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Abstract: The liver is considered the major target organ affected by oral exposure to titanium
dioxide nanoparticles (TiO2 NPs), but the mechanism of hepatotoxicity is not fully understood.
This study investigated the effect of TiO2 NPs on the expression profile of long non-coding RNA
(lncRNA) in hepatocytes and tried to understand the potential mechanism of hepatotoxicity through
bioinformatics analysis. The human hepatocellular carcinoma cells (HepG2) were treated with
TiO2 NPs at doses of 0–200 µg/mL for 48 h and then RNA sequencing was implemented. The
differential lncRNAs between the control and TiO2 NPs-treated groups were screened, then the
lncRNA–mRNA network and enrichment pathways were analyzed via multivariate statistics. As
a result, 46,759 lncRNAs were identified and 129 differential lncRNAs were screened out. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the targeted mRNAs of
those differential lncRNAs were enriched in the Hedgehog signaling pathway, Vasopressin-regulated
water reabsorption, and Glutamatergic synapse. Moreover, two lncRNA–mRNA networks, including
lncRNA NONHSAT256380.1-JRK and lncRNA NONHSAT173563.1-SMIM22, were verified by mRNA
detection. This study demonstrated that an alteration in the lncRNA expression profile could be
induced by TiO2 NPs and epigenetics may play an important role in the mechanism of hepatotoxicity.
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1. Introduction

Because of favorable mechanical properties and biocompatibility, nanomaterials have
been applied to many aspects of our life and work, such as biomedicine [1], the food
industry [2], and electronics [3]. The toxicity of nanomaterials has been increasingly
studied [4,5]. Titanium dioxide nanoparticles (TiO2 NPs) are one of the most widely used
nanomaterials. A study detected the titanium particles in a human post mortem liver
and spleen and found that more than 24% of TiO2 was nanoscale [6]. More and more
studies have found that TiO2 NPs can be cytotoxic [7,8] and genotoxic [9]. Oxidative stress
was induced through the stimulating redox interactions, leading to DNA damage and
genomic instability [10,11]. Moreover, there is a growing interest in the in vitro epigenetic
changes induced by TiO2 NPs [12,13]. TiO2 NPs are one of the most commonly used
nanomaterials in food additives, pharmaceuticals, and personal hygiene products, such as
toothpaste [14], so oral exposure is more likely to happen. The liver is a multicellular organ
that plays an important role in activating and eliminating many metabolites; therefore,
the liver is the primary target organ of oral exposure to TiO2 NPs [15–18]. Many in vivo
experiments found that oral exposure of TiO2 NPs can cause liver damage, hepatocyte
necrosis, and liver function damage in mice [19,20]. Moreover, some studies concluded that
acute toxicity of rats with TiO2 NPs induced adverse effects in the liver [21,22]. However,
the key mechanism of hepatotoxicity induced by TiO2 NPs is not been fully understood
and needs further study.
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In addition to cytotoxic and genotoxic effects, nanoparticle-induced epigenetic changes
and the epigenetic mechanisms behind observed toxicity have also attracted increasing
attention. Some studies have found that exposure to nanomaterials can lead to epigenetic
changes [23,24]. Pogribna et al. investigated the effect of TiO2 NP exposure on histone
modifications, a major epigenetic mechanism in human colorectal (Caco-2) and lung (NL20)
epithelial cell lines, and found changes in several histone modifications after exposure to
TiO2 NPs [23]. Epigenetics is an important link between genotype and phenotype and
plays a key role in the regulation of numerous cellular processes. The main mechanisms of
epigenetics include DNA methylation, histone modification, and non-coding RNAs [25].
Non-coding RNAs (ncRNAs) refer to functional RNA molecules that cannot be translated
into proteins, among which common regulatory non-coding RNAs include microRNAs
(miRNAs), PIWI-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs). Many
ncRNAs can regulate gene expression through interactions with other epigenetic processes,
such as histone modification, chromatin remodeling, and DNA methylation [26,27].

