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Abstract: Background: This paper proposes a framework to cope with the lack of data at the time
of a disaster by employing predictive models. The framework can be used for disaster human
impact assessment based on the socio-economic characteristics of the affected countries. Methods:
A panel data of 4252 natural onset disasters between 1980 to 2020 is processed through concept
drift phenomenon and rule-based classifiers, namely the Moving Average (MA). Results: Predictive
model for Estimating Data (PRED) is developed as a decision-making platform based on the Disaster
Severity Analysis (DSA) Technique. Conclusions: comparison with the real data shows that the
platform can predict the human impact of a disaster (fatality, injured, homeless) with up to 3% error;
thus, it is able to inform the selection of disaster relief partners for various disaster scenarios.

Keywords: decision methods; disaster response network; disaster impact prediction; disaster severity;
humanitarian aid network

1. Introduction

The current situation regarding disaster response and prediction is fraught with chal-
lenges and gaps in the research. Disasters, characterised as intense forms of collective stress
caused by a disaster agent, have a profound physical impact on systems, altering their
priorities and goals [1]. These events often overwhelm communities, leaving them reliant
on government and international agencies for response operations [2]. Disaster phases are
typically categorised in four phases [3]: preparedness (planning and warning), response
(evacuation and emergency), recovery (restoration and reconstruction) and mitigation (per-
ceptions and adjustment). The focus of decision-making methods in the current literature
is on “pre-” (preparedness) and “post-” (recovery and mitigation) phases. The “response
phase” is under-studied in terms of demand forecasting [4].

While there are some articles on disaster demand forecasting [5,6], they predominantly
focus on optimising resource allocation assuming the demand is already known, and they
just try to optimise its allocation [7–9] or offer prediction in the pre-response phase [10].
However, the demand during the critical first 72 h, prior to the release of crucial reports,
such as the Multi-Cluster/Sector Initial Rapid Assessment (MIRA), remains largely un-
known. Consequently, this paper highlights the urgent need for a predictive framework to
support the response phase, necessitating sophisticated decision-making methods for data
provision, needs estimation and efficient mobilisation of available resources.

The consequences of failing to predict needs during the response phase can result in
the loss of human lives. This paper specifically focuses on natural onset disasters [11], such
as cyclones, tsunamis, flash floods, earthquakes and eruptions. These disasters have been
increasing in frequency and impact over the past decade [12,13], occurring with little or
no warning [14]. Furthermore, isolating their natural impact from human-made disasters
allows for simplified prediction. In contrast, man-made disasters, such as droughts, dam
failures and socio-spatial famines, have been extensively researched in separate articles.
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However, comparing the impact of natural onset disasters proves challenging due to
the variety of disaster types and their respective impacts. Although magnitude scales [15],
such as the Fujita scale for tornadoes, Saffir-Simpson scale for hurricanes and Richter and
Mercalli scales for earthquakes, have facilitated comparisons within specific disaster types,
different types of disasters present difficulties in using existing methods. Additionally, the
scarcity of impact data within the first 72 h of a disaster strike—before MIRA is released by
UNHCR [16]—further hampers comparisons between different disaster types.

To address these challenges, the paper proposes a framework that utilises historical
data during the response phase to predict the impact of disasters. As official data is
unavailable until the release of the MIRA report, which occurs after the critical response
time, relying on historical data becomes crucial. The research question posed is: “To
what extent is it possible to predict the impact of the disaster during the response phase
to enable timely and efficient decision-making, minimising loss of lives, and reducing
disaster impacts?”

By analysing past patterns of human impact data and considering the socio-economic
characteristics of affected countries, the framework aims to predict the human impact
of natural onset disasters where historical data is available. The study hypothesises the
possibility of predicting the human impact of a disaster at the time of its occurrence
and explores the relationship between the severity of the disaster and its human impact.
Statistical and mathematical techniques are employed to develop a predictive model for
human impacts, including fatality, injuries and homelessness, based on the socio-economic
characteristics of the affected country and the type of disaster.

This research is necessary for several reasons. Firstly, by understanding and predicting
the needs and demands during the understudied response phase, effective and timely
decision-making can be facilitated, ultimately leading to more efficient resource allocation
and potentially saving lives. Secondly, the scarcity of impact data during the critical initial
72 h after a disaster strike presents a significant challenge in comparing different types of
disasters and predicting their respective impacts. By utilising historical data and exploring
the relationship between the severity of the disaster and its human impact, this research
aims to bridge this gap and provide a decision-making framework that can be applied
during the response phase. This is crucial for ensuring a timely and efficient response,
as the first 72 h following a disaster are often crucial for saving lives and minimising the
overall impact. Ultimately, the need for this research stems from the potential consequences
of not accurately predicting the needs and impacts during the response phase of disasters,
leading to unnecessary loss of human lives and exacerbating the overall impact of disasters
on affected communities. By developing a Predictive model for Estimating Data (PRED)
and understanding the relationship between the severity of a disaster and its human impact,
this research can contribute to more effective disaster response strategies, better allocation
of resources, and ultimately, help mitigate the devastating effects of natural onset disasters.

2. Literature Review

The majority of the publications focusing on decision methods in disaster management
are concerned with the pre- and post-disaster phases including mitigation, recovery and
preparedness [17]. Although the first MIRA report is released within 72 h into the response
phase, only a few studies focus on these crucial hours of response phase. This includes
fuzzy-based severity assessment [12] or hybrid mathematical models [18,19]. The majority
of these decision methods frameworks are designed for technical researchers with access to
databases, such as user-generated demand data [20] or surveillance [21,22]. To that end,
this paper investigates the literature that predicts data that can be used in the first 72 h in
the response phase decision methods.

The thematic analysis of the literature reveals that the decision methods approach
to disaster management can be categorised into four main categories. Table 1 shows
these categories based on their estimation/prediction frameworks as well as their use
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of conceptual/numerical measures. Table 1 highlights four groups of articles related to
decision methods in disaster management.

Table 1. Articles in disaster management with decision methods.

Conceptual Models Criteria: Scope of cultural collapse, Collective stress: Literature:
[23–25]

Potential Impact Models Criteria: Intensity/material/temporal/areal/infrastructural loss,
occurrence, cause, detectability: Literature: [26–28]

Human Impact Estimation Models Criteria: HDI, DRI, Vulnerability, exposure, proneness,
resourcefulness: Literature: [26,29–35]

Human Impact Prediction Models Criteria: Geographical and physical factors: Literature: [34,36,37]

In Table 1, the first approach conceptually estimates the impact of a disaster without
providing numeric data. For example, by stating that the earthquake has social conse-
quences, these articles merely lead to conceptual frameworks. Their significance is to
standardise the impact of disasters based on social and cultural factors [23,25,38] where the
resilience of the community is being affected, and therefore, can be potentially enforced by
various socio-economic factors. However, the fact that these articles ceased publishing in
the 80s indicates that the scholars diverted into more numerical approaches such as the
second group.

The second group of approaches estimate the potential impact for disasters without
prediction. It is noteworthy to emphasise the difference between estimation and prediction.
An estimation is inferred for a population based on the assumption that the sample data
is a representative of the population, and therefore, “estimates” an unknown part of the
dataset. However, a prediction is inferred for a random variable (which is not part of the
dataset) based on a sample data or the whole population. In other words, the estimation is a
calibration of the population based on a dataset, whilst the prediction calculates a value out
of the dataset. To do so, they provide scales for estimating a range. For example, the extent
of potential destruction based on the type of the disaster [39], human, material, temporal,
and areal factor [26–28,40], magnitude [41] and the coping capabilities of the affected
population, such as vulnerability and exposure-proneness [42], and resourcefulness [43], in
addition to damage to the infrastructure [44] and humanitarian aid supplying power [45].
This group of research basically estimates the potential impact that a disaster may cause by
taking into account the physical and socio-economic factors of the affected area.

