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Abstract: The synthesis of a photo-catalyst with a narrow bandgap and efficient capability to degrade
contaminants in the presence of sunlight is currently challenging but exciting. In this work, an
efficient photocatalytic ternary nanocomposite g-C3N4/Cu@CdS has been synthesized successfully
by using the co-precipitation method. The synthesized composite was then characterized by SEM,
XRD studies, EDX analysis, and ultra-violet-visible (UV-VIS) spectroscopy. The catalytic efficiency
for the methylene blue (MB) dye and drug degradation (ciprofloxacin) was assessed by UV-visible
absorption spectra. Gram-positive and Gram-negative bacteria were used to test the fabrication
composite’s antibacterial properties. Various compositions (1%, 3%, 5%, 7%, and 9%) of/Cu@CdS
nanocomposite (NCs) and 20%, 30%, 40%, 50%, and 60% of g-C3N4 NCs were prepared. Results
reveal that 5%Cu@CdS and 40%g-C3N45%Cu@CdS showed maximum antibacterial activity and
photocatalytic degradation of dye and drug. The X-ray pattern showed no remarkable change in
doped and pristine CdS nanoparticles (NPs). The efficient photocatalytic degradation activity of the
fabricated ternary nanocomposite against MB dye and ciprofloxacin an antibiotic drug makes it a
viable contender for solving environmental problems.

Keywords: ternary nanocomposite; antibacterial activity; catalytic degradation; methylene
blue; ciprofloxacin

1. Introduction

In recent years, semiconductor photo-catalysis has attained much attention because of
its ability to use light energy to drive catalytic reactions. The application of photo-catalyst
technology is needed to compete with the environmental pollution and energy shortage
problems [1–4]. TiO2 is considered to be the first and most investigated semiconductor, first
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studied by Fujishima. The drawback was that the TiO2 semiconductor works efficiently only
with UV (ultraviolet) radiation and thus cannot be used in solar-driven applications. For
increasing the efficiency of TiO2 semiconductors, TiO2 was doped with various metallic and
non-metallic elements. The resulting dopants, therefore, do not enhance the photocatalytic
activity to a much greater extent [5–7]. The development of a photo-catalyst that is stable,
abundant, and performs an efficient catalytic activity with visible light is still a challenge of
great interest for researchers.

Nowadays, due to exponential population growth, the availability of fresh drinking
water has become one of the most concerning worldwide problems [8]. Moreover, drastic
industrial development has resulted in the release of untreated waterborne contaminants,
including natural organic matter, antibiotics, heavy metal complexes, and microorgan-
isms [9]. Over 7 × 105 to 1 × 106 tons and 100,000 types of various dyes are produced
globally each year for use in industries such as leather and textile fabrics, paper printing,
synthetic polymers, paints, and pigments [10]. About 10 to 15% of total dyes produced
are discharged as waste, either into industrial effluents or the surrounding environment.
These pollutants eventually reach freshwater sources, which cause various health problems
including allergy, dermatitis, cancer, dysfunction of kidneys, and hormonal and repro-
ductive malfunctions in humans [11]. Over the past few decades, researchers have made
strenuous efforts to mitigate the deterioration of this indispensable natural resource around
the world. Advanced photocatalytic oxidation processes employing semiconductors, such
as CdS [12], TiO2 [13–16], and ZnO [17], have attracted the attention of experts because of
their remarkable effectiveness in eliminating water impurities by photo-degradation while
producing no carcinogenic waste [18].

Graphitic carbon nitride(g-C3N4), a polymeric compound comprised of carbon, ni-
trogen, graphene and a minor amount of hydrogen content, has been introduced as a
metal-free photo-catalyst that exhibits solar-driven applications [19] and water purification
applications [20,21]. The use of this organic semiconductor is advantageous because of
its economic feasibility, ease of availability, relatively high stability, and most important
intrinsic visible light response [22–25]. Tian et al. reported different dimensional structures
of g-C3N4 photo-catalyst. For example, 0D quantum dots, 1D nanorods, nanotubes, 2D
nanosheets, and 3D nano-spheres and nano-flowers were designed to investigate photocat-
alytic efficiency [26]. Liao et al. investigated the g-C3N4-based composite photo-catalysts
for HER application [27]. The photocatalytic response can be enhanced by various methods
such as the formation of porous structures, using metal or non-metal elements as doping
materials, and coupling with graphene [28]. In this work, graphene-coupled semiconduct-
ing material was fabricated and its photocatalytic efficiency was examined. Creating a
stable photo-catalyst with a high optical absorption capacity and that exhibits the ability to
improve the separation of photo-generated charges is still challenging [29].

