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Abstract: The treatment of radioactive wastewater is one of the major problems in the current research.
With the development of nuclear energy, the efficient removal of 99TcO4

− in radioactive wastewater
has attracted the attention of countries all over the world. In this study, a novel functional polyamide
polymer p-(Amide)-PAM was synthesized by the two-step method. The experimental results show
that p-(Amide)-PAM has good adsorptive properties for 99TcO4

−/ReO4
− and has good selectivity

in the nitric acid system. The kinetics of the reaction of p-(Amide)-PAM with 99TcO4
−/ReO4

− was
studied. The results show that p-(Amide)-PAM has a fast adsorption rate for 99TcO4

−/ReO4
−, the

saturated adsorption capacity reaches 346.02 mg/g, and the material has good reusability. This new
polyamide-functionalized polyacrylamide polymer material has good application prospects in the
removal of 99TcO4

− from radioactive wastewater.

Keywords: polyacrylamide; polyamidation; 99TcO4
−/ReO4

− removal; polymer adsorption material

1. Introduction

With the advent of international “carbon peaking and carbon neutrality”, advanced
nuclear energy has attracted the attention of countries all over the world, but with the devel-
opment of advanced nuclear energy, the treatment of technetium 99 (99Tc) in nuclear waste
has become a major problem [1,2]. A large amount of radioactive wastewater is produced
in the process of nuclear waste material storage [3]. 99Tc is the most potentially problematic
radionuclide in radioactive wastewater because it decays by emitting β particles, and its
half-life is as long as 2.13 × 105 years [4,5]. 99Tc is a super hydrophilic radionuclide that
mainly exists in radioactive wastewater in the form of 99TcO4

−. 99TcO4
− has high water

solubility (11.3 mol/L, 293.15 K) and almost no complexation properties, resulting in rapid
migration in the environment and thus making it a dangerous radioactive pollutant [6,7].
Therefore, it is of great significance to remove 99TcO4

− from radioactive wastewater.
It has always been a difficult point for researchers to remove and capture 99TcO4

− in
radioactive wastewater under the condition of strong acid, strong alkali, and a large number
of anions [8]. The current research methods for removing and capturing 99TcO4

− in radioac-
tive wastewater can be divided into solvent extraction and solid-phase extraction [9–12].
Compared with solvent extraction, solid phase extraction has a faster extraction rate, better
reusability, simpler operation, and easier separation [13]. Therefore, solid phase extraction
is a method that is widely used and studied in practice, and solid-phase extraction is a com-
monly used adsorbent. The most studied adsorbents are metal-organic frameworks (MOFs)
and covalent organic frameworks (COFs). They have a high specific surface area and many
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pores, so they have high a saturated adsorption capacity for 99TcO4
−, but they are insuffi-

cient for the treatment of 99TcO4
− in environments with high acidity and acidity [14–19].

Ion exchange resins are other polymer materials that have been widely studied. Such resins
can effectively remove 99TcO4

− from radioactive wastewater by anion substitution and can
maintain a good adsorption performance under highly acidic and alkaline conditions. Ion
exchange resins have simple operation and a high recovery rate, but the removal efficiency
and selectivity become very poor in the presence of a large number of competitive anions
(SO4

2−, NO3
−, Cl−, etc.) [20,21]. Some people have also studied the removal of 99TcO4

−

by natural zeolites. They modified natural zeolites with cationic surfactants to convert the
negative charges of the surface framework of zeolites into positive charges, thus enhancing
the affinity for 99TcO4

−. However, the saturated adsorption content of 99TcO4
− on zeolites

is generally low [22,23]. By aminating the functional groups of chitosan, researchers re-
moved 99TcO4

− under high-acidity conditions, but chitosan has the same disadvantages as
zeolite [24,25]. High-molecular-weight polymers are also adsorbents that can effectively
remove 99TcO4

− from radioactive wastewater. Many polymers have been developed and
used to remove 99TcO4

− in radioactive wastewater [26–30]. After polymers are modified
by polyamidation, the polymer can selectively remove 99TcO4

− by electrostatic interaction
or hydrogen bonding [28,31,32]. Polyacrylamide (PAM) is a widely used polymer that
is often used in biomedicine, sewage treatment, and other fields. As an adsorbent, PAM
can effectively remove anions in wastewater. Therefore, the removal of 99TcO4

− from
radioactive wastewater using PAM is also an important research topic [33–35].