The third approach focuses on the human loss estimation based on other criteria
(e.g., damage to the buildings). They are more specific in terms of assessing the human loss
in disasters as a result of various factors, such as damage to the buildings [31], the health
and socio-economic status of the victims including wealth, age and gender, the location of
individuals at the time of the disaster including outdoors, poorly constructed buildings,
mobile homes and vehicles [37], the number of displaced people, the vulnerability of the
inhabitants/area [33], the population density and expected number of people remaining
during the flooding, dam failure, time available for evacuation or rescue [39], resistance to
loss and the ability to recover quickly [35]

Probably due to the wealth of research in the third group, the fourth group of re-
searchers went further and actually predicted the material and human loss of the dis-
asters [34]. Their predictions are based on expected geographical characteristics of the
affected area, such as water depth and flow velocity, rise rate [33], hazard rating drowning
patterns [36] or physical vulnerabilities of the land [46]. The last group specifically provides
predictions of human loss. In addition, a group of complicated models have been designed
to combine some elements of the above studies to suggest a model with 100 variables [47]
or to provide a comparison based module (High-water Information System—Damage and
Casualties Module) to calculate the expected damage and the number of casualties due
to flooding. This utilises the geographically orientated data concerning economy, traffic,
buildings and population [33]. However, in the early hours after the disaster strike, it is
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difficult or impossible to obtain the data about the health or location of the people. In
addition, the technical data about water depth and flow velocity are not available in all
regions. Probably in response to this lack of data, a variety of articles introduced different
disaster severity assessment frameworks by embedding the socio-economic characteristics
of the affected population. These characteristics include the Disaster Risk Index provided
by World Risk Reports since 2011, the Human Development Index provided by UNDP since
1980 and the density of the affected population [26,27,42,48–50]. However, this dispersed
body of knowledge is yet to be combined into a holistic framework that takes into account
these numeric characteristics of the population.

Research Gap—Predictive Disaster Response Framework

We identify four traces to articles that estimate/predict the impact of the disaster.
The conceptual approach is limited to cultural and social distress without quantification.
The scalable approach quantifies intensity/material/temporal/areal/infrastructural losses,
occurrence, causes and detectability without qualitative factors, such as the capabilities.
This issue is addressed in the third group, which quantifies the qualitative factors, such
as the affected countries’ human development index (HDI), the disaster risk index (DRI),
exposure and proneness to disasters and the resourcefulness of the affected population.
Finally, the fourth group with predictive approaches focus on the physical characteristics of
the disaster and the affected geographical area, without taking into account the people and
their coping capabilities. To that end, a predictive framework, which employs both qualita-
tive and quantitative factors whilst taking into account the socio-economic characteristic of
the population, is missing. In conclusion, despite the existing research on the groups of
literature above, a framework for predicting the human impact is yet to be developed. A
number of reasons are associated with this claim. First, the majority of the existing literature
focuses on a single type of disaster, such as flood, earthquake, eruption, etc. Therefore, a
holistic framework to accommodate different types of disasters is missing. Second, the
existing literature sometimes contradicts each other, for example, many research studies
predict the fatalities based on the damage to the buildings [29–32] whereas some researchers
have not found an easy correlation between the pattern of building damage and the fa-
talities [51]. The third reason for developing a new model is that although a rich body of
complex and technical papers is put forward, most of the findings are yet to be customised
for practical use in real situations. For example, conceptual frameworks are impossible to
use in practice. The framework with 100 variables is difficult and time-consuming to use
for an average decision-maker, and the extremely technical frameworks, which require a
wealth of technical data and complicated computer simulation support, might fall short
in the disaster situation in many countries. The fourth reason is that the majority of the
above criteria are drawn from data related to one or few events in specific countries, and
their extrapolation and generalisation are unreliable. The literature review highlights the
necessity of developing a model, which employs the data universally available at the time
of the disaster.

3. Methodology

To predict the human impact of the disaster, this paper attempts to recognise a pattern
in the historical disaster data. The research question was put forward to identify “to what
extent is it possible to predict the impact of the disaster during the response phase for a
timely and efficient use of decision methods to avoid the loss of lives and minimise disaster
impacts?”. The proposition is that “There is a relationship between the fatalities in disaster
and disaster type”. The current research provides few inputs and outputs to provide a
predictive framework, as illustrated in Figure 1.
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Figure 1 demonstrates the three different methods applied in the research. Input data
including disaster type, HDI, DRI and historic fatality was used to calculate the DSA and
fatality ratio. This data was processed through Neural network analysis and regression
analysis. However, they failed to produce accurate predictions. Finally, the MA rule was
used to provide a more accurate set of predictions. The fatality predicted in this way was
then used to predict the homeless and injured population.

3.1. Data

In order to find a reference point with which all disasters are assessed, we created a
new measure called the Disaster Severity Assessment (DSA). The disasters, which were
the source of data in this phase, were natural onset disasters. The identification of the
target population, the time period under investigation and the variables of interest is in
line with [52]. The target population includes the disasters that have affected more than
10 people and were declared in need of international assistance [28]. The time period is
between 1980 and 2020. Data was collected from the natural disasters in all the countries
registered in the UN, including 11,000 records found and cross-examined from various
humanitarian sources [11,28,40,53] Moreover, the prominent natural disasters occurring
after 1980 and mentioned in the Encyclopaedia of Disasters [15], i.e., 32 disasters, were also
considered. Then, we also added the 10 costliest and 10 deadliest disasters in the NatCat-
SERVICE [54], hence obtaining a rather comprehensive list of disasters. Finally, the data
were compared to the EM-DAT and Munich RE, accumulating to 4252 disasters. Variables
within the context of the research can be categorised into time-constant and time-varying
variables. The context is defined as the environment in which a unit is observed. In this
research, the context is the country. Time-varying variables characterise the unit or the
context; for example, the population of the country changes over time, these also can be
used as explanatory factors. For example, the higher the population of the country is, the
greater the probability of fatalities due to a disaster. The NatCatSERVICE [54] considers
26,000 natural disasters after 1979, while the Centre for Research on the Epidemiology of
Disasters (CRED) [28] has the EM-DAT database with 17,000 natural and technological
disasters that have happened since the beginning of the 20th century. Furthermore, DesIn-
vestar provides data about the affected population, roads and properties, but does not
cover all countries and lacks many disaster-prone countries, such as the USA, Malaysia,
China or Pakistan. The CRED providing the EM-DAT database has fewer missing values;
hence, we considered this database as the basis for calculations. The dependent variables in
this analysis are defined as: fatalities (the number of people killed as a result of the disaster),
injured (the number of people injured as a result of the disaster) and homeless (the number
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of people who become homeless as a result of the disaster). It is noteworthy to mention,
that homeless here is different from the displaced. The displaced population might have
resources to flee the affected area and stay with relatives or in hotels, so they are not in
immediate need of shelter and food. Therefore, the word “homeless” has been chosen for
people who have lost their homes, remain in the area, and are in immediate need of shelter
and food. This number could be equal to or less than the displaced population.