In the past few years, various semiconductor NPSs (CdS, CdSe, ZnSe, CuO, ZnO)
were prepared by using different fabrication techniques [30–35]. Among all of the above
semiconductor nanoparticles, CdS and NPs are of great importance because of their distinc-
tive physical and chemical properties [36]. Cadmium sulfide (CdS) exhibits a wide band
gap, with a band gap energy of 2.42 eV [37]. CdS nanoparticles show high photocatalytic
efficiency for the wastewater treatment and catalytic degradation of dyes (MB). The het-
erojunction semiconductor g-C3N4/Cu@CdS is used as a photocatalyst to investigate the
efficiency of fabricated nanocomposites for dye and drug degradation. Bacterial infections
are one of the most serious health problems that humans face. The growth of infectious
diseases caused by pathogenic strains, the emergence of bacterial antibiotic resistance, and
the development of new bacterial mutations have piqued the interest of researchers who
are looking for new ways to combat these organisms. Another concern connected with
bacteria is biofilm formation, which can lead to serious medical and industrial issues [38].

Herein, we have fabricated a novel cadmium sulfide (CdS)-based heterojunction photo
catalyst composite by co-precipitation and provided a panorama of its photocatalytic
mechanism, photocatalytic and optical properties under different morphologies. To the
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best of our knowledge, a ternary composite with this composition has not been reported
before. Additionally, we have especially emphasized the relationship between the doping
concentrations and photo and antibacterial activity. The percentage composition of the
g-C3N4 substrate in the final composite was also given special attention regarding its
synthesis and properties. SEM, XRD, EDX, and UV-visible spectroscopy were used to
analyze the produced nanocomposite. The novel catalyst series synthesized in this study
may be potentially applied for the treatment of textiles and other industrial wastewater
sources which discharge toxic organic dyes and antibiotic drugs in the effluents.

2. Experimental Work
2.1. Chemicals

Without additional purification, analytical-grade compounds of all types were uti-
lized. In deionized water, the solutions were made. (Cd(Ac)2.2H2O, 98%) and copper
sulfate (CuSO4.5H2O) were obtained from Sigma Aldrich. Urea (NH2)2CO, and thiourea
(NH2)2CS) were obtained from AppliChem, Germany while sodium hydroxide (NaOH)
was acquired from Omicron, China.

2.2. Preparation of the Photo-Catalyst
2.2.1. Synthesis of Graphitic Carbon Nitride g-C3N4

g-C3N4 was synthesized by calcination of urea. About 8–9 g of urea was heated
in a muffle furnace at about 5 ◦C per minute temperature rise until 550 ◦C, and kept at
this temperature for 2 h [39]. The crucible was left in the furnace for cooling to ambient
temperature. An off-white fluffy solid was obtained which was pulverized into a fine
powder and preserved for further use.

2.2.2. Synthesis of Cadmium Sulfide Nanoparticles

The co-precipitation process, which was modified somewhat from that used by
Xu et al., was employed to create CdS NPs [40]. Cadmium acetate dehydrates and thiourea
was used as precursors for Cd and S, respectively. A total of 25 mL of 0.25 M solutions of
CdAc2 were stirred for 20 min with a 0.2 g Polyvinylpyrrolidone (PVP) capping agent for
30 min at 80 ◦C. pH was adjusted at 11–12 using a 4 M NaOH solution. A total of 30 mL
of 0.25 M thiourea solution was added dropwise while stirring strongly at 80 ◦C. Yellow-
colored CdS precipitates were produced, and they were filtered before being repeatedly
washed with deionized water, absolute ethanol, and ethanol. Precipitates were then dried
at 80 ◦C for 2 h. The solid obtained was pulverized to a fine powder.

