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Abstract: The evaluation of exposure to multiple contaminants in a mixture presents a number of
challenges. For example, the characterization of chemical metabolism in a mixture setting remains
a research area with critical knowledge gaps. Studies of chemical metabolism typically utilize
suspension cultures of primary human hepatocytes; however, this model is not suitable for studies of
more extended exposures and donor-to-donor variability in a metabolic capacity is unavoidable. To
address this issue, we utilized several in vitro models based on human-induced pluripotent stem cell
(iPSC)-derived hepatocytes (iHep) to characterize the metabolism of an equimolar (1 or 5 µM) mixture
of 20 pesticides. We used iHep suspensions and 2D sandwich cultures, and a microphysiological
system OrganoPlate® 2-lane 96 (MimetasTM) that also included endothelial cells and THP-1 cell-
derived macrophages. When cell culture media were evaluated using gas and liquid chromatography
coupled to tandem mass spectrometry methods, we found that the parent molecule concentrations
diminished, consistent with metabolic activity. This effect was most pronounced in iHep suspensions
with a 1 µM mixture, and was lowest in OrganoPlate® 2-lane 96 for both mixtures. Additionally,
we used ion mobility spectrometry–mass spectrometry (IMS-MS) to screen for metabolite formation
in these cultures. These analyses revealed the presence of five primary metabolites that allowed
for a more comprehensive evaluation of chemical metabolism in vitro. These findings suggest that
iHep-based suspension assays maintain higher metabolic activity compared to 2D sandwich and
OrganoPlate® 2-lane 96 model. Moreover, this study illustrates that IMS-MS can characterize in vitro
metabolite formation following exposure to mixtures of environmental contaminants.

Keywords: toxicokinetics; chemical mixtures; defined mixtures; human health risk assessment;
nontargeted analyses; microphysiological systems

1. Introduction

Environmental chemicals typically have low solubility in aqueous systems and require
biotransformation to metabolites that are less lipophilic and more readily eliminated. Most
chemical metabolism occurs in two phases [1]. Phase I reactions (e.g., oxidation, reduction,
or hydrolysis) serve to convert lipophilic compounds into more polar molecules by adding
or revealing a polar functional group [2–4]. Phase II reactions involve the conjugation
of metabolites via glucuronidation, sulfation, methylation, or acetylation to create com-
pounds that are much more soluble and, therefore, more easily eliminated [5–7]. Generally,
metabolism leads to the detoxification of xenobiotics by creating inactive metabolites; how-
ever, intermediate products created during metabolism can be toxic and reactive [6,8,9].
Therefore, it is critical to understand and characterize the metabolism of xenobiotics to
better predict potential toxicity.
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Traditional toxicity testing relies on evaluating chemicals on an individual basis. How-
ever, humans are usually exposed to numerous chemicals that exist as mixtures in real
life [10–12]. Exposure to chemical mixtures constitutes a major challenge for risk assess-
ment. Understanding the metabolism of compounds in a mixture setting remains largely
unexplored. Studies to evaluate the cumulative toxicity of mixtures in animal models
are costly and time consuming [13–16]. Additionally, animal data may not accurately
reflect human biokinetics of xenobiotics, which further hinders extrapolation to humans.
Therefore, alternative approaches for the assessment of xenobiotic metabolism associated
with chemical mixtures are needed to better characterize potential hazards to human and
environmental health.

In vitro methods to study xenobiotic metabolism in liver-derived cells can address the
limitations associated with in vivo testing by enabling high-throughput screening at much
lower costs. Traditional assays such as hepatocyte suspensions and 2D cultures have been
widely used for rapid screening and characterization of xenobiotic metabolism [8,17,18];
however, these approaches have limitations. Due to the time-dependent loss of cell function
and viability in suspension assays, the metabolism of low-turnover compounds tends to be
underestimated [17]. In addition, monolayer cultures tend to underestimate the clearance of
high-turnover compounds, likely due to an uptake rate limitation [19]. New approach meth-
ods including multicell-based models such as microphysiological systems of the liver can
potentially overcome the limitations associated with cell suspensions and monolayer cul-
tures [20,21]. Microphysiological systems enable the understanding of complex biological
systems and facilitate chemical screening for toxicity to human health [22–24]. For example,
the OrganoPlate® 2-lane 96 liver model was used for hepatotoxicity screening [23,25]; how-
ever, xenobiotic metabolism studies in this device remain largely unexplored. Therefore,
identifying the utility of the OrganoPlate® 2-lane 96 model for the characterization of
biokinetics merits further attention.

Evaluating the metabolism of xenobiotics through in vitro systems is critical for char-
acterizing toxicokinetics; however, determining the formation of metabolites is equally
important, especially when extrapolating results to in vivo predictions. Traditional meth-
ods to assess in vitro metabolite formation involve targeted analytical methods [26–28].
However, targeted analyses may not detect the presence of metabolites due to sensitivity
issues. Therefore, a more comprehensive approach is needed to detect the presence of
potentially toxic metabolites. Nontargeted analyses through high-resolution mass spec-
trometry enable the rapid characterization of hundreds to thousands of compounds in a
given environmental or biological sample [29]. This approach has been previously shown
to provide a more comprehensive compositional characterization of environmental contam-
inant presence in the environment compared to targeted methods [30]. Recent advances in
analytical tools including ion mobility spectrometry–mass spectrometry (IMS-MS) facilitate
nontargeted analyses in a rapid manner and have shown to be an appealing technique for
nontargeted metabolomics [31,32]. Furthermore, this technique can potentially reveal the
presence of metabolites formed from in vitro studies.