The independent variables in this analysis are defined as: human development index
(HDI), disaster risk index (DRI), disaster type, population and population density. The geo-
graphical dispersion of the disasters includes every country where the data were available.
The records were then filtered into 4252 records of the disasters where the five predictive
variables (disaster type, HDI, DRI, population and population density) were available. The
procedure was designed based on a combination of pattern recognition techniques and
rule-based clustering for prediction and discriminant analysis for validating the results.
We found a relationship between the disaster human impact (fatality, homeless, injured)
and the independent variables. Using regression analysis and the MA rule, we proposed a
framework to estimate the disaster’s human impact (fatality, casualty, homeless) based on
their severity rank in early hours of a disaster strike. Due to the special characteristics of a
disaster, a scenario forecasting framework with judgmental adjustment [55] is applied. This
framework is mostly used in product development where the historic data is not available.
Each new disaster is unique, and it cannot be fully compared to previous disasters. In
addition, the development of a disaster is impact-based instead of time-based. For that
reason, the MA rule here is used for clustering the impact instead of time. The predictions
in this model were outlined in two worst- and best-case scenarios, which respectively
inform the lower range and higher range of the prediction. The results answer the second
research question: To what extent is it possible to predict the impact of the disaster and
create a dataset to assist in the timely and efficient use of decision methods to avoid the
loss of lives and minimise the disaster impact? To answer this question, a hypothesis is
defined as “human impact of the disaster can be predicted based on the data available at
the time of the disaster”. To that end, the hypothesis can be stated as follows:

H0. There is no relationship between the human impact of the disaster and the data available at the
time of the disaster.

H1. The human impact of the disaster can be predicted based on the data available at the time of
the disaster.

In other words, the null hypothesis (H0) suggests that the available data at the time of
the disaster has no predictive power in estimating the human impact, while the alternative
hypothesis (H1) proposes that the data can indeed be used to predict the human impact of
the disaster.

3.2. Methods

To investigate the possibility of prediction based on the historic data and examine
the hypothesis, three different methods, including neural network analysis, regression
analysis and the MA rule, were used to make the prediction and the results were compared
to evaluate the quality of the prediction.

Developing the DSA Technique

None of the existing severity assessment frameworks embed socio-economic character-
istics or standardise the impact of different type of disasters. To that end, in this paper, the
Disaster Severity Assessment (DSA2021) is developed to categorise the severity of all types
of sudden onset disasters based on their type as well as the socio-economic characteristics
of the affected population. This is an extension of the DSA2014 [48], which was built based
on real data calculated by international agencies after the response phase. It assumed the
data are available. The DSA 2021 is based on the fact that the data are not available at
the beginning of the response phase, and therefore, uses historic data to find a pattern
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between their occurrence. Disaster severity together with the “fatality ratio” are the basis
for the prediction model in this paper. In the DSA framework, five measures are presented
including disaster type, HDI, DRI, population and population density. The higher the HDI,
and the lower the DRI, the more likely a country is to cope with the situation and less
likely to need international assistance. Categories for HDI and DRI are identical with the
categories defined in their UN-published reports in the World Risk Reports [56] and UNDP
report for HDI.

Table 2 shows the DSA framework, where HDI can be ranked from 3 if the human
development is under 0.466 to 0 if it is more than 0.759. That means in the countries with
more than 0.759, the coping capability is high, and these countries are less likely to be
devastated as a result of a disaster compared to a country with lower HDI. The formula
for calculating the HDI was dramatically changed in 2010, which affected the calculation
of HDI in 2011. The HDI before this date assumed there is no inequality within a nation,
whilst the new HDI added the inequality-adjusted measures, which is closer to the real
situation. Thus, the same principle goes for HDI, meaning for the years before 2011, the
HDI for 2011 was used and for the dates after 2011, the data for 2012 were used.

Table 2. Disaster severity assessment framework.

Measurement The Categories Rank

Disaster type Storm/Flood/Volcano/Cyclone/Flash flood, Tsunami/Earthquake 1/2/3/4/5/6
HDI Under 0.466/between 0.466 to 0.64/between 0.64 to 0.75/more than 0.759 3/2/1/0

DRI Under 3.65/between 3.65 to 5.72/between 5.72 to 7.44/between 7.44 to
10.59/More than 10.59 0/1/2/3/4

Population Under 0.0009/between 0.0009 to 0.009/between 0.009 to 0.09/between 0.09
to 0.9/more than 0.9 0/1/2/3/4

Population Density Under 0.0009/between 0.0009 to 0.009/between 0.009 to 0.09/between 0.09
to 0.9/more than 0.9 0/1/2/3/4

Total 1–21

In Table 2, the DRI was also launched in 2011, so for the years before that, the DRI for
2011 was used, and for the days after that, the data for 2012 were used. DSA shows that
DRI can range from under 3.65 to over 10.59, and can rank from 0 to 4, showing the lowest
risk to highest. This means that a country where DRI is ranked as 0, the risk for destruction
by disaster is the lowest.

The population of the countries in the database ranges from 56,000 (American Samoa,
2018) to 1,400,000,000 (China, 2013). This shows a wide and skewed distribution, where a
simple percentile is not representative of its distribution. To overcome this obstacle, the
logarithmic values of the records were calculated and then the percentile was considered
for categorising. The categories for population and population density were based on the
20%, 40%, 60%, 80% and 100% of their logarithmic values. For example, the Mongolian
population at the time of the 2009 flood was 2,672,223 people, with the logarithmic value is
equal to 0.001937. It fits in between 20% and 40% of the logarithmic value of the data range
and takes the rank 1. The density of the population of that year in that country has also
been added to the model because the population by itself is not an adequate measure of the
potential number of people exposed to the disaster. The reason is that in a same scenario
of countries with the same population and the same magnitude of disaster, if a country
is densely populated, the same disaster will impact a higher population, as opposed to a
country with a scattered population. The significance of the DSA rank is that it standardises
the various disasters and makes them comparable to each other. When all disasters have a
reference point to be measured against, it is possible to find a pattern between them. This
pattern helps to develop a technique to predict the human impact of the disaster before the
MIRA report is released. The challenge is to find a way to recognise a pattern in the human
impact of the disaster, such as the number of fatalities, which is unknown until days or
even weeks after the disaster strike. DSA is further used to predict the impact of a disaster.
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3.3. Fatality Ratio-Proportion of Lost Population

The categories for disaster types in DSA are chosen based on a measure introduced
in this paper as the fatality ratio. There are few frameworks that look at the severity of
disasters, as described earlier; however, a model that quantifies the severity of the disaster
based on available data at the time of disaster strike is missing. To create this framework,
the authors combined the human impact of the disasters with socio-economic characteristics
of the disasters. The problem with using only human impact is that the coping capabilities
of different countries is the measure of devastation caused by the disaster and not the
number of human impacts [12,13]. Moreover, the human impact is also connected to
population density. Thus, to compare two disasters, we need to define a measure called
fatality ratio. Fatality ratio shows the proportion of lost population as opposed to remaining.
The examples of fatality ratio are depicted in Table 3.

Table 3. The example of fatality ratio.