2.2.3. Synthesis of Copper-Doped Cadmium Sulfide

Chemical doping of CdS was done by adding dopants before the precipitates were
formed. A total of 0.05 M CuSO4 solution was used for doping. The method given in
Section 2.2.2 was repeated by adding 2.5, 7.5, 12.5, 17.5 and 22.5 mL of 0.05 M CuSO4
solution after PVP addition for preparing 1, 3, 5, 7 and 9% of Cu-doped photo-catalyst.

2.2.4. Synthesis of Ternary g-C3N4/Cu@Cds Nanocomposite Photo-Catalyst

g-C3N4, already prepared in 2.2.1, was used in this section. Heterogeneous ternary
composites were synthesized by adding 0.144, 0.246, 0.383, 0.575, 0. 8625, and 1.342 g of
g-C3N4 to obtain the composite with 20, 30, 40, 50, 60, and 70% of g-C3N4, respectively. To
create a fine suspension, these quantities were dispersed individually in deionized water
and agitated for an hour. Method 2.2.3 was followed subsequently. A total of 25 mL of
0.25 M solutions of CdAc2 were added to this suspension with a 0.2 g Polyvinylpyrrolidone
(PVP) capping agent. A total of 12.5 mL of 0.05 M CuSO4 solution was added, followed
by stirring for 30 min at 80 ◦C. pH was adjusted at 11–12 using a 4 M NaOH solution.
30 mL of 0.25 M thiourea solution was added dropwise. Yellow-colored precipitates of
CdS were obtained which were filtered and washed. The formation of g-C3N4/Cu@Cds
nanocomposite is shown in (Figure 1).
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Figure 1. Schematic illustration of synthesis of g-C3N4/Cu@Cds nanocomposite.

3. Characterization

Crystallinity and the crystalline phase composition were analyzed by XRD using an
X-ray diffractometer (XRD, Bruker D2-Phaser, Dublin, Ireland). The morphology of the
fabricated samples was determined by scanning electron microscopy (SEM) and elemental
proportions by energy-dispersive spectroscopy (EDS) using FEI Nova 450 NanoSEM. The
UV-visible spectrophotometer was used to monitor and record dye degradation, which
was used to gauge the photocatalytic performance of the catalysts (Cary 60 UV-Vis, Agilent,
Santa Clara, CA, USA).

4. Photo-Degradation Activity
4.1. Degradation of Methylene Blue

To study the efficiency of the catalysts, photodegradation of the model pollutant
methylene blue (MB) was studied with and without a catalyst. CdS NPs and Cu-doped
(1%, 3%, 5%, 7% and 9%) CdS NPs were individually applied as described in a later
section. Among the composites, (20, 30, 40, 50, 60, 70%) g-C3N4 with 5%Cu@CdS NPs
were evaluated for their degradation activity. To order to achieve adsorption/desorption
equilibrium before exposing to the light, 80 mL of MB solution (20 mg/L) containing 50 mg
of each catalyst was mixed vigorously for 20 min in the dark. Every 20 min, 5 mL of the
sample was taken, centrifuged for 10 min to remove the catalyst, and then a UV-visible
spectrum from 200 nm to 800 nm was acquired.

4.2. Degradation of Ciprofloxacin

Ciprofloxacin (CIP) was used as a model drug to study the photocatalytic degradation
of drug pollutants with and without catalysts. CdS NPs, Cu-doped (1%, 3%, 5%, 7% and
9%) CdS NPs and composites (20, 30, 40, 50, 60, 70%) g-C3N4-5%Cu@CdS NPs) were
evaluated for their photocatalytic activity. A total of 80 mL of CIP solution (25 mgL−1)
was mixed with 30 mg of each of the catalysts and stirred in darkness for 20 min to reach
adsorption/desorption equilibrium between the pollutant and the catalyst. The mixture
was then transferred to Petri dishes before exposure to solar radiation [41]. Every 15 min,
5 mL of each sample was taken, centrifuged for 10 min to remove the catalyst, and then a
UV-visible spectrum from 200 nm to 800 nm was acquired.