LncRNAs are non-coding RNAs whose transcript lengths range from 200 nt to 100 kb
and are one of the key factors in gene transcriptional regulation, affecting all aspects of
cellular homeostasis [28]. LncRNAs affect nearly all fundamental processes in living cells,
including chromatin formation, replication, transcription, splicing, translation, and post-
translational modification, and constitute the richest part of the transcriptional genome [29].
According to the position of lncRNA in the genome to nearby messenger RNAs (mRNAs),
lncRNAs can be divided into the following five types [30]: long intergenic noncoding
RNAs (lincRNAs), natural antisense transcripts (NATs), overlapping, bidirectional, and
sense intronic. LincRNAs are open chromatin structures with transcripts less than 10 kb
in length and do not appear at any protein-coding site [31]. LincRNAs are also the most
numerous of the lncRNA types [32]. NATs are lncRNAs that block splice-site recognition
and recruit epigenetic modifiers [33]. Overlapping transcripts are transcribed in the same
direction as a protein-coding gene and contain one protein-coding gene [32]. Bidirectional
transcripts compete for transcription initiation and promote chromatin modification of
target genes [34]. Sense intronic transcripts are introns derived from a protein-coding gene
and their transcription direction is the same as that of the neighboring protein-coding
gene [30]. A significant amount of evidence suggests that lncRNAs regulate gene expres-
sion in multiple ways on the levels of epigenetic, chromatin remodeling, transcription, and
translation [35] and they are potential biomarkers for diagnosing, prophesizing, and moni-
toring disease progression [36–38]. Because of the lower levels of splicing, polyadenylation,
and nuclear localization, it is more complex to detect and quantify lncRNAs [35].

To fully assess the toxicity of TiO2 NPs, it is critical to assess the epigenetic role of TiO2
NPs. However, there is no report yet to explore the function of lncRNAs in the process of
TiO2 NP-induced toxicity. Therefore, this study treated HepG2 cells with 100 µg/mL TiO2
NPs for 48 h and investigated the changes in lncRNAs.

2. Materials and Methods
2.1. Characterization of Nanomaterials

The TiO2 NPs used in this study were obtained from Shanghai Macklin Biochemical
Co., Ltd. (Shanghai, China). The detailed characterization methods and physicochemical
properties of TiO2 NPs were described in our published paper [39]. JEM–1400 electron
microscope (JEOL Company, Tokyo, Japan) was used to measure the equivalent diameter.
X-ray powder diffractometry (XRD, PANalytical’s X’Pert PRO, X’Celerator, Almelo, The
Netherlands) was used to test the crystal form. Dynamic light scattering instrument
Zetasizer Nano ZS90 (Malvern Instruments Ltd., Malvern, UK) was used to measure the
hydrated particle size and Zeta potential in the serum-free medium containing 1 mg/mL
TiO2 NPs.
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2.2. Cell Culture

Human hepatocellular carcinoma cells (HepG2), obtained from the National Biomed-
ical Experimental Cell Resource Library of China, were routinely cultured in Minimum
Essential Medium (MEM, HyClone, Thermo Scientific, Logan, UT, USA) supplemented
with 10% fetal bovine serum (FBS, Hyclone, Thermo Scientific, Logan, UT, USA), 1% MEM
Non-Essential Amino Acids Solution (100×) (NEAA, Gibco, Thermo Scientific, Logan, UT,
USA), and 2% GlutaMAX-1 (Gibco, Thermo Scientific, Logan, UT, USA). For subculturing
purposes, the cells were digested by 0.25% trypsin and seeded to 96-well plates at a density
of 1 × 104 cells per well or 60 × 15 MM plates with 5 × 105 cells per well.

2.3. Cytotoxicity Assay Study

Cell Counting Kit-8 assay (CCK-8, Biotopped, Dojindo Laboratories, Kumamoto,
Japan) was used to determine the cytotoxicity of TiO2 NPs, based on the measurement of
the amount of methotrexate generated proportional to the number of living cells. After
exposure to 0, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, and 200 µg/mL TiO2 NPs for 48 h,
the cells in the 96-well plate were incubated with CCK-8 solution for 2 h. After collect-
ing the supernatants, a microplate reader was used to detect the value of absorbance
at 450 nm, taking 600 nm as a parameter. The computation formula is as follows: cell
viability = (E − B)/ (C − B). E refers to the experimental hole (containing cell, culture
medium, CCK 8, and different concentrations of TiO2 NPs), C refers to the control hole
(containing cell, culture medium, and CCK 8), and B refers to a blank hole without any
cells and TiO2 NPs.