Date Country Name Population Population Density Fatality Fatality Ratio

20 December 1999 Venezuela Flash flood 23,945,002 27.15 30,000 4.615

12 January 2010 Haiti Earthquake 9,896,400 359.09 222,570 6.263

26 December 2004 Sri Lanka Tsunami 19,435,000 309.92 35,399 5.877

26 December 2004 Indonesia Tsunami 221,293,797 122.16 165,708 6.129

26 December 2004 Thailand Tsunami 65,087,400 127.4 8345 1.006

In Table 3, the fatality ratio shows that the Haiti earthquake 2010 was much more
severe than Venezuela’s flash flood of 1999 because the fatality was 30,000 individuals [28],
whilst during and after the Haiti Earthquake of 2010, out of a population of 9,896,400,
the death toll reached 222,570. To be able to compare the severity of these two situations,
the population and their density are considered. In addition, the comparison between
the Indian Ocean tsunami (2004) in different countries shows that the fatality ratio in In-
donesia ( 165,708

221,293,797×122.16

)
and Sri Lanka

(
35,399

19,435,000×309.92

)
was very close, and in Thailand

( 8345
65,087,400×127.40 ) it was much less severe.

Although these effects have numerous socio-economic and political reasons (which
could be the subject of another study), the fatality ratio could partially explain the severity
of the human impact. To that end, present research suggests that the fatality ratio is a more
accurate measure for comparing the severity of the human impact in various disasters than
simple fatality numbers. Other variables include cause, alert level, magnitude, affected
population within 100 km, the country’s HDI, the country’s DRI, population and population
density. This analysis shows that the number of fatalities can be explained by a combination
of variables including type, population, population density and HDI. However, the adjusted
R-squared in this case is very small and generally is not considered explanatory. We argue
that because of the high number of observations (4252), in the law of large numbers and
Savage’s assumption [57], the estimated error is non-excitant, and therefore, the R-SQUARE
calculated based on the error, is not meaningful. Therefore, the small R-SQUARE could not
be interpreted and as a result that the dependent variable (fatality) may not be explained
by the independent variables. To that end, we assert that the regression analysis cannot be
used for finding a pattern between fatality and independent variables. However, it also
means that it cannot be argued that a relationship does not exist. Therefore, the independent
variables that were available at the time of the disaster were used to find a pattern between
fatality as is described further.

This shows that a disaster can be ranked based on their type, from 1 for storm (due to
its lowest destructive capability) to earthquake as the highest (6). DSA ranking is calculated
for 4252 records and is used as the basis for defining the disaster scenarios (there are
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102 scenarios = 17 level of severity × 6 types of disasters), and also consequently for
recognising a pattern of fatalities in different disaster scenarios in the next part.

3.4. Homeless and Injured Ratio

The numbers of injured and homeless in previous disasters are not clearly stated
in our database for each record. Instead, in the EM-DAT database, the accumulated
numbers of these data are available based on region, disaster type, etc. Therefore, the
accumulated number is used to recognise a pattern between the number of fatalities,
injured and homeless. The data about the human impact are gathered based on the country
in Table 4.

Table 4. Example of the accumulated number of human impacts.

Disaster Type Country Occurrence Death Injured Homeless Casualty Ratio Homeless Ratio

Earthquake Afghanistan 0.0340 0.3870 0.034 0.3870 0.0340 0.3870
Flash flood India 0.0054 6.8216 0.0054 6.8216 0.0054 6.8216

General flood Congo 0.427 324.519 0.427 324.519 0.4279 324.5192
Local storm Norway 12.5000 0.0000 12.50 0.0000 12.5000 0.0000

Table 4 shows that during the past 30 years, 28 earthquakes affected Afghanistan, caus-
ing 9277 deaths, 8826 injuries and 100,535 becoming homeless. Therefore, it is possible to
say that in general, during this time, the injured/fatality ratio in Afghanistan earthquakes is
0.95 and the homeless ratio is 10.8. The ratios are calculated based on Equations (1) and (2).

Equation (1)—Injured ratio

Injured ratio =
ic
d

f c
d
÷ oc

d (1)

Equation (2)—Homeless ratio

Homeless ratio =
hc

d
f c
d
÷ oc

d (2)

where ic
d represents the accumulated number of injured in country (c) for the disaster

type (d), hc
d represents the accumulated number of homeless in country (c) for the disaster

type (d), f c
d represents the number of fatalities in country (c) for the disaster type (d) and oc

d
represents the number of occurrences of the disaster type (d) in country (c) since 1980.

3.5. Moving Average

In a similar attempt to predict the variables in the future based on a stream of data,
pattern recognition techniques are a common choice. In these pattern recognition methods,
classification is used for the analysis of data streams, in a sense that the objects are assigned
to classes based on their observed features [58,59]. Its relation to this research is the
assumption that the fatalities for a particular disaster can be assigned to the classes of
fatality based on their DSA rank. In this framework, the classification rule(s) need to be
learned from the database and the optimal classification rule may change over time due
to changes in the stream dynamics, which is called a concept drift [60]. This is exactly
what happens in disaster situation, where due to the chaotic changes in the climatic and
socio-economic characteristics of the countries, the trends of disaster impacts changes.
When concept drift occurs, it is important to design classifiers, which can adapt to changes
in the data stream [59].

One of the commonly used classifiers in pattern recognition, which adapts to changes
in the data stream, is the Moving Average (MA). It is frequently used for prediction
in finance and econometrics for purposes, such as predicting security returns [61,62] or
detecting changes in stock price trends [61,63,64] and consumer product markets [59]. It
is increasingly used in engineering subjects, such as the forecast of flow of the well [65],
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temperature [66] or weather forecasts [67]. In this capacity, MA is used for detecting an
increase in the mean of a sequence of variables [59,68]. For example, imagine the observed
data are independent variables of X1, . . . , Xn and their moving average is constantly
under 10. As the stream of data progress, suddenly the MA changes to 11. This is basically
an updated estimate on the stream with older data being down-weighted [59].

One of the applications of MA in finance is the MA rule, which is used to generate
a trade (buy/sell) signal by comparing two MA [63] when a price moves above/below
a MA in a historical period [61,64]. It is based on the assumption that MA determines
the general direction of a market by examining its history [64]. Which is exactly what
we need to do in this research (e.g., determining the direction of the disaster impact by
examining its history). One distinction is that the disaster database in this research is not
necessarily time-series, even though they indirectly depend on time as the socio-economic
characteristics of the country or the climate changes during that time. This is similar to
the MA rule method, which utilises the past information (prices) to predict incomplete
information or private data [64], which are unobtainable for the market. We argue that
the MA rule in the role of a classifier can be used for two reasons. First, it can deal with
the highly volatile environment of the stock market, which resembles the highly chaotic
disaster situation. Second, it predicts the unknown or unobtainable information based on
historical data, as is the case in disaster response. To adapt the MA rule to the disaster
response, this rule can be redefined as “when the fatalities of a new disaster moves below
or above the MA, it signals a change” and this can define a new class. To that end, the MA
is calculated as shown in Equation (3).

Equation (3)—Moving Average

MAFi,n =
Fi−n+1 + Fi−n+2 + . . . + Fi

n
(3)

where MAFi,n is the moving average of the fatalities in the disaster, i, with the length of n,
n is the length of the moving average and Fi is the fatalities in the disaster, i.

This is because in the prediction of fatalities, we are more concerned about the signals
that show the rise in fatalities rather than the fall in the disaster impact trend (in this
research). A signal is generated when Fi − MAFi,n > 0. This means that a signal (change in
direction of the pattern) is generated when the fatalities in a disaster, i, become bigger than
the moving average.

3.6. Normalised Root Mean Square Errors

NRMSE is the root mean squared error, which quantifies the typical size of the error in
the predictions as in Equation (4).