99TcO4
− has strong radioactivity, and ReO4

−, which has similar physical and chemical
properties, is used to replace 99TcO4

− in experiments [36]. In this study, a new type of
polyamide-functionalized polyacrylamide polymer material was prepared by a two-step
method, and its adsorption effect on 99TcO4

−/ReO4
− was studied. In a certain range of

pH values, p-(Amide)-PAM has a good effect on the removal of 99TcO4
−/ReO4

−. Under
the influence of different competitive anions, p-(Amide)-PAM has excellent selectivity for
99TcO4

−/ReO4
−. The adsorption kinetics of p-(Amide)-PAM for 99TcO4

−/ReO4
− was

studied, and the material has a fast adsorption rate and high saturated adsorption capacity
(346.02 mg/g). This study provides a new material design direction for the treatment of
99TcO4

− in radioactive wastewater.

2. Materials and Methods
2.1. Materials and Reagents

Polyacrylamide ((C3H5NO)n, PAM, cationic; molecular weight 1800) was purchased
from Beijing Huawei Ruike Chemical Co., Ltd, Beijing, China. Ammonium perrhen-
ate (NH4ReO4, ≥ 99.99%) was purchased from Shanghai Dibo Biotechnology Co., Ltd,
Shanghai, China. Ethylenediamine (C2H8N2, analytical purity) was provided by Shanghai
Aladdin Limited Chemical Reagent Co., Ltd, Shanghai, China. Ammonia (NH3·H2O), nitric
acid (HNO3), and dimethylformamide (C3H7NO, DMF, 0.945 g/mL) were all analytically
pure and were purchased from Sinopharm Chemical Reagent Co., Ltd, Beijing, China. The
ultra-pure water (18.2 m Ω cm) used in this experiment was obtained from a Direct-Q3UV
purification system (Research Water Purification Technology Co., Ltd, Xiamen City, Fujian
Province, China).

2.2. Synthesis of p-(Amide)-PAM

The synthesis process of p-(Amide)-PAM is shown in Figure 1. Step 1: According to
published articles, the p-(Amide)-PAM preparation process was as follows [37,38]: 4.2 g
PAM was added to 30 mL of ethylenediamine at 373 K stirred and heated for 72 h, and the
resulting product was washed 3 times with ethanol. Then, the resulting solid product was
placed in a 353 K vacuum oven for 48 h, and the solid is named N-PAM.

Step 2: Amide acid was synthesized according to the literature [39]. The amide acid
was mixed with N-PAM in 30 mL DMF. The mixture was heated and stirred at 373 K for
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12 h. Then the product was washed 3 times with ethanol before dried at 353 K for 48h,
resulting in a yellow solid powder named p-(Amide)-PAM.
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2.3. Characterization of PAM, N-PAM, and p-(Amide)-PAM

The elemental (C, H, O, and N) contents of PAM, N-PAM, and p-(Amide)-PAM were
determined by elemental analysis (Vario El Cube, Germany) and X-ray photoelectron
spectroscopy (XPS, K-alpha+, U.K.). The surface morphologies of PAM, N-PAM, and
p-(Amide)-PAM were observed by field emission scanning electron microscopy (Apreo
S LoVac, Czech Republic). The surface functional groups in the range of 4000-500 cm−1

were obtained by Fourier transform infrared spectroscopy (FT-IR, Nicolet iS 50, USA). The
specific surface area and porosity of N-PAM and p-(Amide)-PAM were measured by an
automatic specific surface area and porosity analyzer (Quantachrome Autosorb IQ, USA).
FT-IR and XPS were used to analyze p-(Amide)-PAM before and after adsorption of ReO4

−

to explore its potential adsorption mechanism.

2.4. Batch Adsorption Experiments

The original solution of ReO4
− with a concentration of 1000 mg/L was prepared

with ammonium perrhenate, and other desired concentrations of ReO4
− were prepared

by further dilution of this solution. All adsorption experiments were carried out in 15 mL
centrifuge tubes on a constant temperature shaker with a rotational speed of 250 rpm.
The pH value of the solution was adjusted with 0.1 M HNO3 and NH3·H2O. The initial
concentration of ReO4

− was 0–1000 mg/L, the contact time was 0–15 h, the pH value
was 1–14, and the initial pH was 5.5. After adsorption, the liquid was filtered through a
0.22 µm nylon filter. The initial metal concentration and residual metal concentrations of
the samples were determined by inductively coupled plasma optical emission spectrometry
(ICP-OES, Ultima2, France).