In this study, we utilized three in vitro liver models to evaluate the metabolism of
pesticides in mixtures: suspension, 2D sandwich, and OrganoPlate® 2-lane 96 (Figure 1).
Twenty pesticides were used to create equimolar mixtures (1 or 5 µM, each chemical).
Induced pluripotent stem cell-derived hepatocytes (iHep) were used in each in vitro model.
In addition to iHep suspensions and 2D cultures, the OrganoPlate® 2-lane 96 was used
and included non-parenchymal cells (macrophages and endothelial). Following chemical
exposure, we measured albumin production and cell damage. Next, we determined the
clearance rate for each compound with traditional mass spectrometry methods and IMS-
MS. Additionally, we screened for metabolite formation using IMS-MS. The results of this
study are informative for the assessment of metabolic capacity between traditional in vitro
metabolism models and a novel microphysiological system. Moreover, this study further
illustrates the utility of IMS-MS for rapid screening of xenobiotic metabolites following
exposure to mixtures of environmental chemicals.
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Figure 1. Experimental design. Schematic diagram describing the chemical mixture tested across
different in vitro liver models (suspension, 2D sandwich, and OrganoPlate® 2-lane 96) and types of
chemical analyses used in this study.

2. Experimental Section
2.1. Chemicals

Thirty-five compounds were used in this study as analytes or standards (Table 1) and
were purchased from Sigma-Aldrich (St Louis, MO, USA), Chem Service (West Chester, PA,
USA), or Toronto Research Chemicals (Toronto, ON, Canada). Methanol (Cat No.: 646377),
acetonitrile (Cat No.: 34998), pentane (Cat No.: 34956), diethyl ether (Cat No.: 309966), and
distilled water with 0.1% formic acid (Cat No.: 576913) were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Table 1. Test chemicals and metabolites analyzed in this study.

Chemical CASRN Vendor Purity Catalog No.

Test chemicals (Parent compounds)
Aldrin 309-00-2 Chem Service 97.9% N-11049

DDD-p,p’ 72-54-8 Sigma-Aldrich ≥98% 35486
DDT-o,p’ 789-02-6 Chem Service 99.5% N-12708
DDT-p,p’ 50-29-3 Sigma-Aldrich ≥98% 31041
Dicofol 115-32-2 Sigma-Aldrich ≥98% 36677
Dieldrin 60-57-1 Sigma-Aldrich ≥95% 33491

Endosulfan I 115-29-7 Sigma-Aldrich ≥98% 32015
Endrin 72-20-8 Sigma-Aldrich ≥98% 32014

Heptachlor epoxide B 1024-57-3 Chem Service 99.5% N-12148
Heptachlor 76-44-8 Chem Service 98.6% N-12147

Lindane 58-89-9 Sigma-Aldrich ≥96.5% 233390
Methoxychlor-o,p’ 72-43-5 Sigma-Aldrich ≥98% 36161

Parathion 56-38-2 Chem Service 98.4% N-12819
Trifluralin 1582-09-8 Sigma-Aldrich ≥98% 32061

2,4-Dinitrophenol 51-28-5 Sigma-Aldrich ≥98% 34334
Azinphos-methyl 86-50-0 Sigma-Aldrich ≥95% 45333

Chlorpyrifos 2921-88-2 Sigma-Aldrich ≥98% 45395
Diazinon 333-41-5 Sigma-Aldrich ≥98% 45428

Disulfoton 298-04-4 Sigma-Aldrich ≥98% 45460
Ethion 563-12-2 Sigma-Aldrich ≥95% 45477
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Table 1. Cont.

Chemical CASRN Vendor Purity Catalog No.

Metabolites
2-Amino-4-Nitrophenol 99-57-0 Sigma-Aldrich 96% A70402
4-Amino-2-Nitrophenol 119-34-6 Sigma-Aldrich ≥95% 45946
Azinphos-methyl oxon 961-22-8 TRC ≥95% G855650

DDA-p,p’ 5359-38-6 Sigma-Aldrich 98% 100870
DDE-p,p’ 72-55-9 Chem Service 99.3% N-10875
Diazoxon 962-58-3 TRC ≥95% D416890

Diethylthiophosphate 5871-17-0 Sigma-Aldrich 98% 445177
Diethyldithiophosphate 298-06-6 Sigma-Aldrich 90% D93600
Dimethylthiophosphate 1112-38-5 TRC ≥95% D495418

Disulfoton sulfone 2497-06-5 Sigma-Aldrich ≥95% 45871

Internal Standards
Atrazine 1912-24-9 Sigma-Aldrich ≥98% 45330

Benzo[a]anthracene 56-55-3 Sigma-Aldrich ≥98.5% B2209
Terbutryn 886-50-0 Sigma-Aldrich ≥98% 45677

Mifepristone 84371-65-3 Selleck Chem >99% S2606
Troglitazone 97322-87-7 Sigma-Aldrich ≥98% T2573

2.2. Cell Culture Reagents and Materials

Human-induced pluripotent stem cell-derived hepatocytes (iCell Hepatocytes 2.0,
abbreviated herein as iHep) were purchased from FujiFilm-Cellular Dynamics Interna-
tional (Cat No.: C1023, lot#103934, Santa Ana, CA, USA). iHep plating media consisted of
DMEM/F12 (Cat No.: 21041025, ThermoFisher, Waltham, MA, USA) supplemented with
2% B-27 supplement (Cat No.: 17504044, ThermoFisher), 100 nM dexamethasone (Cat No.:
265005, Millipore Sigma), 25 µg/mL gentamicin (15710072, ThermoFisher), and 20 ng/mL
oncostatin M (Cat No.: 295-OM-010, R&D Systems, Minneapolis, MN, USA). It was used for
pre-differentiation of iHep according to the manufacturer’s protocol. iHep maintenance me-
dia consisted of DMEM/F12, 2% B-27, 100 nM dexamethasone, and 25 µg/mL gentamicin;
it was used for cell culture in the OrganoPlate® 2-lane 96 and in the 384-well plates.