Equation (4)—Normalised root mean squared error:

NRMSE =

√
∑n

i=1(Qobserved−Qpredicted)2

n

X observed max − X observed min
(4)

In Equation (4), n is the number of cases in the fitness group, i is the number of
observations, Q-observed are the actual fatalities, Q-predicted are the predicted fatalities and
X-observed max and X-observed min are, respectively, the maximum and minimum number
of actual fatalities in the data set. NRMSE was used in similar studies for validating the
predictive power of the model [69,70].

4. Results

The null hypothesis (H0) was defined as “the available data at the time of the disaster
has no predictive power in estimating the human impact”, while the alternative hypoth-
esis (H1) proposes that the data can indeed be used to predict the human impact of the
disaster. To validate this hypothesis is the essence of the study, which uses statistical and
mathematical techniques to provide a predictive model for a disaster’s human impacts.
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This is designed based on the hypothesis that there is a relationship between the human
impact of the disaster and the severity of the disaster. The application of above tools in the
data set leads to prediction of fatality, injured and homeless based on the socio-economic
characteristics of the affected country in the respective year as well as the type of the
disaster as explained further. Three predictive models are built to test the predictive power
of MA rules, regression analysis and neural network analysis as follows.

4.1. Application of DSA

Theoretically, in the DSA model, there are 102 scenarios; however some theoretical
scenarios, such as disasters ranked 1 and 2, are non-existent in the database of actual
previous disasters. This might be because they are yet to occur, or because their severity
is so low that it deems unnecessary for the humanitarian sources to record them. These
scenarios will be explained later in detail. The DSA ranked in combination with the criteria
mentioned earlier produce a standard diagnosis tool capable of comparing the impact of
the disaster on the different countries with different coping capabilities. An example of
this comparison between some areas affected by the Indian Ocean Tsunami is presented in
Table 5.

Table 5. An example of the calculated disasters’ DSA rank.

Country Killed Population DSA Rank

Indonesia 165,708 221,293,797 16
India 16,389 1,110,626,108 14

Sri Lanka 35,399 19,435,000 13
Thailand 8345 65,087,400 12
Malaysia 80 25,365,089 11

Seychelles 3 82,500 7

Table 5 shows the DSA calculated for the countries affected by Indian Ocean Tsunami
(2004). It shows that Indonesia had the highest severity (DSA = 16), and the Seychelles had
the lowest (DSA = 7). The significance of this framework is that, with no knowledge of the
data on the ongoing disaster and minutes after the disaster strike, the DSA predicted that
Indonesia needed more aid than India, even with a lower population than India. In reality,
weeks after the disaster, the reports showed that Indonesia sustained the highest human
and material loss. This indication in the early hours of a disaster is highly valuable because
it signals the highest need of channelling the humanitarian aid.

4.2. Prediction Based on Stepwise Regression Analysis

Based on the hypothesis defined earlier, the null hypothesis (H0) posits that the data
available at the time of the disaster do not have any meaningful predictive ability in
estimating the human impact. On the other hand, the alternative hypothesis (H1) suggests
that the data possess the potential to forecast the human impact of the disaster. A series of
stepwise regression analysis (Table 6) on 4289 cases reveals that the DSE rank can explain
6.6% of the number of fatalities and the criteria used to calculate DSE, including HDI, DRI,
population, population density and disaster type, can explain 13.4% of fatalities. Because
the DRI was insignificant, the model was refitted without DRI and actually decreased the
ability to explain the fatalities to 13.3% as shown in Table 6.

In an attempt to improve the model, some unsuccessful efforts were made, for example,
the population in a 100 km radius based on GDACS data and disaster magnitude were
added to the model, which respectively showed the potential number of the affected
population and potential destructive effect of the disaster. The available data for these
two criteria for our sample size of 4289 were limited to 69 records. Repeating the regression
analysis for these 69 records shows that adding the factors of magnitude and potential
affected population in a 100 km radius actually decreased the model’s fit to 9.9%. Due to
the low sample size of 69, which lacks the generalisability, in addition to the low predictive
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power, the latter regression was not refitted. One of the most common techniques for
finding the pattern between variables and predicting one variable based on others is the
regression analysis. As the regression analysis in Exhibit 67 shows, the fatality to some
extent can be predicted using the following formula: Fatality = −1.412–1.709 × Country’s
HDI + 0.257 × Population + 0.102 × Population Density + 0.316 × Type rank. However,
the accuracy of this prediction is low because it could just explain 13.3% of the fatalities, as
was explained before.

Table 6. Comparison between the explanation power of various variables.

Variables Adjusted R Square Number of Cases

DSE rank 0.066 4289
HDI, DRI, population, population density, disaster type 0.134 4289

HDI, population, population density, disaster type 0.133 4289
Magnitude, potential affected population within 100 km,

HDI, population, population density 0.99 69

Table 6 shows that the DSA rank can explain 6.6% of the fatalities, whilst all original
nine determinants explain up to 99% of the fatalities. When the determinants that were
unavailable for all records (magnitude and population within 100 km of the disaster) were
omitted from the model, the adjusted R-squared increased to 13.4%. However, there are
two reasons why the authors did not use regression analysis for prediction. First, the
R-squared is too low to be explanatory. In addition, based on the rule of large numbers, in
the specific case of this research, R-squared is not meaningful.

This suggests that the predictive power of the regression model for the given dataset is
not strong, which confirms the null hypothesis. Furthermore, when comparing the explana-
tory power of various variables, it is observed that all nine original determinants, including
DSA rank, HDI, DRI, population, population density, disaster type, magnitude, potential
affected population within 100 km, HDI and population density, collectively explain up to
99% of the fatalities. However, due to the unavailability of certain determinants (magnitude
and population within 100 km) for all records, their exclusion from the model leads to
an adjusted R-squared value of 13.4%. Considering the low explanatory power of the
regression analysis, the authors decided not to rely solely on regression for prediction. This
emphasises the need for alternative mathematical and statistical methods to enhance the
predictive capability of the model.

4.3. Neural Network Analysis

Another unsuccessful attempt was to use a neural network for prediction. The data
were divided into two groups, 4000 records were used for building the model and the
remaining 289 to test the data. The neural network was built using the excel solver and NN-
ad-in software based on five inputs acquired from the DSA framework (Table 7) and one
hidden layer. The built neural network was solved four times until the network could not
be converged to any new solution; however, the comparison between the actual fatalities
and the predicted number of fatalities were not a match.

Table 7 shows that, for example, in a cyclone rank 5 where the actual fatalities were 11,
the neural network predicted the fatalities as −28.9 in round 1, 106,352 in round 2, 24,278 in
round 3 and 228.95 in round 4. The result shows that the future disasters are not accurately
predictable based on the previous records of data using the neural network. This will be
further discussed in the next part.
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Table 7. The example of result of the neural network prediction for disaster human loss in four rounds.

Actual Fatality Name Total Rank Fatality Prediction
Round 1

Fatality Prediction
Round 2

Fatality Prediction
Round 3

Fatality Prediction
Round 4

11 Cyclone 5 −28.94 106,352.66 24,278.67 228.95
2 Cyclone 5 121.15 55,580.23 24,282.70 228.95

18 Flood 13 722.52 15,158.11 10,410.86 190.36
11 Storm 3 636.32 24,378.18 10,934.85 228.95

1989 Earthquake 10 533.68 127,372.14 80,127.08 231.67
9 Flash flood 7 −264.06 30,277.99 13,127.78 228.93
4 Flood 13 257.01 66,852.02 10,384.70 180.88

11 Local storm 3 −1501.98 3355.06 1234.15 131.27
4 Cyclone 5 71.1 92,136.41 29,052.78 228.95
1 Earthquake 10 502.87 99,110.72 31,862.86 228.95

4.4. Prediction Based on MA Rule

Using the MA rule and fatality ratio, the fatalities of various earthquakes in different
countries can be calculated, as shown in Table 8.