The adsorption capacity of the adsorbent was calculated by Qe (mg/g) and removal
rate (R) was calculated by the following formulas (Formulas (1) and (2)):

Qe = (C0 − Ce)×
V
m

(1)

R% =
C0 − Ce

C0
× 100% (2)

where C0 and Ce are the initial concentration and equilibrium concentration (mg/L) of
ReO4

−, Qe is the adsorption capacity at equilibrium (mg/g), V is the volume of the aqueous
phase (L), and m is the mass of the adsorbent (g).
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The Langmuir model and Freundlich model were used to fit the isothermal adsorption
data and are expressed by Formulas (3) and (4) [40]:

Ce

Qe
=

1
KLQmax

+
Ce

Qmax
(3)

ln Qe =
1
n

ln Ce + ln KF (4)

where Ce refers to the concentration of ReO4
− at equilibrium (mg/L), Qmax is the theoretical

maximum adsorption capacity (mg/g), KL is the Langmuir constant (L/mg), and KF
(mg/g (L/mg)1/n) and 1/n are Freundlich constants.

The pseudo-first-order kinetic model and pseudo-second-order kinetic model of ad-
sorption kinetics are expressed by Formula (5) and Formula (6), respectively [41]:

ln(Qe − Qt)= ln(Qe)−k1t (5)

t
Qt

=
t

Qe
+

1
k2Q2

e
(6)

where Ce refers to the concentration of ReO4
− at equilibrium (mg/L); Qe and Qt are the

adsorption capacity (mg/g) of ReO4
− at equilibrium and at time t (min), respectively; and

k1 and k2 are the pseudo-first-order and pseudo-second-order kinetic model constants.

3. Results and Discussion
3.1. Characterizations of PAM, N-PAM, and p-(Amide)-PAM

The scanning electron microscopy pictures of PAM (Figure 2a), N-PAM (Figure 2b),
and p-(Amide)-PAM (Figure 2c) are shown in the figure and their elemental content is
shown in Table 1. It can be seen from the diagram that the morphology of PAM is large
particles that are relatively regular; N-PAM and p-(Amide)-PAM show irregular small
particles after the reaction. By comparing the N2 adsorption-desorption isotherms of N-
PAM (Figure S1a) and p-(Amide)-PAM (Figure S1b), it can be seen that the specific surface
area of p-(Amide)-PAM is 90 times higher than the specific surface area of N-PAM, and
the pores of p(Amide)-PAM (Figure S1c) are microporous. Figure 2d shows the dispersion
of PAM, N-PAM, and p-(Amide)-PAM in water. PAM dissolved in water and formed a
hydrogel while N-PAM and p-(Amide)-PAM were insoluble in water. In the FT-IR spectrum
(Figure 2e), the characteristic peaks of -NH2 at 3345 and 3183 cm−1 are greatly weakened
after the reaction, indicating that most of the -NH2 is involved in the reaction process. The
peak at 1650 cm−1 is characteristic of C=O, and the intensity of the peak of synthesized
p-(Amide)-PAM increases substantially, which indicates that the functional modification
of N-PAM by amide acid was successful. In the XPS wide scan spectrum of N-PAM
(Figure S2a) and p-(Amide)-PAM (Figure S2b), there are N1s, C1s, and O1s spectrum. In the
XPS N 1s spectrum (Figure 2f), the -NH (400.8 eV) peak of p-(Amide)-PAM is significantly
increased, indicating a significant increase in the number of -NH groups on p-(Amide)-
PAM. The binding energies of the modified -NH and C-N increase from 400.5 and 399.0
to 400.8 and 399.2 eV, respectively, indicating that the modification reaction took place on
the amino group [42–44]. These results further indicate that the functional modification of
N-PAM by amide acid was successful.

Table 1. The elemental content of PAM, N-PAM, and p-(Amide)-PAM.

Elemental PAM N-PAM p-(Amide)-PAM

C [%] 45.140 42.667 39.926
H [%] 7.580 8.670 7.559
O [%] 30.577 29.696 36.562
N [%] 16.517 18.994 15.508
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3.2. Adsorption Experiment of ReO4
− by p-(Amide)-PAM

3.2.1. Influence of Different Molar Reaction Ratios

The effect of the amount of amide acid on the removal of ReO4
− in the synthesis of

p-(Amide)-PAM was investigated. Five groups of samples were prepared with the molar
ratios of amide acid to N-PAM of 0.5:1, 0.75:1, 1:1, 1.25:1, and 1.5:1. In Figure 3, the removal
rate of ReO4

− by the intermediate N-PAM is only 29%. The removal rate of p-(Amide)-PAM
significantly improves after the functionalization of polyamides. When the molar ratio of
the reaction is 0.5:1, the removal rate of ReO4

− is the highest (up to 90%). With the increase
in the amide acid molar ratio, the removal rate of ReO4

− by p-(Amide)-PAM decreases.
This may be due to the N-H functional groups of the adsorbents occupying the adsorption
sites of ReO4

−. These results show that the addition of amide acid has an effect on the
removal of ReO4

− by p-(Amide)-PAM, especially when the molar amount of amide acid is
greater than that of N-PAM.