The microfluidic tissue chips used in this study, OrganoPlate® 2-lane 96, were pur-
chased from Mimetas (Leiden, Netherlands). Each device on this 96-well platform contains
one gel channel and one perfusion channel. This configuration enables the culture of
a perfused tubule adjacent to the extracellular matrix (ECM) of choice without a mem-
brane [23]. Black-walled, clear-bottom, tissue culture-treated 96-well (Cat No.: 3603, Corn-
ing, Corning, NY, USA) and 384-well plates (Cat No.: 3765, Corning) were used for 2D cell
culture experiments.

2.3. Preparation of Chemical Mixtures

The pesticides tested in this study were chosen from the ATSDR Substance Priority
List, which contains compounds that are commonly detected at Superfund sites and are
known to be hazardous to human health [33]. Molar-equivalent mixtures were created by
combining all 20 pesticides and diluting them to a final concentration of 1 or 5 µM each.
The final amount of dimethyl sulfoxide (DMSO) in either equimolar mixture (1 or 5 µM)
did not exceed 0.5% v/v.

2.4. iHep Suspension Assays

Suspension assays using iHep were performed as previously detailed [34] with slight
modification. In brief, pre-differentiated iHep were suspended in iHep maintenance
media and adjusted to the cell concentration of 1 × 106 cells/mL. A portion of the cell
working stock was heated at 95 ◦C for five minutes to serve as negative control. Five
hundred microliters of the chemical stock (20 chemicals, 2 or 10 µM each) were spiked in
500 µL of the cell working stock or heat-inactivated cell control to a final cell density of
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5 × 105 cells/mL. Fifty microliters were removed subsequently at 0, 60, 120, and 240 min
to individual 1.5 mL Eppendorf tubes for further sample extraction detailed below. Each
experimental condition was replicated three times.

2.5. iHep Culture in OrganoPlate® 2-Lane 96, 384-Well Plates, and Chemical Treatments

The day when cells were seeded into OrganoPlate® 2-lane 96 and 384-well plates
was defined as Day 0. iHep were cultured in OrganoPlate® 2-lane 96 using the protocol
described elsewhere [23]. Briefly, thawed iHep were seeded at a density 2.5 × 106 cells/well
on a 6-well plate pre-coated with type 1 collagen (657950-005, Greiner Bio-One North
America, Monroe, NC, USA) in iHep plating media. The cells were cultured for 4 h and
unattached cells were removed when the media were replaced with fresh iHep plating
media. The cells were differentiated for 5 days with daily changes in plating media.
The differentiated iHep clusters were collected by centrifugation (200× g, 3 min) and
resuspended into 3.33 mg/mL collagen (Cultrex 3-D Culture Matrix Rat Collagen-I, 3447-
020-01, R&D Systems; 5 mg/mL type 1 collagen, 1 M HEPES, 37 g/L sodium bicarbonate
at a ratio of 4:1:1, respectively) at a density of approximately 8.0 × 106 cells/mL. The
iHep/collagen suspension (2.5 µL/device) was gently injected into the inlet of the gel
channel of each of the 96 devices on the plate using multi-channel electronic pipettor. After
that, the whole plate was placed at 37 ◦C, 5% CO2 for 15 min to allow polymerization of the
type 1 collagen. For negative control, iHep were heated at 95 ◦C for 5 min prior to loading
into OrganoPlate 2-lane 96.

THP-1 monocytes and HMEC-1 endothelial cells were obtained from ATCC (Manassas,
VA, USA). THP-1 monocytes were cultured in RPMI (Cat. No: 30-2001, ATCC) with 10%
fetal bovine serum (Cat. No: 30-2020, ATCC) and 50 nM 2-mercaptoethanol (Cat. No:
M3148, Millipore Sigma, Burlington, MA, USA). THP-1 monocytes were differentiated [35]
into adherent macrophages via treatment with 250 nM phorbol 12-myristate-13-acetate (Cat.
No: 356150050, ThermoFisher) for 48 h prior to seeding into OrganoPlate® 2-lane 96 or multi-
well plates. HMEC-1s were cultured in Molecular, Cellular, and Developmental Biology
(MCDB) 131 medium (Cat. No: 10372019, ThermoFisher) with 10% fetal bovine serum (Cat.
No: 30-2020, ATCC), 2 mM L-glutamine (Cat. No: 30-2214, ATCC), 100 units/mL penicillin-
streptomycin (Cat. No: P0781, Millipore Sigma), 1 µg/mL hydrocortisone (Cat. No: H0888,
Millipore Sigma), and 10 ng/mL epidermal growth factor recombinant human protein
(Cat. No: PHG0314, ThermoFisher). A mixture of HMEC-1s at 40 × 106 cells/mL and
differentiated THP-1s at 3 × 106 cells/mL was prepared in iHep maintenance media. After
that, 2.5 µL HMEC-1/THP-1 cell suspension was injected into the inlets of the perfusion
channel using a multichannel electronic pipettor. The plates were incubated elevated at a
70◦ angle at 37 ◦C, 5% CO2 to allow HMEC-1s and THP-1s to attach to the iHep/collagen
in the gel channel above the phase guide. After 15 min incubation, 50 µL iHep maintenance
media was added into medium inlets and outlets of the perfusion channel and the plates
were incubated elevated at a 70◦ angle at 37 ◦C, 5% CO2 for an additional 45 min. The
plates were then placed on the perfusion rocker platform (Mimetas, Leiden, Holland) set
to cycle every 4 min to a maximum angle of approximately 15◦ to induce gravity-driven
media to flow through the perfusion channel. The media were collected and exchanged
every 1–2 days by aspirating and replacing media from medium inlets and outlets (50 µL
in each).