2.4. Construction of cDNA Libraries and RNA Sequencing

Every control and treatment group set up three repeat samples and then the samples
were collected for RNA extraction. The extracted total RNA was qualified by Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and purified by RNAClean
XP Kit (Cat A63987, Beckman Coulter, Inc., Kraemer Boulevard, Brea, CA, USA) and
RNase-Free DNase Set (Cat#79254, QIAGEN, GmBH, Dusseldorf, Germany).

The purified total RNA was carried out with rRNA removal, fragmentation, first-
strand cDNA synthesis, second-strand cDNA synthesis, end repair, 3′ end plus A, ligation
joint, and enrichment. The cDNA was then sequenced with a high-throughput sequencer
(Illumina Hiseq 2000/2500, San Diego, CA, USA).

2.5. Identification and Quantification of lncRNAs

Gffcompare (version 0.9.8) was applied to identify new transcripts that did not match
known annotations and three types of transcripts were picked out with the conditions
that transcription length was greater than or equal to 200 bp, the number of exons was
greater than or equal to 2, and open reading frame (ORF) was less than 300 bp. Then,
Contrastive Predictive Coding analysis (CPC), Coding-Non-Coding Index (CNCI) analysis,
and Pfam protein domain analysis were performed to predict the lncRNAs. CPC used
supervised machine learning to establish a classification model by learning peptide chain
length, amino acid composition, protein homology, secondary structure, protein alignment,
or expression [40]. Its classification model was mainly based on the characteristics of
sequence ORF length and protein homology; Pfam was a large database of protein family
collections, represented by multiple sequence alignments and hidden Markov models
(HMMs) [41]. The assembled transcript sequence was annotated by the PfamScan tool. If the
sequence matched the Pfam protein database, it was mRNA, and there was no comparison
on lncRNA. CNCI identified coded and non-coding sequences by analyzing adjacent
nucleotide triplets [42]. Then the transcript with CPC score < 0 and CNCI score < 0 and
insignificant results of Pfam was picked out as potential lncRNAs. Finally, it was merged
with the NONCODE data database (version: NONCODE 2016; http://www.noncode.org/,
accessed on 15 November 2020) and the known lncRNAs in the Ensembl database to form
the lncRNA sequence for subsequent analysis.

http://www.noncode.org/
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String tie (version: 1.3.0) was applied to quantify the expression of lncRNA sequences.
Then edgeR was applied for differential lncRNA analysis between samples and the p-value
was corrected through a multiple-hypothesis test, and the q-value was the corrected p-value
by controlling FDR (False-Discovery Rate). The differential expression multiple fold change
was calculated based on the FPKM value. The differential lncRNA filters were as follows:
q-value ≤ 0.05 and fold change ≥ 2.

The structure of lncRNA and mRNA was compared and analyzed by comparing the
differences in transcript length, exon number, and expression level of lncRNA and mRNA.
The difference between lncRNA and mRNA molecules was obtained and the predicted
lncRNA molecules were verified.

Trans regulation and Cis regulation were used for target gene prediction. Cis referred
to how lncRNA regulated neighboring mRNAs (e.g., on the same chromosome) and trans
referred to targets at the distal position of chromosomes after different chromosomes.

Finally, KEGG enrichment (https://www.kegg.jp/, accessed on 15 November 2020)
was used to analyze the target gene analysis of the differential lncRNA. The selected
differentially expressed genes were mapped to each term of the KEGG database, the
number of genes for each entry was calculated, and then a super geometric test was applied
to a threshold of p-value≤ 0.05 after correction by multiple-hypothesis tests, and the KEGG
term that satisfied this condition was defined as the KEGG term that was significantly
enriched in the differentially expressed genes.

2.6. Statistical Analysis

The numerical data were presented as mean ± standard deviation (m ± SD) of at least
three determinations. The statistical analysis was performed by R 3.1.3. A p-value less than
0.05 was defined as statistical significance.

3. Results
3.1. Identification of TiO2 NPs

The TiO2 NPs used in the study were spherical and anatase type. Transmission electron
microscopy (TEM) showed that the equivalent diameter of TiO2 NPs was 25.12 ± 5.64 nm.
The hydrated particle size of TiO2 NPs (1 mg/mL) in a serum-free medium was
323.50 ± 85.44 nm and the zeta potential was −21.00 ± 0.72 mV (Figure 1).
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Figure 1. Distribution of hydration particle size (a) and zeta potential (b) of TiO2 NPs in a serum-
free medium.