Table 8. Examples of MA changes in different earthquakes with different DSA ranks.

Date Country DSA Rank Fatality (Fi) MAFi,n Fi−MAFi,n

22 February 2011 New Zealand 9 181 61 120
22 May 1998 Bolivia 9 95 70 25

28 December 1989 Australia 9 12 58 −46
2 March 1987 New Zealand 9 1 49 −48
12 July 2004 Slovenia 10 1 34 −33
23 May 2003 Kazakhstan 10 3 31 −28

22 November 1995 Egypt 10 10 29 −19
12 October 1992 Egypt 10 552 73 480

13 April 1992 Germany 10 1 67 −66
9 April 2013 Iran Islam Rep 11 37 57 −20

5 December 2012 Iran Islam Rep 11 6 54 −48

The first three rows provide information about the earthquake, including its geograph-
ical and temporal data, in addition to its DSA rank. The fourth column shows the fatalities
caused by that particular disaster and the fifth column calculates the MA for that stream of
data. The last column shows the changes in the moving average. When the new moving
average is higher than before, the last column is positive and signals a change in the trend,
otherwise it is negative, and trends stays the same. A snapshot of the calculation process is
presented in Table 9.

Table 9. A snapshot of MA rule calculations.

Disaster Date Country DSA Rank Fatality MA MA-Fatality

1995-0034 23 February 1995 Cyprus 8 2
2011-038 13 June 2011 New Zealand 9 1 2 1

2011-0068 22 February 2011 New Zealand 9 181 61 120
1998-0169 22 May 1998 Bolibia 9 95 70 25
1989-0142 28 December 1989 Australia 9 12 58 46
1987-0068 2 March 1987 New Zealand 9 1 49 48
1983-0146 8 November 1983 Belgium 9 2 42 40
2011-0159 11 May 2011 Spain 10 10 38 28
2004-0670 12 June 2004 Slovenia 10 1 34 33
2003-0259 23 May 2003 Kazakhistan 10 3 31 28

As is seen in Table 9, the signal in earthquakes appears in DSA rank 9 for the New
Zealand earthquake (2011), which spikes the changes in the direction of the prediction
pattern when the MA jumps 120 points. The next change is signalled in the Bolivian
earthquake (1998), with a DSA rank of 10, when the MA jumps 25 points, and the next
change is in the Egyptian earthquake (1992) when the MA jumps 480 points. These signals
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and moving averages were calculated for each disaster type and rank in our 4252-size
population. For example, in the category of Tsunami under 11, the fatalities are below 400
for 52 records, then there is a signal (jump in MA) to 30,000 fatalities when it comes to the
severity 11, which changes the moving average from 50 to 2120. The calculation leads to
the moving average for each degree of severity (DSA rank) in Table 10.

Table 10. The average and maximum human loss in previous disaster scenarios.

Disaster Type DSA Rank Average Fatality Max Fatality

Earthquake

Under 10 18.6667 95

11 to 14 1039.2558 40,000

15–17 1632.85 87,476

Tsunami/Flash flood

Under 11 43.22 412.00

11 to 14 154.04 8345.00

Over 15 401.38 19,846.00

Cyclone

Under 7 15.3889 88

8 to 10 46.5679 1833

11 to 14 82.1111 1619

General flood/Mudslide

Under 7 17.3103 161

8 to 9 41.0785 921

Over 10 77.5862 2665

Eruption 32.4615 192

Storm

Under 7 14.7500 240

7 to 11 35.5818 2000

Over 11 120.5123 3682

Table 10 shows a set of rule-based scenarios where, for example, “if an earthquake’s
DSA is under 10, the fatalities are less than 200”. However, because the extreme cases in
the record show (as a cautionary factor, the outliers were still considered in the data set as
an example of extreme cases or worst-case scenarios), it is wise to keep extra capacity as a
contingency plan to support up to 1000 fatalities as a risk factor based on the extreme cases.
To be more precise, the rules can be defined as “if the DSA is under 10, fatalities are more
likely to be under 200 (basis for average fatality); however, in rare cases, fatalities can be
in the range of thousands (basis for maximum fatality)”. The next step is to use the above
fatality prediction framework to predict the fatalities for the whole population. A randomly
selected sample of 2976 (70% of the population) was selected out of 4252 records of data to
develop the framework. The created framework was tested on the remaining records of
1275 (30% of the population) disasters for prediction. An example of the predicted fatalities
and actual fatalities with this framework is presented in Table 11.

Table 11. Example from 4252 predictions.

Name DSA Rank Actual Fatality Predicted
Average Fatality

Predicted Max
Fatality

Flood 4 5 17 161
Cyclone 6 4 15 88
Tsunami 7 3 50 412
Cyclone 9 483 47 1833
Storm 4 2 15 240

Earthquake 15 2323 1632 87,476
Earthquake 12 1186 1039 40,000
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Table 11 indicates that in a flood rank 4, the actual fatality was 5, which means that it
was almost successfully predicted within the range, because based on table, a flood rank 4
is a severe flood with fatalities between 17 to 161. Another example is the cyclone rank 9,
where the fatalities were predicted to be between 47 and 1833 and the actual fatalities were
483, which is within the range.

4.5. Evaluating the Result of Fatality Prediction

Observations about the accuracy of the above three models allows us to calculate the
prediction error for each, as exhibited in Table 12.

Table 12. The comparison between the prediction error.

Prediction Error Simple Fatality Fatality Ratio Neural Network Regression

NRMSE 3.10% 4071.20% 30.2% 53,157.48%

The simple fatality model is the least (3.10%), and it is the most accurate model for
predicting fatalities in this paper. The rest of the models have a very low accuracy because
their prediction errors are 30.2%, 4071% and 53,157%, respectively, for the neural network
prediction model, fatality ratio prediction model and regression analysis prediction model.
For each individual disaster type, this pattern stands. As shown in Table 13, the fatality
ratio and regression analysis have a high level of error in all disaster types, whereases the
fatality average is a slightly better predicter than the neural network in all types of disasters.
The exception is flood, where the neural network predicts it with a 3.75% error and the
fatality average predicts it with an 8.55% error. In addition, in case of storms, the neural
network has a highly inaccurate prediction equal to 302.22% error.

Table 13. Comparison between NRMSE of predicted disasters based on the type of the disaster.

Normalised Root Mean Square Error Based on

Fatality Average Fatality Ratio Regression Analysis Neural Network

76 Earthquake 8.16 44,293.88 50,445.15 13.94
128 Cyclone 7.68 665,648.87 3,063,927.69 10.49

71 Flash flood 8.46 114,961.80 55,412.20 19.47
64 Storm 12.50 16,495,558.08 38,451,465.45 302.22
320 Flood 8.55 81,014,925.81 6,257,415.76 3.75

4 Volcanic eruption 41.56 2,016,105.63 24,490,866.49 43.18

To that end, the author suggests that wherever possible, the prediction of fatalities
should be calculated by both methods of the fatality average and neural network, and
the results compared in order to avoid mistakes. However, where is not possible, the
fatality average is recommended for predicting the fatalities. At first glance, the DSA can
be successfully used for predicting the number of fatalities using the MA rule. However, it
fails to predict the fatalities accurately using regression analysis. In order to confirm these
predictive capabilities further, NRMSE provides a comparison, as shown in Table 14.