For evaluation of drug metabolism, iHep co-cultured with THP-1/HMEC in the
OrganoPlate® 2-lane 96 were exposed on days 8 and 12 of culture to either 1 or 5 µM mixture
of 20 pesticides. After chemical exposure, media were collected after 48 h and replaced
with fresh iHep maintenance media. Separate wells were exposed to chemical mixture
on either day 8 or 12 to avoid repeated exposures to the same cells. Each experimental
condition was replicated three times.
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2.6. iHep 2D Sandwich Culture and Chemical Treatments

For the iHep 2D sandwich model, differentiated iHep clusters were collected as
previously described and resuspended into 3.33 mg/mL collagen. The iHep/collagen
suspension (50 µL/well) was pipetted into wells on the 96-well plate. The plate was placed
at 37 ◦C, 5% CO2 for 15 min to allow polymerization of the type 1 collagen gel. After that,
50 µL iHep maintenance media was added into each well, and plates were incubated at
37 ◦C, 5% CO2. The media were exchanged every 1–2 days.

Chemical metabolism was evaluated by exposing cells on days 4 and 8 of culture to
either a 1 or 5 µM mixture of pesticides. One hundred microliters of chemical stock solution
(2 or 10 µM) were added to wells to achieve a final chemical concentration of 1 or 5 µM and
cell density of 1 × 105 cells/well. After chemical exposure, media were collected after 48 h
and replaced with fresh iHep maintenance media. Separate wells were exposed to chemical
mixture on either day 4 or 8 to avoid repeated exposures to the same cells. For negative
control, cell-free wells were used to account for chemical stability in the device during cell
culture and exposure periods. Each experimental condition was replicated three times.

2.7. Functional Assays

Cell culture media were collected after exposure to pesticide mixtures in Organoplate®

96-well plate and 2D sandwich culture then analyzed for a variety of biomarkers. The
ELISA assays for albumin (Cat No.: E88-129, Bethyl Laboratories, Montgomery, TX, USA)
and lactate dehydrogenase (Cat No.: ab102526, Abcam, Cambridge, UK) were performed
using the manufacturer’s instructions.

2.8. LC-MS/MS Analyses

Sample extraction procedures and chromatographic conditions were previously re-
ported in [34]. In brief, each sample (50 µL) was spiked with 10 µL of 10 µM internal
standards, mixed with 100 µL of chilled acetonitrile, and then centrifuged at 10,000× g for
5 min. The supernatant was dried under vacuum using SpeedVac (Savant SPD1010, Beck-
man Coulter, Brea, CA, USA) and reconstituted with 50 µL of aqueous mobile phase prior
to analyses. LC-MS/MS analysis was performed using 1290 Infinity II LC and 6470 triple
quadrupole mass spectrometer (both instruments from Agilent Technologies, Santa Clara,
CA, USA). Sample extract (10 µL) was chromatographed on a ZORBAX SSHD Eclipse
Plus C18 column (3.0 × 50 mm, 1.8 µm, Cat No.: 959757-302; Agilent Technologies) with
a guard column (2.1 × 5 mm, 1.8 µm, Cat No.: 821725-901; Agilent Technologies), and
ionized using electrospray ionization. Analytical response was acquired in both positive
and negative modes.

For positive ion compounds, mobile phases consisted of 0.1% formic acid in water (A)
and 0.1% formic acid in methanol (B) using the following gradient: 2% B held for 1 min, B
increased to 80% by 3 min, B increased to 95% by 4 min, B decreased to 2% by 5 min and
held for 3 min for a total run time of 8 min per sample at a flow rate of 0.4 mL/min. For
negative ion compounds, the LC gradient and flow rate were the same as in positive mode,
except that mobile phase A was water and mobile phase B was acetonitrile.

2.9. GC-MS/MS Analyses

Fifty microliters of media sample were spiked with 10 µL of 10 µM internal standards,
mixed with 50 µL of methanol and 200 µL of pentane: diethyl ether (1:1 v/v), vortexed
briefly, and then centrifuged at 600× g for 5 min. Organic layer supernatants were trans-
ferred to a 2 mL amber vial and concentrated under nitrogen prior to GC analysis. Detection
of analytes was achieved using a 7890B GC and 7010B triple quadrupole mass spectrometer
(both from Agilent Technologies). Samples were injected (1 µL) in splitless mode. Analytes
were separated with a VF-5ms GC column (60 m × 250 µm × 0.25 µm, Cat No.: CP8960;
Agilent Technologies) and ionized using electron ionization. The column head pressure
was set at 21.5 psi (148,237 Pa) with a constant flow rate at 1.2 mL/min using helium gas.
Initial column temperature was held at 70 ◦C for 5 min, increased to 150 ◦C at 50 ◦C/min,
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ramped to 280 ◦C at 4 ◦C/min, and then held for 15 min. The total run time was 42.1 min.
The injector temperature was set at 250 ◦C. The ion source and auxiliary transfer line
temperatures were 300 ◦C. Electron multiplier voltage was set at 1884 V. Ultra-high purity
nitrogen gas was used as the collision gas for all MS/MS experiments, and collision gas
pressure was set at 16.8 psi (115,832 Pa).