3.2. Cytotoxicity of TiO2 NPs in HepG2 Cells

After 48 h exposure, the cell viability decreased gradually with an increase in the
concentration of TiO2 NPs, and the cell viability of the 200 µg/mL group (65.25%) de-
creased significantly compared with the control groups, but because the cell viability

https://www.kegg.jp/
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of the 200 µg/mL group was too low, the final choice was 100 µg/mL (74.16%) as the
concentration of the TiO2 NP treatment groups (Figure 2).
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Figure 2. Effect of TiO2 NPs on the viability of HepG2 cells (mean ± SD, n = 3). Each group set
up three repeat biological samples. HepG2 cells were treated with TiO2 NPs at 0, 1.5625, 3.125,
6.25, 12.5, 25, 50, 100, and 200 µg/mL for 48 h. The cell viability was significantly decreased in the
treatment groups at a concentration of 200 µg/mL. Cell viability did not decrease in a dose-dependent
relationship. Significant difference from the control (* p < 0.05).

3.3. Predictions and Annotations of lncRNA-Seq Data

A total of 46,759 lncRNAs, including known and predicted lncRNAs, was identified.
According to the position relationship of lncRNAs in the genome to nearby mRNAs, the
number of intronic_sense, intronic_antisense, exonic_sense exonic_antisense, intergenic,
and bidirectional RNA was 5089, 1621, 12,782, 9855, 12,829, and 4583, respectively. Further,
27.4% of the lncRNAs were lincRNAs, ranking first. Principal component analysis (PCA)
scoring plots revealed that the control group and the treatment groups were separated,
which represented the difference in lncRNA characteristics (Figure 3).

The length of the lncRNAs was between 32 and 674,512 bp and the median length
was 821 bp. As shown in Figure 4a, lncRNA was slightly shorter than the mRNA (median
length is 953 bp). Approximately 30.3% of lncRNAs contained two exons, while mRNAs
contained several exons from 1 to 363 (Figure 4b). Expression-level analysis showed that
the overall expression level of lncRNA was slightly lower than the expression level of
mRNA (mean 0.31:0.52, Figure 4c).
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Figure 4. Feature comparison of lncRNA with mRNA. Comparative analysis of the length distribution
of lncRNA and mRNA was performed and we found that lncRNA was slightly shorter than the
mRNA (a). Comparative analysis of exon numbers of lncRNA and mRNA was performed and we
found that mRNAs contained a larger range of exons (b). The expression values of lncRNAs and
mRNAs were averaged separately and the box pattern was plotted with the values of both log10
(FPKM + 1) (c). Comparing the expression levels of lncRNAs and mRNAs, it was found that there
was a difference in the expression levels of the two.
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3.4. Analysis of Differential Expression of lncRNA

Finally, 129 differential lncRNAs were screened, of which 65 were up-regulated and 64
were down-regulated (Figure 5a). Among the differential lncRNAs, there was 1 belonging
to intronic sense,1 intronic antisense, 51 exonic sense, 31 exonic antisense, 33 intergenic,
and 12 bidirectional, respectively (Figure 5b). The cluster heat maps of the differential
lncRNAs in the TiO2 NP treatment groups compared with the control group are shown in
Figure 5c, suggesting that the effect on lncRNA was different between the treatment and
control groups. According to the expression profile of lncRNAs in human tissues in the
NONCODE database, the up-regulated lncRNAs were mainly expressed in the testes and
placenta and the down-regulated lncRNAs were mainly expressed in the adrenal, kidney,
and brain.
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Figure 5. lncRNA differential expression analysis of TiO2 NPs with concentrations of 0 and
100 µg/mL. A volcanic map of differentially expressed genes in the treatment group showed the
number of up-regulated and down-regulated genes (a). The histogram of the relative expression of
differential lncRNAs was drawn and showed that the lncRNAs belonging to the exonic-sense class
counts had the highest proportion (b). A heat map of cluster analysis between the treatment group
and control group demonstrated their characteristic difference (c).
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3.5. Enrichment Analysis of Differential lncRNA Target Genes