Table 14. The comparison between various prediction methods’ error.

Prediction Error MA Multi-Layer NN Regression

NRMSE 3.10% 30.2% 53,157.48%

Table 14 confirms the preliminary observation about the accuracy of the models. It
shows that the prediction error for the fatalities using the MA rule is the lowest (3.10%),
and it is the most accurate model for predicting fatalities in this research. The prediction
error for regression analysis is the highest (53,157%), next is NNA with 30.2%, and finally,
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the MA rule error is only 3.10%. To test this, using the MA rule, the whole population was
predicted. Table 15 shows the occasions where the predicted value falls below the actual
observed value.

Table 15. An example of inaccurate predictions from the 4252 population records.

End Date Country Name Total
Rank Killed Average Predicted

Fatality
Maximum

Predicted Fatality

4 December 2012 Philippines Tropical cyclone 13 1901 82.00 1619.00
11 March 2011 Japan Tsunami 14 19,846 154.00 8345.00

24 October 2010 Indonesia Volcanic
eruption 14 322 120.00 192.00

12 January 2010 Haiti Earthquake 16 222,570 1039.00 40,000.00
12 May 2008 China Earthquake 15 87,476 1039.00 40,000.00

Table 15 shows that there were 29 occasions of failure out of 4252 records equal to
1% (0.68%) failure in prediction. In other words, 99.3% of the time, the decision maker
can be sure to accurately predict the maximum number fatalities. In the PRED model,
there is a minimal chance of not being able to meet the requirements of the affected
population. Based on the above null hypothesis (H0), the data available at the time of
the disaster does not have any meaningful predictive ability in estimating the human
impact. On the other hand, the alternative hypothesis (H1) suggests that the data possess
the potential to forecast the human impact of the disaster. The initial analysis indicates that
the DSA method, specifically using the MA rule, shows promise in predicting the number
of fatalities. However, regression analysis was proven to be inaccurate in this regard. To
further validate the predictive capabilities, the NRMSE metric is employed, comparing
different prediction methods. Table 14 supports the initial findings, showing that the MA
rule has the lowest prediction error (3.10%) and is the most accurate model for fatalities.
In contrast, the regression analysis yields a high prediction error of 53,157%. To address
concerns about the accuracy of NRMSE for the entire population, the authors performed a
comparison based on disaster type using a smaller sample size (15% of the population). The
results in Table 12 demonstrate that, except for storms, the MA rule outperforms regression
analysis for most disaster types. The NRMSE calculations indicate that, on average, the
MA rule has a prediction error of less than 10% for most disaster types. However, due to
limited observations, volcanic eruptions remain unsupported by evidence. Additionally,
the authors argue that even for sceptical readers who question the reliance on NRMSE, the
predictions align well. A significant portion (14.6%) of the predictions falls within the range
of average to maximum fatalities, with the majority of the observed values being lower than
the predicted maximum. Table 16 presents instances where the predicted values fall below
the actual observed values. Out of 4252 records, 29 predictions (1%) show such inaccuracies,
mainly occurring in extreme cases of disasters. Based on these findings, decision-makers
can be confident that following the maximum number of predictions in the PRED model
will meet the requirements of the affected population in 99.3% of cases. This supports the
alternative hypothesis (H1) that the data possess the potential to forecast the human impact
of the disaster.

4.6. Predicting the Homeless and the Injured

By using the injured and homeless ratio discussed before, the number of injured and
homeless are predicted and compared, with an example presented in Table 16.

Table 16 indicates that the injured and homeless ratios vary across different types of
disasters and countries. For instance, earthquakes in Afghanistan resulted in an injured
ratio of 0.034 and a homeless ratio of 0.387. On the other hand, storms in certain countries
had a higher injured ratio (1.9281) and homeless ratio (13.3824). These ratios provide
valuable insights into the potential impact of disasters on affected communities.
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Table 16. Examples of calculated injured and homeless ratio.

Disaster
Subtype Country Occurrence Fatality Injured Homeless Injured Ratio Homeless Ratio

Earthquake

Brazil

2 2 6 8000 1.5 2000

Cyclone 1 3 0 1600 0 533.3333

Tsunami 5 145 276 0 0.3807 0

Flood 63 3146 2203 490,345 0.0111 2.474

Storm 9 68 1180 8190 1.9281 13.3824

Flash flood

France

9 87 5 0 0.0064 0

General flood 11 73 25 0 0.0311 0

Cyclone 8 84 82 0 0.122 0

Local storm 15 91 153 800 0.1121 0.5861

4.7. Evaluating the Injured/Homeless Prediction

In order to evaluate if the above predictions could be trusted, they could be compared
with the actual observed data. However, as mentioned above, the actual observed data
are published in the accumulated form as the “total affected population”. Total affected
population is defined as the sum of injured and homeless (Equation (5)).

Equation (5) Total affected population:

Total a f f ected ≈ homeless + injured (5)

where the injured population is defined as the people suffering from physical injuries,
trauma or an illness requiring medical treatment as a direct result of a disaster. In addition,
the homeless population is defined as the people needing immediate assistance for shelter.
Therefore, the predicted results were accumulated to make them comparable to the accu-
mulated observed data. It also indicates that in some scenarios, the equations resulting
from the regression are better predictors (such as the Philippines cyclone rank 13), whilst
in others, the equations resulting from ratios are better predictors (Nigeria flood rank 12).
NRMSE for these predictors is compared in Table 17.

Table 17. NRMSE for overall predictions (n = 4252).

Fatality The Accumulated Number of Injured and Homeless

Average Maximum Average Max

Using Table 10 Using Equations (1) and (2)
0.0171 0.0448 0.0241 0.0241

Table 17 shows that the average fatality (1.7% error for 4252 observations) is a better
predictor than maximum fatality (4.4% error for 4252 observations). In addition, the error in
the prediction of the accumulated number of injured and homeless is 2.41%, which shows
that the error in predictions of the average observation (most probable) and maximum
observation (the worst-case scenario) is 2.41%, which is less than errors in prediction for
the fatality average observation (most probable) and maximum observation (the worst-case
scenario), which is 4.48%. Thus, the overall the prediction of homeless and injured is more
accurate than fatalities. For a better picture, the success of the prediction is defined as the
percentage (out of 4252) of accurately predicted values within the range in Table 18.
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Table 18. The number of success and failures of prediction (n = 4252).

Within Average Range Within Maximum Range Out of the Range Success Percentage

Fatality 631 3589 35 99%
Injured and Homeless

Using Equations (1) and (2) 649 1179 2424 43%

Table 18 shows that on average, the fatalities predicted for 3589 occasions is within
the range of actual observation. On the other hand, for 631 occasions, the observations
conform to the maximum fatalities predicted. Finally, for 35 occasions, the prediction was
totally inaccurate. Overall, the observed fatalities conform to the prediction range in 99%
of cases. The framework predicts the homeless and injured correctly in 43% of the cases.

5. Discussion

This study focuses on the humanitarian sector and aims to address the lack of real-time
data during the response phase of disasters. The research question explores the extent to
which it is possible to predict the impact of a disaster in order to make timely and efficient
decisions to prevent loss of lives and minimise disaster impacts. The study finds that
existing research in this area is limited to specific geographical areas or disaster types, and
the data used for prediction is typically available days after the disaster.