2.10. IMS-MS Analyses

All nontargeted analyses were performed using a 6560 IMS-QTOF MS (Agilent Tech-
nologies) as detailed previously [30,36]. All individual standards for pesticide parent
compounds (n = 20) and known metabolites (n = 10) were directly injected in triplicate
into the electrospray ionization (ESI) source (positive and negative mode) and atmospheric
pressure photo-ionization (APPI, negative mode only) to obtain collision cross section
(CCS) and mass-to-charge ratio (m/z) values. Blanks were injected between standards to
reduce the likelihood of carryover. For sample analyses, ESI was chosen as the optimal
source to detect analytes in either positive or negative mode. During IMS-MS analyses, ions
were passed through the inlet glass capillary, focused by a high-pressure ion funnel, and
accumulated in an ion funnel trap. Next, ions were pulsed into the 78.24 cm-long IMS drift
tube filled with nitrogen gas at a pressure of approximately 3.95 torr (527 Pa). Ions exiting
the drift tube were refocused by a rear ion funnel prior to quadrupole time-of-flight (QTOF)
MS detection. Detailed instrumental settings in ESI mode can be found in Table S1. Prior to
instrumental analysis, the IMS-MS was tuned and a mass calibration was performed using
Agilent Tune Mix from the manufacturer (Cat No.: G2421-60001, Agilent Technologies).

2.11. Determination of Intrinsic Clearance

In vitro hepatocyte clearance (Clin vitro) of each chemical was estimated by substrate
depletion approach assuming first-order kinetics for compound elimination [37]:
Clin vitro = kV/N, where k = first-order elimination rate constant, V = incubation volume,
and N = number of cells in the incubation. Clin vitro was further scaled up to the intrinsic
hepatocyte clearance (Clint) according to the equation [38]:

Clint = Clin vitro × HPGL × Vl (1)

where HPGL = hepatocytes per gram liver (137 × 106 cells/g) and Vl = volume of the
whole liver (1820 g).

2.12. Statistical Analyses

General descriptive statistical analyses were conducted using GraphPad Prism 9.0 (San
Diego, CA, USA). Statistical significance (p < 0.05 was selected as a threshold) was tested
with one-way ANOVA with Dunnett’s multiple comparisons test, or two-way ANOVA
with Tukey’s multiple comparisons test as indicated in figure legends.

3. Results

The metabolism of pesticides in a mixture was evaluated through traditional (sus-
pension and 2D sandwich cultures) and novel (OrganoPlate® 2-lane 96) in vitro models
using based on pluripotent stem cell-derived hepatocytes (iHep). The mixtures consisted
of 20 pesticides where each individual compound was the same concentration (1 or 5 µM).
Following chemical exposure, targeted and nontargeted analyses were performed (Figure 1).
Additionally, hepatic biomarkers including albumin production and lactate dehydrogenase
leakage were evaluated in 2D sandwich cultures and OrganoPlate® 2-lane 96.

3.1. Liver Function Comparison between 2D Sandwich and OrganoPlate® 2-Lane 96

iHep were pre-differentiated and then cultured for up to 10 days in 2D sandwich cul-
tures and for up to 14 days in OrganoPlate® 2-lane 96. Additionally, OrganoPlate® 2-lane 96
included THP-1 monocyte-derived macrophages and HMEC-1 endothelial cells. Sandwich
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cultures and OrganoPlate® 2-lane 96 each had two 48 h exposure periods. Sandwich cul-
tures were exposed on days 4 and 8 of culture while OrganoPlate® 2-lane 96 were exposed
on days 8 and 12 of culture. Following the first exposure period in both models, media
were collected and analyzed for hepatic biomarkers, albumin, and lactate dehydrogenase
(Figure 2). Albumin production was lower in sandwich cultures (Figure 2A) as compared
to OrganoPlate® 2-lane 96 (Figure 2B). On average, albumin production in all three test-
ing conditions (vehicle and two mixtures) was about 50% less in sandwich compared to
OrganoPlate 2-lane 96. Overall, albumin production in both models was comparable to
previous studies. In OrganoPlate 2-lane 96, iHep function was close to the lower range
of albumin production levels in human liver [21] and higher than previously reported in
this model [23]. For sandwich cultures, lower albumin production is expected [24]. Cell
viability, as indicated by LDH release, was similar for vehicle and 1 µM mixture in sandwich
cultures, but there was approximately a 12% decrease in live cells in the 5 µM mixture
(Table S2). OrganoPlate® 2-lane 96 exhibited a concentration-dependent decrease in cell
viability with an average of 60% viability after exposure to the 5 µM mixture (Table S2). In
both models, there was a significant decrease in albumin production in the 5 µM mixture
conditions. Even though no increased LDH leakage was observed in sandwich cultures,
a small, but significant, increase in LDH release was detected in OrganoPlate® 2-lane 96.
Thus, we concluded that due to some disruption in cell viability and functionality in the
5 µM condition, the data on chemical metabolism were most informative for the 1 µM
experimental condition and subsequent figures present data from this arm of the study,
and the other mixture data are presented in Figure S1.
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3.2. Liver Metabolism Assessment through Targeted Mass Spectrometry Analyses

