of this model will require
the adaptation of sensitive technologies to detect localized changes in ROS in subcellular
domains of neurons [57] exposed to PBDEs at concentrations that inhibit axonal growth.

PBDEs can interfere with thyroid hormone signaling and thyroid hormone disruption
is widely posited to contribute to the developmental neurotoxicity of these environmental
contaminants [25,26]. PBDEs have been shown to suppress dendritic growth in Purkinje
cells by disrupting TH receptor-mediated transcription [58], and we observed that co-
exposure to T3 blocked inhibition of axonal growth by BDE-47 or BDE-49. However,
several lines of evidence argue against the hypothesis that PBDEs inhibit axonal growth
in hippocampal neurons via direct interference with TH signaling. First, in hippocampal
cultures not exposed to PBDEs, T3 supplementation of the culture medium did not promote
axonal growth. Second, exposure of hippocampal cultures to BDE-47 or BDE-49 did not
alter expression of Klf9, a gene known to be highly sensitive to upregulation by TH in
the developing brain [59]. Nor did BDE-47 or BDE-49 significantly block T3-induced
Klf9 expression. These findings are in agreement with previous studies [58] in which
qPCR analyses detected no significant changes in transcript levels of TH-responsive genes,
including TRα1 or TRβ, in primary rat Purkinje cells exposed to PBDEs. Moreover, since
the affinity of T3 to the thyroid hormone receptor (THR) is approximately 0.1 nM, the
observation that T3 present in the medium without addition of extra T3 is not sufficient
to prevent the axon inhibitory effects of PBDEs suggests that the neuroprotective effect
of exogenous T3 in this model is mediated by THR-independent mechanisms. NH-3, a
pharmacological THR modulator with mixed agonist/antagonistic activity [60], may be
useful for addressing this question, but given experimental evidence that the concentration–
response relationship for antagonistic vs. agonist effects of NH-3 vary across models, its
effectiveness in mechanistic studies of the axon inhibitory activity of PBDEs will require
identification of a concentration that antagonizes THR in this model system [60,61].

Our data suggest that T3 supplementation prevented PBDE inhibition of axonal
growth by mitigating PBDE-induced ROS. Specifically, we observed that T3 supplemen-
tation ameliorated PBDE-induced ROS generation. A key question is how. TH has been
reported to upregulate expression of endogenous antioxidant molecules [62,63]. However,
preliminary qPCR analyses failed to detect significant upregulation of several endogenous
antioxidants in primary hippocampal neuron-glia co-cultures exposed to BDE-47 or BDE-49
in the presence of T3 (Supplemental Table S2). This observation does not rule out the
possibility that T3 upregulated expression of cellular antioxidants other than those we
assessed and/or that T3 increased the activity of enzymatic antioxidants. In addition, Klf9
upregulation by 5 or 10 nM T3 supplementation has previously been shown to protect the
axons of primary cortical murine neurons from hypoxic injury [64]. Whether Klf9 or other
T3-regulated targets are directly involved in mitigating PBDE axon inhibition remains to
be investigated. However, it is now clear that TH can also signal via non-transcriptional
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mechanisms [65–67], including direct influence on mitochondrial respiration [68]. Con-
sistent with this literature, our data support a model in which T3 protects mitochondrial
metabolism against PBDE-mediated disruption of mitochondrial bioenergetics.

The observation that T3 prevented PBDE-induced changes in mitochondrial substrate
utilization at concentrations that also blocked PBDE inhibition of axon growth, yet had
no effect on basal axonogenesis, suggested that PBDEs increased ROS as a consequence
of altered mitochondrial metabolism. In support of this proposed mechanism, at concen-
trations that increased intracellular ROS levels, BDE-47 and BDE-49 increased utilization
of metabolic substrates (α-keto-isocaproic acid, α-keto-butyric acid, Ala-Gln, D-glucose-
6-PO4) used to produce NADH, and disruption of NADH production has been linked to
increased ROS generation [69]. However, the mechanism(s) by which PBDEs interfere with
mitochondrial metabolism remain to be elucidated.

Findings from our previous studies suggested RyR was a downstream effector in
PBDE-induced axon growth inhibition [23]. Given the redox-sensitive nature of RyR [70,71]
and spatial relationship with mitochondria [72], a potential indirect mechanism presents
itself wherein mitochondrial ROS production alters RyR gating and, consequently, calcium
signaling to interfere with axon growth. This model is supported by experimental evidence
demonstrating that disruption of mitochondrial function affects calcium homeostasis,
which in turn delays polarization of developing neurons and inhibits axonal growth [73].
As we previously reported [23], PBDE inhibition of axonal growth is due in part to delayed
neuronal polarization. The role of RyR as a downstream key event rather than the molecular
initiating event in PBDE developmental neurotoxicity may explain the differential response
of dendrites vs. axons to non-dioxin-like polychlorinated biphenyls (PCBs) vs. PBDEs.
Specifically, in primary rat hippocampal and cortical neuron-glia co-cultures, non-dioxin-
like PCBs were observed to promote dendritic growth, but have no effect on axonal growth,
and the dendrite promoting activity was mediated by RyR sensitization [74,75]. In contrast,
PBDEs were observed to inhibit axonal growth but have no effect on dendritic growth in
the same neuronal cell culture model [23].

In summary, our study provides novel insight into the interplay between ROS, TH,
and axonal growth in PBDE developmental neurotoxicity. Whether PBDE interference with
axonal growth contributes to adverse neurodevelopmental outcomes in vivo is still to be
determined; however, clinical [20,21] and experimental evidence [17–19] demonstrate that
altered spatiotemporal patterns of axonal growth during brain development can cause
functional deficits. Susceptibility to this neurotoxic activity of PBDEs may be enhanced in
populations with heritable mutations that alter mitochondrial and redox signaling, which
are themselves associated with increased risk of neurodevelopmental disorders [76,77].
The finding that T3 protects against axon growth inhibition by BDE-47 and BDE-49 in vitro
suggests that PBDE-mediated TH dysregulation [2,78] also has the potential to amplify
PBDE effects on axonal growth in vivo. Further studies into gene × environment interac-
tions associated with these mechanisms may lead to a better understanding of populations
with increased vulnerability to PBDE developmental neurotoxicity.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics10020092/s1, Figure S1: The antioxidants NAC and α-tocopherol do
not alter axonal outgrowth relative to vehicle control cultures. Primary neuron-glia co-cultures
dissociated from the hippocampi of P0-1 rat pups were exposed to vehicle, N-acetyl cysteine (NAC)
or α-tocopherol. After a 48 h exposure, cultures were fixed and immunostained for tau-1. Axon length
was quantified in tau-1 immunopositive cells (n = 70–90 neurons from three independent dissections).
Data presented as the mean ± SE. No significant differences between groups was detected using one-
way ANOVA (p < 0.05); Table S1: Primer sequences and amplification efficiencies; Table S2: Average
fold changes relative to vehicle of levels of transcripts encoding cellular antioxidants.
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