The target gene of differential lncRNA was intersected with mRNA. As a result, the
lncRNA NONHSAT173563.1 was down-regulated and the matching mRNA SMIM22 was
up-regulated (p < 0.05). The lncRNA NONHSAT256380.1 was down-regulated and the
matching mRNA JRK was down-regulated (p < 0.05) (Figure 6a). The changes in the two
matching mRNAs were statistically significant.
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Figure 6. Pathway analysis of TiO2 NPs with concentrations of 0 and 100 µg/mL. A bar graph of
differential lncRNAs numbers in different pathways of KEGG was drawn (a). A KEGG enrichment
analysis bubble plot was drawn in the descending order of q value corresponding to each entry in the
TiO2 NP treatment group (b). The relative content of the two lncRNAs and corresponding mRNAs in
the TiO2 NP treatment and the control group was drawn in a histogram (* p < 0.05) (c).

KEGG enrichment analysis was performed on the intersecting gene. The results showed
that the Hedgehog signaling pathway, Vasopressin-regulated water reabsorption, and Glu-
tamatergic synapse were the three most significant pathways of enrichment (q < 0.05)
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(Figure 6b,c). In the Hedgehog signaling pathway, NONHSAT041057.2, NONHSAT091417.2,
NONHSAT250525.1, NONHSAT056661.2, and MSTRG.32312.1 changed.

4. Discussion

TiO2 NPs are exposed to the human body through many pathways and have adverse
effects on human health. Moreover, the liver is the target organ of oral exposure to TiO2
NPs. The objective of this study was to analyze the effects of TiO2 NP exposure on the
expression profile of lncRNAs and we tried to understand the potential mechanism of
hepatotoxicity through bioinformatics analysis. Through the differential lncRNA analysis
and lncRNA–mRNA network, we found that TiO2 NPs could induce a change in the
expression profile of lncRNAs and may interfere with the Hedgehog signaling pathway
and Glutamatergic synapse, eventually leading to hepatotoxicity.

From the CCK-8 assay, TiO2 NPs can be slightly toxic to human liver cells. However,
many researchers have found that hepatotoxicity is one of the target organ effects of oral
exposure to TiO2 NPs [17,43]. Geraets et al. [43] investigated the tissue distribution and
blood kinetics of various TiO2 NPs in rats and found that the liver was identified as the
main target tissue, followed by the spleen and lung. Another study found that the liver
was the tissue most sensitive to TiO2 NP-induced oxidative stress [44]. Many in vivo
studies have found that TiO2 NPs may produce ROS and promote oxidative stress and liver
inflammation [44–46]. Sprague-Dawley rats were orally exposed to 0, 2, 10, and 50 mg/kg
TiO2 NPs for 90 days and were found to induce tissue-specific oxidative stress and elemental
imbalance in the liver [44]. In addition, many in vitro studies have found that TiO2 NPs
can induce damage to hepatocyte line cells [47]. Current major toxicity mechanisms may
exert cytotoxic effects on the structure and function of the liver by inducing oxidative stress,
inflammation, and apoptosis [16,48,49]. Oxidative stress, considered a common mechanism
of the toxicity in NPs, can damage lipids, carbohydrates, proteins, and DNA, ultimately
leading to hepatotoxicity [50]. Azim et al. treated mice with anatase TiO2 NPs (21 nm,
150 mg/kg/day) for 2 weeks and then added three kinds of antioxidants (idebenone,
carnosine, and vitamin E) for 1 month. They finally found that TiO2 NPs significantly
injured liver function and can be alleviated after the use of antioxidants [49]. This study
attempted to further understand the new mechanism of hepatotoxicity from the perspective
of epigenetics and found that lncRNAs may play an important role.