Following chemical treatments, media were collected in all three in vitro liver models
and analyzed for the presence of all 20 pesticide parent compounds with targeted methods,
which included liquid chromatography and gas chromatography coupled with tandem
mass spectrometry (LC-MS/MS and GC-MS/MS). All 20 compounds in 1 µM equimolar
mixtures were cleared at a rate of less than 1 µL/min/106 hepatocytes in sandwich culture
and OrganoPlate® 2-lane 96 (Figure 3A). In suspension cultures, a majority of compounds
were metabolized at approximately 1 µL/min/106 hepatocytes. However, six compounds:
2,4-dinitrophenol, azinphos-methyl, disulfoton, diazinon, chlorpyrifos, and ethion were
cleared at higher rates ranging from approximately 5 to 14 µL/min/106 hepatocytes.
Overall, compounds with a lower octanol–water partition coefficient (log P) showed higher
clearance compared to the more lipophilic compounds in suspension.
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In addition, Figure 3A plots clearance data reported in httk using suspension cultures
of cryopreserved primary human hepatocytes; in those experiments, each chemical was
tested individually at 10 µM. For 15 out of 18 compounds, httk data are far higher with
respect to hepatocyte clearance values than those obtained in this study; it is unlikely
that this difference is due to the use of iHep rather than primary human hepatocytes
because we previously reported that hepatic clearance of these compounds in a mixture
setting is generally far lower than that tested in single chemical experiments [34]. Next, we
visualized a comparison of clearance rates for each chemical in 1 µM mixtures between
in vitro models used in this study and a 3D plot, where axes represent each model tested
(Figure 3B). Overall, this figure reveals a cluster of compounds that were cleared by iHep
in suspension, but little metabolic clearance was observed in two other models (Figure 3B).
The data for hepatic clearance using the 5 µM mixture are shown in Figure S1; however,
these data shall be interpreted with caution because of the loss in functionality and lactate
dehydrogenase leakage indicative of the loss of viability (Figure 2).

3.3. Comparison of In Vitro Hepatocyte Clearance Values Obtained from Targeted and
Nontargeted Analyses

Prior to starting cell cultures and subsequent chemical exposure, analytical standards
for all 20 parent compounds and 10 metabolites were analyzed using IMS-MS through direct
injection and with an electrospray ionization source. Following IMS-MS analyses, ions for
all compounds were searched by using potential mass-to-charge ratios (m/z) from common
forms of ionization including the addition/removal of protons, addition of sodium, or
addition of ammonium. Twelve parent compounds and eight metabolites were detected
and IMS collision cross section (CCS) values were collected to enhance feature matching
(Table 2). From the list of twelve parent compounds and eight metabolites detected with
IMS-MS, the conversion of 2,4-dinitrophenol to its major metabolite 2-amino-4-nitrophenol
is shown as an example (Figure 4A). Direct injection of analytical standards in IMS-MS
generates drift time peaks and a careful review of the peaks provides additional confidence
in identifying each feature (Figure 4B). Additionally, spectra for m/z vs. IMS drift time are
generated to further confirm the presence of each feature (Figure 4C).

Table 2. Chemicals detected with IMS-MS.

Chemical Parent Compound(s) m/z CCS

2,4-Dinitrophenol - 183.01 127.81
Azinphos-methyl - 339.99 169.57

Disulfoton - 297.02 165.2
Chlorpyrifos - 371.91 172.35

Ethion - 406.98 180.81
Heptachlor epoxide B - 386.82 177.49

Trifluralin - 336.12 161.69
Diazinon - 327.09 174.89

Endosulfan I - 404.82 175.19
Dieldrin - 378.88 160.76
Aldrin - 361.88 157.56

DDD-p,p’ - 316.95 170.62

Metabolites
2-Amino-4-nitrophenol 2,4-Dinitrophenol 153.03 116.54
4-Amino-2-nitrophenol 2,4-dinitrophenol 153.03 117.87
Azinphos-methyl oxon Azinphos-methyl 324.02 177.67

DDA-p,p’ DDD-p,p’ 278.98 152.46
Diethylthiophosphate Diazinon, Chlorpyrifos, Ethion 171.02 129.33

Diethyldithiophosphate Ethion 187.00 135.08
Dimethylthiophosphate Azinphos-methyl 142.99 113.21

Disulfoton sulfone Disulfoton 307.03 156.79
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of 2,4-DNP and major metabolite, and correlation of pesticides detected by targeted and nontargeted
analyses: (A) Schematic of 2,4-DNP metabolism via sequential nitro group reduction to major
metabolite, 2-amino-4-nitrophenol. (B) IMS-MS drift time vs. abundance (counts) chromatograms
for 2,4-DNP (left panel) and 2-amino-4-nitrophenol (right panel). Data shown were generated by
running analytical standards to obtain IMS drift time. (C) Plotted are IMS-MS drift time vs. mass-to-
charge ratio spectra for 2,4-DNP (left panel) and 2-amino-4-nitrophenol (right panel). Drift time and
mass-to-charge ratios were obtained by testing analytical standards. (D) Pair-wise ranked correlation
(Spearman) plot of pesticides detected by targeted and nontargeted analyses (n = 12). For targeted
and nontargeted analyses, each compound was ranked from highest (1) to lowest (12) in terms of
in vitro clearance of 1 µM mixture in iHep suspension. 2,4-DNP is denoted by the black triangle.
Spearman (ρ) correlation value is shown in the graph with corresponding p-value. Red dotted line is
a unit line. All data values for targeted and nontargeted clearance and ranked correlation analysis
can be found in Table S4.