5. Antibacterial Activity

The antibacterial activity of the photo-catalysts (CdS, Cu@CdS NPs, g-C3N4, and
g-C3N4-Cu@CdS composite) for Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)
bacteria was carried out using the agar well diffusion approach. The agar well diffusion
method was used to test the antibacterial activity of the photo-catalysts (CdS, Cu@CdS
NPs, g-C3N4, and g-C3N4-Cu@CdS composite) for Gram-positive and Gram-negative
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bacteria [42]. Staphylococcus aureus (Gram-positive) and Escherichia coli were the bacterial
strains employed to test the antibacterial capabilities (Gram-negative). The bacterial strains
came from the PCSIR laboratory facility in Lahore, Pakistan. For the positive control,
ciprofloxacin was utilized as a typical antibiotic, while distilled water served as the negative
control.

6. Results and Discussion
6.1. Scanning Electron Microscope (SEM) Analysis

(Figure 2a–d) represents the SEM images of CdS NPs, Cu@Cds, gC3N4, and g-C3N4/
Cu@Cds nanocomposite. The nanocomposite was synthesized by the co-precipitation
method. The morphology and size of the fabricated nanocomposite were investigated by
SEM (Nova Nano SEM-LUMS). The CdS NPs possess a spherical shape and nanoparticles
were agglomerated. The surface of Cu-doped CdS NPs appears to be smooth and has
a small grain-like shape with irregular growth that may be due to Ostwald ripening.
The graphitic carbon nitride g-C3N4 exhibits a flaky texture and the g-C3N4-Cu@Cds
nanocomposite have a flaky texture.
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Figure 2. SEM analysis of (a) CdS NPs (b) Cu@Cds (c) gC3N4 (d) g-C3N4/Cu@CdS.

6.2. EDX Spectroscopy

EDX is an analytical technique that provides information about the elemental compo-
sition of synthesized materials. When a material is hit by electromagnetic radiation, it emits
X-rays, which were then analyzed by using the EDX technique. The sample is targeted by a
high-energy laser in an EDX instrument. (Figure 3a–c) shows the EDX spectra of gC3N4
CdS NPs, and 40%g-C3N4-5%Cu@Cds nanocomposite. In (Figure 3a) the appearance of
cadmium (Cd) and sulfur (S) peaks show the presence of these elements in CuS nanoparti-
cles. (Figure 3b) indicates the presence of carbon (C) and nitrogen (N) present in graphitic
carbon nitride. (Figure 3c) displays the EDX spectra of/g C3N4/Cu@Cds nanocomposite.
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6.3. XRD and XPS Analyses

All materials’ phases and crystalline structures were determined using XRD analysis.
The virgin and Cu-doped CdS nanoparticles corresponded with the wurtzite structure,
according to the XRD patterns in Figure 4 (cod ref code 96-900-8863) [43]. The almost com-
plete absence of peaks demonstrated that the 5%Cu@CdS nanocomposite structures were
well matched with the hexagonal phase. According to an analysis of the XRD peaks, the
peaks at 2θ = 24.92◦, 26.55◦, 27.85◦, 36.55◦, 43.90◦, and 52.05◦ were produced, respectively,
by the contributions of the (100), (002), (101), (102), (110) and (112) reflection planes. The
CdS photo-diffraction catalyst’s peaks at 2 = 24.860, 26.540, 28.240, 43.890, 47.940, and
51.910 were attributed to contributions from the reflection planes (100), (002), (101), (110),
(103), and (112), respectively. The XRD peaks associated with the (100), (002), (101), and
(112) reflection planes of CdS were identified in the ZnO/CdS photocatalyst at 2θ = 25.17◦,
26.65◦, 28.23◦, and 52.23◦, respectively. Additionally, the effective integration of the Cu
dopant was shown by two diffraction peaks at 2θ = 44.280 and 48.130. The peak intensity
of the doped CdS phase is noticeably stronger as compared to CdS alone, as a few peaks
in pristine CdS are missing. The peak 2θ = 10.63 in the final composite was detected due
to impurity. As seen in Figures S1 and S2, 5% g-C3N4/Cu@Cd nanocomposite formation
and the electronic states of each of its component parts were determined using XPS analy-
sis. The XPS examination further confirmed the results of the SEM and EDX that the 5%
g-C3N4/Cu@CdS included g-C3N4, CdS, and Cu.