In the study, some changes in lncRNAs and changes in the mRNAs matched with
differential lncRNAs occurred, with statistical significance, implying that epigenetics may
play a role in hepatotoxicity. Epigenetics is an important link in the regulation of genotype
and phenotype. The regulation and dysregulation of genotype and phenotype often lead
to the occurrence of diseases and have long-term negative effects. According to the 3R
principle, epigenetics is also gradually being used in the toxicity study of nanomaterials.
Some studies have also found that, in addition to genetic and cytotoxic effects, they can
also affect the epigenome of target cells [23,51]. Lu et al. exposed human and murine
macrophages (THP-1 and RAW264.7, respectively) and human small-airway epithelial
cells (SAECs) to environmentally relevant concentrations of TiO2 NPs, resulting in modest
alterations in DNA methylation [51]. Another study also found that low concentrations of
TiO2 NPs can alter the enzymes responsible for epigenetic modifications [52]. Because their
concentrations are well below sublethal levels, changes in DNA methylation can serve as
good biomarkers of early exposure to TiO2 NPs. Therefore, epigenetic studies are critical
for a complete assessment of potential risks from nanoparticle exposure.

In recent years, lncRNAs have become an important class of regulators of gene ex-
pression and epigenetic regulation [53]. Some reports found that lncRNAs play a role in
cell-cycle regulation, apoptosis, and the establishment of cellular identity [54,55]. Changes
in the expression of lncRNAs have been proven to be linked with cancer (e.g., prostate
cancer) and several neurological disorders [31,56]. One study proposed that the use of
electrochemical nucleic acid sensors is very sensitive to lncRNA HULC detection, providing
a new alternative for clinical HCC diagnosis [57]. The study did find that certain lncRNAs
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(such as NONHSAT256380.1 and NONHSAT173563.1) showed remarkable changes, which
may be prevalent to the hepatotoxicity of TiO2 NPs. Therefore, lncRNAs can help to study
the mechanism of hepatotoxicity in more depth and explore the role of epigenetic regulation
in hepatotoxicity.

In addition, small integral membrane protein 22 (SMIM22, CASIMO1), matched
with the up-regulated lncRNA (NONHSAT173563.1), has been shown to play a key role
in carcinogenesis, cell proliferation, and cell lipid homeostasis [58]. The depletion of
Jrk helix-turn-helix protein (JRK, JH8, jerky), matched with the down-regulated lncRNA
(NONHSAT256380.1), inhibits the transcriptional activity of β-catenin and reduces cell pro-
liferation, and it has been validated for carcinogenic effects in primary tumors [59]. From
the result of KEGG enrichment analysis, TiO2 NPs could interfere with the Hedgehog sig-
naling pathway, which played a key role in tissue development and dryness. The imbalance
in the Hedgehog signaling pathway was present in many different tumors, such as skin,
brain, liver, and gallbladder [60]. There are three homology genes for Hedgehogs in mam-
mals: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH) [61].
Hedgehog signaling is controlled by two receptors, Patched (Ptc) and Smoothened (Smo),
on the membrane of the target cell [62]. These unique signaling molecules are highly
expressed in most malignant tissues and have been considered biomarkers for progression
and prognosis [63,64]. Additionally, many in vitro studies have found that chronic liver
damage or liver cancer may activate the sonic hedgehog (SHH) pathway [65,66].

The main advantage of this article is the use of epigenetics to study the alterations in
the lncRNA expression profile induced by TiO2 NPs in hepatotoxicity. In the future, the
influence of oral exposure to nano-titanium dioxide on epigenetics and related mechanisms
can be further studied. However, this study also has some drawbacks. Firstly, this study
lacks more in-depth studies on screened lncRNAs and, secondly, the verification of this
study is at the mRNA level, so there is a lack of PCR verification at the lncRNA level.
Therefore, we will next conduct more in-depth studies on differential lncRNAs, such as
knocking out relevant genes to study their impact on subsequent functions. We will also
further focus on the effects of apoptosis or genetic damage of TiO2 NPs.

5. Conclusions

The present study focused on alterations in the lncRNA expression profile in HepG2
cells after exposure to TiO2 NPs and its potential role in the mechanism of hepatotoxicity. It
was demonstrated that exposure to TiO2 NPs could induce a series of differential lncRNAs,
represented by lncRNA NONHSAT256380.1 and lncRNA NONHSAT173563.1. Meanwhile,
the target gene analysis indicated that these differential lncRNAs may be involved in
hepatotoxicity by interfering with the Hedgehog signaling pathway. Two lncRNA–mRNA
networks, including lncRNA NONHSAT256380.1-JRK and lncRNA NONHSAT173563.1-
SMIM22, were verified. It was suggested that epigenetics may play an important role in
the mechanism of hepatotoxicity induced by TiO2 NPs.
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