Following chemical exposure, media were collected from each in vitro model, and then
chemical extractions were performed. Targeted analyses revealed that a 1 µM mixture in
the suspension of iHep showed the greatest metabolic capacity for a few select compounds
(Figure 3). Following targeted analyses, IMS-MS was used for nontargeted screening. Our
data revealed the presence of twelve parent compounds from each of the in vitro assays.
Characterization of chemical metabolism with 1 µM mixture suspension was determined by
calculating in vitro hepatocyte clearance for each parent compound. Correlation analysis
revealed significant concordance between targeted and nontargeted methods (Figure 4D).

3.4. Metabolite Detection Using IMS-MS Nontargeted Analyses

The results from the targeted analyses showed that a 1 µM mixture in the suspension
of iHep had the highest metabolic capacity among all in vitro models and test conditions.
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A subset of five compounds was chosen for nontargeted screening that previously showed
high levels of metabolism in suspension culture: 2,4-dinitrophenol, azinphos-methyl,
disulfoton, chlorpyrifos, and ethion. IMS-MS analyses revealed these five compounds
displayed high levels of metabolism through nontargeted methods (Figure 5A), similar to
the findings with targeted analyses (Figure 3). Furthermore, we used m/z and CCS values
obtained from testing standards to screen for the presence of metabolites associated with the
five parent compounds. IMS-MS analysis allowed the detection of five metabolites that were
previously missed by targeted screening (Figure 5B). Our data indicated a time-dependent
formation of each metabolite where the highest abundance for each feature occurred at
the latest time point in the suspension assay. Lastly, we compared the abundance of each
parent compound and associated metabolite to the abundance of the corresponding parent
compound in our control experiments to estimate mass balance (Figure 5C). The percent of
total abundance for parent compounds ranged from 34 to 53%. The metabolite percentage of
total abundance varied from 9 to 47% while the remaining portion of “other” spanned from
9 to 57%. It is important to note that certain metabolites including diethylthiophosphate can
be generated from more than one parent compound present in the chemical mixture [39,40].
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4. Discussion

Understanding the metabolism and hepatic clearance of environmental chemicals is
crucial to characterizing potential toxicities to human health. Traditional in vivo models
can provide abundant metabolism information for xenobiotics [41,42]. However, there
are major ethical and logistical concerns regarding the use of animals for toxicity studies,
particularly given the number of chemicals that need evaluation [43,44]. To bypass these
limitations, in vitro cultures of hepatocytes in various configurations and platforms can
be used for rapid, high-throughput screening of xenobiotic compounds [45–47]. Two
current in vitro liver models to assess metabolism include hepatocyte suspension and
sandwich culture [18,48]. Suspension cultures offer several benefits such as being fairly
high-throughput, retaining high levels of enzyme functionality (similar to in vivo), and
typically yielding better estimates of clearance compared to monolayer cultures [17,49].
Nonetheless, suspension cultures also have limitations that include the loss of cell-to-cell
interactions, short-term viability (4 h or less), and loss of cellular polarity [50,51]. The
benefits of sandwich cultures include the restoration of in vivo hepatocyte polygonal
morphology, prevention of decline in cell viability, and functional bile canaliculi [52,53].
However, there are disadvantages associated with long-term sandwich cultures such as
loss of liver-specific functionality and decline in metabolic enzyme activity [54,55].

The shortcomings of traditional in vitro liver models have directly led to the devel-
opment of novel 3D platforms known as liver microphysiological systems [56,57]. These
devices utilize microfluidic technology to mimic the in vivo microenvironment of the liver,
they often consist of microchannels that connect chambers to facilitate culture medium
perfusion [58]. Additionally, these devices are designed for co-culture conditions, which al-
lows investigators to add supporting cells that can enhance hepatocyte function [45,59]. As
a result of improving hepatocyte function and phenotype, liver microphysiological models
show great promise for in vitro studies of the liver metabolism and toxicity [60]. These
improvements have shown that liver-centric devices can predict clearance, toxicity, and
mechanism of action of certain pharmaceutical compounds to a considerable degree [21,61].
Although liver microphysiological systems have shown great success in predicting the ki-
netics of selective drugs, their utility in predicting the kinetics of environmental compounds
remains largely unexplored [23,62,63]. Compared to pharmaceuticals, environmental com-
pounds have a much wider range of physicochemical properties, which have a direct impact
on biokinetics [64]. Furthermore, modeling real-life exposures to xenobiotics through more
complex in vitro systems requires a focus on chemical mixtures [10,65,66]. Data generated
from screening mixtures and characterizing metabolism are informative for extrapolation
to potential in vivo effects.

In addition to studies of hepatic clearance, it is equally important to understand the
formation of possibly injurious metabolites [67]. However, detecting metabolites from
in vitro testing can be challenging because these compounds tend to be present at very low
concentrations within small volumes [32]. Enhancements in analytical instrumentation,
primarily in sensitivity and resolution of MS techniques, have provided the ability to
simultaneously screen for hundreds, if not thousands of compounds present in a given
sample [68]. These advances in technology have driven a shift from targeted to nontargeted
analyses that can overcome sensitivity issues associated with chemical detection [31].
Furthermore, nontargeted analyses performed with high-resolution MS and separations
coupled to MS, including IMS-MS have improved the characterization of metabolites
following exposure to environmental contaminants [69,70].