6.4. Degradation
6.4.1. Photocatalytic Degradation of Dye (MB)

Figure 5a–c shows how the synthetic Cu-doped CdS nanoparticles combined with
g-C3N4 degraded the standard pollutant methylene blue (MB) under sunshine, respec-
tively. The highest absorption was seen at 662 nm in all spectral graphs. The intensity
of blue dye was decreased initially by adsorption on the catalyst’s surface and further
decreased by photo-degradation [44,45]. A decrease in the intensity of peaks showed that
MB was oxidized to secondary compounds when exposed to sunlight in presence of a
synthesized catalyst. All the samples were exposed to the sun for 120 min, measured to be
an average 90–100 kLux using a Lux light meter, during March and April at the University
of Management and Technology, Lahore (31.4835◦ N, 74.4121◦ E), Punjab, Pakistan.

Figure 5a shows that 5%Cu@CdS nanoparticles proved to be the most efficient cat-
alyst, which decomposed a net 80% of the dye after adsorption. Furthermore, efficiency
was increased by fixing the doped nanoparticles on g-C3N4 to fabricate the composite
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(Figures S3 and S4). The composite 40%g-C3N4/5%Cu@CdS showed 95% MB degradation.
This increase in efficiency is because of a decrease in band gap by adding Cu and making it a
Z-scheme catalyst by merging with g-C3N4. The mechanism of photocatalytic degradation
is shown in (Figure 6).
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6.4.2. Photocatalytic Degradation of the Drug (CIP)

All the samples were exposed to solar radiation for 90 min, measured to be an av-
erage of 80 k Lux using the Lux light meter, during the months of February–March at
the University of Management and Technology, Lahore (31.4835◦ N, 74.4121◦ E), Punjab,
Pakistan. (Figure 7a–c) illustrates the degradation of CIP by the synthesized Cu-doped
CdS nanoparticles and their composites with g-C3N4, respectively. Maximum absorption
was shown at λmax = 270 nm. The concentration of CIP decreased by incident light and
5%Cu@CdS NPs proved to be most efficient among Cu-doped CdS NPs series (59% in
90 min) and 40%g-CN/5%Cu@CdS among composites (76% in 90 min). A decrease in the
intensity of peaks showed that CIP successfully degraded secondary compounds when
exposed to sunlight in presence of a synthesized catalyst.

6.5. Scavenging Activity

For studying the photo-degradation mechanism of MB by the g-C3N4/Cu@CdS cata-
lyst, the role of the species •OH, H+, and, •O2− responsible for the degradation of MB in the
photo-degradation reaction were examined, as given in (Figure 8). To establish the role of
the leading active species, benzoquinone (BQ), isopropanol (IPA), and ammonium oxalate
(AO) was added to remove superoxide (•O2−), the hydroxyl radical (•OH) and holes (h+),
respectively. With the addition of AO to the MB dye solution, the degradation activity of
the 40%g-C3N4/3%Cu@CdS catalyst was reduced to 82% (to 76.8% without scavenger),
whereas the addition of IPA and BQ showed comparatively little reduction (12% and 16%,
respectively) in degradation of MB under the same conditions of light, temperature and
pH of dye solution. This confirmed that the generation of holes (h+) plays a key role in
the degradation of MB. The photo-generated electrons and superoxide radicals are not as
significant as photo-generated holes [46].