3.2.2. Effect of Initial pH

The effect of p-(Amide)-PAM on ReO4
− removal under acid-base conditions was

explored. In this study, adsorption experiments under different pH conditions were per-
formed, as shown in Figure 4. As the pH increases from 1.3 to 4.0, the removal rate of
ReO4

− by p-(Amide)-PAM gradually increases (from 4% to 80%). When the pH is in the
range of 4.0 to 8.0, the removal rate of ReO4

− by p-(Amide)-PAM is more than 80%. When
the pH is 5.5, the maximum removal rate is 88%. From pH 8.0 to 11.0, the removal rate
of ReO4

− by p-(Amide)-PAM decreases gradually, and the removal rate is only 3% when
the pH is 11.0. In the case of low pH, the removal rate of ReO4

− by p-(Amide)-PAM is
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low, which may be due to the high concentration of NO3
− and the lack of protonation of

-NH on p-(Amide)-PAM. As the pH increases, -NH can protonate to produce a positive
charge, resulting in electrostatic interactions with ReO4

−. In an alkaline environment, OH−

in the aqueous phase will be attracted by protonated -NH, which occupies the adsorp-
tion sites, resulting in a decline in the adsorption effect of ReO4

−. Compared to amino
triazole-modified microcrystalline cellulose microsphere and ionic liquid-MIMDIDOA,
p-(Amide)-PAM can efficiently remove ReO4

− over a wide range of pH values [42,45].
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The dosage of the absorbent was 1 g/L, pH was 5.5, time was 240 min, initial concentration of ReO4
−

was 100 mg/L, and the temperature was 298.15 K.

3.2.3. Influence of Competitive Anions

There are a large number of competitive anions (NO3
−, Cl−, SO4

2−, etc.) in radioactive
wastewater, which will adversely affect the adsorption of ReO4

−. As shown in Figure 5,
when the molar ratio of ReO4

− to competing anions is 1:1, the removal rate of ReO4
−

by p-(Amide)-PAM is 95.7–96.7%. When the molar ratio of ReO4
− to competitive anions

is 1:100, the removal rate of ReO4
− by p-(Amide)-PAM still reaches 60%. The selectivity

of p-(Amide)-PAM may be attributable to its hydrophobic surface and ReO4
− has a rela-

tively low hydration energy (−170 kJ/mol). Compared with other anions such as NO3
−

(−275 kJ/mol) and Cl− (−340 kJ/mol), the hydrophobic surface of p-(Amide)-PAM more
easily adsorbs ReO4

−. In addition, the negative charge of SO4
2− (−1080 kJ/mol) is higher

than that of ReO4
−, and SO4

2− is a more favorable compound for adsorption via electro-
static interactions [28]. According to the research report of existing adsorbents, in the an-
ionic system of SO4

2− or Cl−, the adsorbent is more effective in removing 99TcO4
−/ReO4

−

from radioactive wastewater, but it is interesting that in this work, the effect is better under
the system of NO3

−.
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Figure 4. The pH effect on the removal efficiency for ReO4
− by p-(Amide)-PAM. The dosage of
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− was 100 mg/L, and the

temperature was 298.15 K.

3.2.4. Adsorption Isotherm

In order to explore the adsorption performance, the adsorption isotherm of ReO4
−

by p-(Amide)-PAM (Figure 6a) was tested, and the adsorption isotherm data were fitted
by the Langmuir model (Figure 6b, Table 2) and Freundlich model (Figure 6c, Table 2).
Through the comparison of the two models, the adsorption of ReO4

− by p-(Amide)-PAM is
more consistent with the Langmuir model (R2 = 0.99452), indicating that the adsorption is
monolayer chemisorption on a homogeneous surface. The results show that the saturated
adsorption capacity of p-(Amide)-PAM for ReO4

− is as high as 346.02 mg/g. Compared
with the reported adsorbent materials (Table 3), the saturated adsorption capacity of p-
(Amide)-PAM exceeds that of most adsorbent materials.

Table 2. Fitting parameters of the Langmuir model and Freundlich model.

Models Parameters p-(Amide)-PAM

Langmuir
KL 0.0247

Qmax (mg/g) 346.02
R2 0.99452

Freundlich
KF 25.319
n 2.28

R2 0.95520
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Table 3. Adsorption capacity of 99TcO4
−/ReO4

− by different adsorption materials.