In this study, we assessed the in vitro metabolism of a defined chemical mixture using
iHep suspensions, sandwich cultures, and OrganoPlate® 2-lane 96. Our data provide a
direct comparison of metabolic capacities between traditional and novel in vitro systems.
Additionally, we took advantage of the nontargeted analysis capabilities of IMS-MS to
test a hypothesis that it will facilitate the detection of metabolites even if they are present
at very low levels. Our results indicate that in vitro clearance was low for a majority of
tested compounds across all three liver models. However, a subset of compounds did show
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measurable clearance in iHep suspensions, and through IMS-MS, we were able to detect the
presence of five metabolites. From the subset of the five compounds that showed hepatocyte
clearance in suspension culture, a majority of them were organophosphate insecticides.
2,4-Dinitrophenol is the only compound that is not in that class. 2-amino-4-nitrophenol
has been previously identified as being the major metabolite of 2,4-dinitrophenol across
multiple species [71]. The other four compounds (azinphos-methyl, disulfoton, chlorpyrifos,
and ethion) can potentially yield similar metabolites based on previous studies in rodents
and biomonitoring data available from humans exposed to organophosphates [72–74]. Out
of the five metabolites that were detected in our study, diethylthiophosphate was formed at
the highest amount. It is a known metabolite of chlorpyrifos and ethion, which can explain
how it was formed at higher amounts compared to other metabolites that only have one
compound contributing to their formation.

Various challenges remain for in vitro metabolite characterization using either targeted
or nontargeted MS analyses. Targeted approaches provide absolute quantitation and are
highly informative for in vitro-to-in vivo extrapolation; however, they are limited to only
evaluating chemicals in their targeted lists. They are also unsuitable for quantifying a large
number of chemicals due to differences in extraction and chromatography needs [75,76].
Many researchers have attempted to overcome these challenges by using multiple analytical
platforms in parallel, in order to detect as many compounds as possible. For example, a
previous study applied a combination of three different chromatographic modes for the
analysis of plasma samples to detect metabolites associated with myocardial ischemia [77].
Nonetheless, the main disadvantage with this approach is an increase in cost associated
with coupling various methods and analytical equipment.

A number of nontargeted analytical approaches have been proposed as a sensible path
toward the characterization of metabolites and transformation products of environmental
pollutants [78]. Nontargeted methods using IMS-MS are highly dependent on the ability
to accurately identify metabolites through various data parameters that include m/z and
CCS values [79]. Furthermore, data from nontargeted metabolomics are challenging to
visualize and interpret based on the extensive amount of data generated [80]. However,
current efforts have revealed major advantages with using technology such as IMS-MS
for metabolite profiling that includes rapid screening time, ability to distinguish struc-
tural and stereo-isomers, and consistency in CCS values across different instrumental
settings [81,82]. Improvements to the precision of these parameters are quickly evolving
with the development of more standardized protocols for analysis and data interpreta-
tion [79,83,84]. As IMS-MS becomes more widely used and CCS data are populated in
searchable metabolomic libraries, identifications using this knowledge base will continue
to aid in increasing confidence for metabolite assignment.

Our study provides additional important clues with respect to the metabolic capacity
of conventional and novel in vitro liver models for mixture clearance. Here, we illustrated
that a majority of the 20 pesticides tested in a mixture did not exhibit appreciable clearance
across the three platforms other than a handful of compounds in suspension culture. We
found that testing equimolar mixtures at higher concentrations leads to a decrease in
overall clearance in each model. This might be explained by a higher cumulative amount of
pesticide exposure that leads to increases in hepatotoxicity that were statistically significant
compared to vehicle control and lower testing concentration. Additionally, we compared
our mixture data to single chemical exposure clearance data reported by httk (version
1.10.1) [85]. We observed much lower clearance values from mixture testing compared to
individual chemicals, which is concordant with a previous study [34].

We note several limitations in our study. First, although iHep in sandwich cultures and
OrganoPlate® 2-lane 96 showed stability in terms of liver function, uncertainties remain
about their fetal-like traits that can have a considerable impact on xenobiotic metabolism
studies [86]. However, the use of pre-differentiated iHep in our in vitro models may be
advantageous for future comparisons between studies because many use commercially
available iHep from a single donor [87]. Second, our nontargeted IMS-MS analysis pro-
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vided data that can be used to compare relative amounts of metabolites across models,
but they do not provide absolute quantification of the features detected. Determining
absolute concentrations would facilitate extrapolation efforts to estimate metabolite con-
centrations from in vivo exposures. Still, these nontargeted analyses provide guidance
toward refining and performing more focused targeted screenings. Lastly, our designed
mixture was created with each compound being present at the same concentration. How-
ever, real-life exposures to multiple xenobiotics do not occur at the same concentration.
In fact, some exposures could occur at much lower levels, which would directly impact
metabolic capacities. Nonetheless, future studies of in vitro mixture metabolism could
incorporate in vivo exposure estimates to improve mixture compositions to better reflect
real-life exposure scenarios.

In conclusion, we note that although the OrganoPlate® 2-lane 96 model exhibited
robust hepatic functionality in terms of high albumin production and low LDH leakage, its
utility for investigating biokinetics may have limitations. The results of our study indicate
that iHep suspension cultures maintain greater metabolic capacity compared to sandwich
cultures and OrganoPlate® 2-lane 96. For a majority of the 20 pesticides present in the
tested mixtures, suspension cultures of iHep yielded intrinsic clearance rates that were 10 to
30-fold higher than sandwich culture and OrganoPlate® 2-lane 96. Similarly, suspension
culture was the only in vitro model that produced detectable metabolites. Therefore, among
tested in vitro models, suspension cultures represent the most appropriate model for deter-
mining in vitro clearance and biotransformation of chemicals and mixtures. Furthermore,
we conclude that IMS-MS is a useful analytical tool for nontargeted screening of xenobiotic
transformation products and provides informative data needed for the comprehensive
characterization of the toxicokinetics of chemicals and mixtures.
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