Two mechanisms—the “type II-heterojunction” and the “straight Z-scheme”—were
proposed in light of the aforementioned findings (Figure 8). The presence of copper
supported by g-C3N4 has enhanced the charge separation increasing the electron-hole
recombination time. The differences in the standard potential of conduction bands of CdS,
Cu, and g-C3N4 enable the photo-generated electrons to be accommodated in Cu2+ ions.
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6.6. Antibacterial Activity

Stock suspensions of each of CdS, Cu@CdS NPs, g-C3N4, g-C3N4/CdS, and g-CN/
Cu@CdS NCs were prepared in distilled water by ultra-sonication to yield a final con-
centration of 50 mg mL−1, 100 mg mL−1, 150 mg mL−1, and 200 mg mL−1. Suspensions
were stored at room temperature and sonicated once again for 20 min just before adding
to the assay. The reference antibiotic Ciprofloxacin concentration was 1 mg mL−1. The
antibacterial activities were studied using agar well diffusion method. Muller–Hinton agar
plates were prepared for testing antibacterial activity. The prepared inoculum of S. aureus
(Gram-positive) and E. coli (Gram-negative) bacteria was spread on plates. Wells were
made using sterilized steel boring and filled using micropipette with 20 µL of CdS nps in a
concentration of 200 mg/mL, 150 mg/mL 100 mg/mL and 50 mg/mL each. The method
was repeated using Cu@CdS NPs, g-C3N4, g-C3N4/CdS, and g-CN/Cu@CdS NCs. Each
MHA plate was incubated at 37 ◦C for 24 h. After incubation, the zone of inhibition was
measured as shown in Figure 9.
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Figure 9. (a). The antimicrobial activity of; a. 7%Cu@CdS against S. aureus (b). 5%Cu@CdS against
E. coli.

The 5%Cu@CdS showed the greatest antibacterial activity against S. aureus and
7%Cu@CdS was found to be most effective against E. coli bacteria. g-CN/Cu@CdS NCs
showed a weaker action against both G-positive and G-negative bacteria.

7. Conclusions

In summary, g-C3N4/Cu@CdS NCs were successfully synthesized by the chemical
co-precipitation method which showed photocatalytic properties in the visible region
of the light spectrum. The interval of electron-hole pairs recombination of CdS np was
remarkably increased when doped with Cu. Serving as a perfect electron carrier, g-C3N4
gave stability to the doped CdS. The photocatalytic efficiency was maximized, with 95%
degradation of MB in 120 min and 75% of CIP in 90 min, with 40% g-C3N4 contents by
weight. The antibacterial activity of synthesized nanocomposite against S. aureus and
E. coli was studied. The antibacterial study showed that 40%g-C3N4-5%Cu@CdS NCs
and 40%g-C3N4-7%Cu@CdS NCs have significant antibacterial activity against Gram-
positive and Gram-negative bacteria, respectively. The fabricated ternary nanocomposite
40%gC3N4/5%Cu@CdS NCs exhibited superior photocatalytic activity over CdS NPs, g-
C3N4, and 5%Cu@CdS nanomaterials against dye degradation of methylene blue (MB). The
40%g-C3N4/5%Cu@Cds showed 95% degradation of MB as compared to 80% degradation
by 5%Cu@Cds and 26% by pristine CdS NPs in 90 min under the sun. Similar efficiency
was observed in drug degradation (Ciprofloxacin). 40%g-C3N4/5%Cu@Cds reduced the
drug concentration by 76% whereas 5%Cu@Cds and CdS NPs showed up to 59% and 27%
degradation, respectively.



Toxics 2022, 10, 657 11 of 13

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10110657/s1. Figure S1. High-resolution XPS spectra of
5% g-C3N4/Cu@CdS nanocomposite; (a) Cd 3d, (b) S 2p, (c) Cu 2p and (d) C 1s. Figure S2. High-
resolution N 1s XPS spectra of 5% g-C3N4/Cu@CdS nanocomposite. Figure S3. UV-Visible Spectra
of Photocatalytic degradation of Methylene Blue with g-C3N4, CdS NPs, Cu doped CdS NPs (a)
Absorption curves (b) Percentage dye degradation (c) Relative degradation curves C/C0. Figure S4.
UV-Visible Spectra of Photocatalytic degradation of Ciprofloxacin with g-C3N4, CdS NPs, Cu doped
CdS NPs (a) Absorption curves (b) Percentage dye degradation (c) Relative degradation curves C/C0.
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