Adsorbent Adsorption Capacity (mg/g) References

p-(Amide)-PAM 346.02 This work
GO-DEADIBA 140.82 [32]

SCU-100 541 [15]
SCU-101 217 [46]
SCU-102 291 [17]
SCU-103 318 [47]
Ag-TPPE 251 [19]
ZJU-X6 507 [18]
3-ATAR 146.4 [42]

DNOA–GO–CS 90.33 [25]
CSN 222 [48]

SCU-CPN-4 437 [30]
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3.2.5. Adsorption Kinetics

The adsorption properties were further explored, and the adsorption kinetics of ReO4
−

by p-(Amide)-PAM were determined (Figure 7a); the data were fitted by a pseudo-first-
order kinetic model (Figure 7b, Table 4) and pseudo-second-order kinetic model (Figure 7c,
Table 4). Figure 7a shows that the adsorption rate is fast during the initial stage of ad-
sorption, more than 80% of ReO4

− is adsorbed in approximately 60 s, and adsorption
equilibrium is gradually reached after 120 s. In the first stage, the rapid adsorption process
is mainly controlled by physical diffusion, and ReO4

− quickly occupies the effective adsorp-
tion sites. The slow adsorption in the second stage mainly depends on chemical adsorption,
which continues until the adsorption equilibrium is reached. Comparing the pseudo-
first-order kinetic model and the pseudo-second-order kinetic model, the adsorption of
ReO4

− by p-(Amide)-PAM is more consistent with the pseudo-second-order kinetic model,
which indicates that the adsorption process is controlled by chemical adsorption such as
surface complexation and metal coprecipitation [49]. The adsorption rate and equilibrium
time of adsorbents are important factors for evaluating the performance of adsorbents,
where a fast rate and short equilibrium time correspond to a good performance. Therefore,
p-(Amide)-PAM has good prospects for the removal of 99TcO4

− in radioactive wastewater.
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model (b) and fitting pseudo-second-order kinetic model (c). The dosage of the absorbent was 1 g/L,
pH was 5.5, time was 0–240 min, initial concentration of ReO4

− was 300 mg/L, and the temperature
was 298.15 K.

Table 4. Fitting parameters of the pseudo-first-order model and pseudo-second-order model.

Models Parameters p-(Amide)-PAM

Pseudo-first-order
k1 0.01037

Qe1(mg/g) 13.279
R2 0.49508

Pseudo-second-order
k2 0.0116

Qe2(mg/g) 228.311
R2 0.99998

3.3. Sorption Mechanism

The sorption mechanism of ReO4
− by p-(Amide)-PAM was studied by XPS and FT-IR.

The comparison of the FT-IR spectra (Figure 8a) before and after the adsorption of ReO4
−

by p-(Amide)-PAM shows a new peak at 903 cm−1 after adsorption, which corresponds to
the stretching vibration of Re-O formed by electrostatic interactions between ReO4

− and
protonated -NH groups [25,27]. Comparing the XPS (Figure 8b) patterns before and after
the adsorption of ReO4

− by p-(Amide)-PAM, the peaks of Re 4f5/2 (47.8 eV) and Re 4f7/2
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(45.4 eV) in Re 4f of p-(Amide)-PAM@Re (Figure 8c) are visible, which indicates that the
removed ReO4

− still exists in the form of ions. In the N 1s pattern of p-(Amide)-PAM@Re
(Figure 8d), the binding energies of -NH (400.2 eV) and C-N (399.3 eV) have changed,
indicating electrostatic interactions between amino groups and ReO4

− after protonation.
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4. Conclusions

In this study, the polymer material p-(Amide)-PAM with polyamide functionalization
was successfully synthesized. The results show that p-(Amide)-PAM has good selective
adsorption properties for 99TcO4

−/ ReO4
−. The removal of 99TcO4

−/ReO4
− by p-(Amide)-

PAM has a relatively wide pH window (3.0-8.0) and maintains an excellent adsorption
performance. P-(Amide)-PAM maintains good selectivity in environments with a large
number of competitive anions (NO3

−, Cl−, SO4
2−), and was best under the NO3

− sys-
tem. P-(Amide)-PAM has a fast adsorption rate (adsorption equilibrium after 120 s) and
high saturated adsorption capacity (346.02 mg/g) for 99TcO4

−/ReO4
−. The predominant

99TcO4
−/ReO4

− sorption mechanism by p-(Amide)-PAM was the electrostatic interac-
tion of amino groups with 99TcO4

−/ReO4. These results all indicate that p-(Amide)-PAM
has good application prospects in the rapid and deep removal of 99TcO4

−/ReO4
− from

radioactive wastewater.
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