To fill this gap, the study utilises various techniques to develop a decision-making tool
called PRED for partner selection in a disaster response network within the first 72 h after a
disaster strikes. The study accumulates, evaluates and analyses historical data from natural
onset disasters registered between 1980 and 2013, sourced from multiple humanitarian
databases. The data is filtered to focus on 4252 records that include five predictive variables:
disaster type, human development index (HDI), disaster risk index (DRI), population and
population density.

The study identifies a relationship between the impact of disasters (such as fatalities,
homelessness and injuries) and the aforementioned criteria, including disaster type and
socio-economic characteristics of the affected country. The severity of the disaster also
shows a pattern based on these criteria, with the Moving Average (MA) rule providing
the best prediction. The prediction model is developed using 60% of the dataset and
tested using the remaining 30%, with the Normalised Root Mean Squared Error (NRMSE)
used to evaluate the fitness of the prediction. Based on regression analysis and the MA
rule, the study proposes a framework to estimate the human impact of a disaster (fatality,
casualty, homelessness) based on its severity rank in the early hours of the disaster. The
predictions are presented in two scenarios, representing the lower and higher ranges, and
decision-makers can choose which range to proceed with based on personal preferences.
The study acknowledges that the reasons behind decision-makers’ choices are beyond its
scope but suggests it as an area for further research.

The research focuses on the prediction of human impact during a disaster and explores
the relationship between disaster type, socio-economic factors (HDI, DRI, population and
population density) [44] and fatalities. The study confirms that it is possible to predict the
human impact of a disaster within a certain range. The prediction model developed in
the study has an error rate of 3.10% for fatalities (1.7% for the lower limit and 4.5% for the
higher limit), and a 2.4% error rate for the accumulated number of homeless and injured
individuals (both lower and higher limits).

The findings support the proposition that there is a relationship between disaster type
and fatalities, with the fatality power of different disaster types ranked from lowest to
highest as Storm/Flood/Volcano/Cyclone/Flashflood, Tsunami/Earthquake. This ranking
aligns with previous linguistic measures identified in the Sphere project [71].

Furthermore, the study reveals relationships between fatalities and socio-economic
factors, such as HDI and DRI, as well as population and population density of the affected
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country. These findings are consistent with prior research that used fuzzy logic and
linguistic measures characterised by NGO decision-makers.

A sceptical reader might point out that a range for prediction might be counted as a
weakness for the model. The author argues that a prediction of a range has previously been
conducted in the literature. For example, in a flood due to the dam break in Netherlands,
eight methods for dam and dyke breaks were used to predict the impact within the range
from 23 fatalities to 5236 fatalities [36]. The study also shows that this prediction could be
further strengthened if the data about population within 100 km and the magnitude of the
disaster becomes available for all records in the database.

The initial understanding of the author is that the quality of prediction could be
improved if the model is re-fitted for each country separately. For example, here the
fatalities for each country have been used for pattern finding, but if we use the record of
fatalities for each state in a country, then the predictions could possibly be improved and
the prediction range would narrow. However, this requires the availability of a database for
each state of each country for decades. This could be another area for the future research if
that becomes available.

A critical overview of the findings by the authors sheds a light on the following,
firstly, it addresses a critical need: The study addresses the lack of real-time data in the
humanitarian sector during the response phase of disasters. By providing a framework to
predict the impact of a disaster, it aims to enable timely and efficient decision-making to
prevent loss of lives and minimise disaster impacts. Secondly it provides a comprehensive
approach: The study utilises a variety of techniques, including pattern recognition and
rule-based clustering, to analyse and evaluate historical data. It accumulates data from
multiple humanitarian sources and covers a wide geographical dispersion, including every
country where data was available, which enhances the robustness and generalisability of
the findings. Thirdly it identifies the predictive factors: The study identifies key predictive
variables such as disaster type, human development index (HDI), disaster risk index (DRI),
population and population density. It establishes a relationship between these variables
and the human impact of disasters, providing insights into the factors that contribute to the
severity of a disaster. Finally, its practical application: The study presents a decision-making
tool called PRED that can assist in partner selection for disaster response networks within
the first 72 h after a disaster strikes. The tool provides estimations of the disaster’s human
impact, allowing decision-makers to make informed choices during the critical early hours.

6. Conclusions, Contributions and Limitations

This paper has been structured to answer the following question: “To what extent is it
possible to predict the impact of the disaster during the response phase to enable timely
and efficient decision-making, minimising loss of lives and reducing disaster impacts?”.
The PRED model presented in this paper demonstrates the potential to predict the impact
of a disaster during the response phase, enabling timely and efficient decision-making
while minimising loss of lives and reducing disaster impacts. By employing predictive
frameworks and utilising pre-existing data, the model offers valuable insights into the
severity of a disaster, including fatalities, casualties and homelessness, within the first 72 h
of the event. The model’s ability to utilise available data at the time of the disaster, even in
the absence of official data, allows decision-makers to estimate the population affected and
allocate resources accordingly. This timely information aids in mobilising the necessary
support and implementing effective response strategies. With an average predictive error
of less than 3%, the model demonstrates a high level of accuracy in estimating the human
impact of disasters. Furthermore, the PRED model surpasses existing frameworks by its
flexibility in considering various types of disasters and geographical locations, making
it applicable in diverse contexts. Decision-makers can compare the effects of different
disaster scenarios and make informed choices based on budget constraints and personal
preferences, as the model provides a range of predictions.
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This paper addresses the lack of data at the time of the disaster by employing predictive
frameworks. In total, it included 4252 filtered historic records of five variables (disaster
type, HDI, DRI, population and population density). This data was processed through a
combination of pattern recognition techniques and rule-based clustering for prediction and
discrimination analysis. The significance of the model is in its ability to use the pre-existing
data in order to predict the impact of the data before the release of the first official data
within the first 72 h. The relationship found between the disaster human impact (fatality,
homeless, injured) and these criteria gave rise to a DSA framework to estimate the disaster’s
human impact (fatality, casualty, homeless) based on their severity rank in the early hours
of a disaster strike. The NRMSE shows that the model’s predictive error is less than 3%.

The methodological contribution is to combine a multi-step approach, including DSA,
fatality and injury prediction, in the area of prediction and decision-making in disaster
management. The practical contribution is bridging the gap in the field by enriching the
predictive power, which may hugely improve the performance of humanitarian operations.
By relying on the available data at the time of the disaster, which are freely available to the
public, the cost and the time required for collecting and analysing data could be reduced.
Consequently, it speeds up the response time of the aid operation by almost 72 h, which
is vital at the time of the disaster. In addition, it is the only existing framework that is not
limited to a certain type of disaster (although it just considers the five types of natural
onset disasters) or geographical or chronological order. These unique characteristics make
it possible for decision makers to compare the effects of the different types of disasters
affecting different areas at different times.

Another contribution is that the model has the capability to accommodate the socio-
economic characteristics of the affected population, which hugely influences the required
aid in humanitarian response practices. The model also has the capability to facilitate
the predictions of damages, as required by the insurance industry. Another practical
contribution is that by providing a range of predictions (average, maximum), it enables
the decision maker to decide based on their budget limitations and personal preferences.
It also gives different organisations the chance to customise the model using their own
database if required. However, the authors believe that this model, in the long-term, could
facilitate the establishment of a centralised database for humanitarian response, which
is long overdue. This also could help in the long run to provide a basis for introducing
universal performance measures and a framework for humanitarian operations because the
universal data feed renders the organisations and their performance comparable to each
other. The model can be used by decision makers to calculate the population affected during
the first 72 h after the disaster strike, when no official data is available. This could be helpful
in resource mobilisation and allocation. The model can help to weigh alternative scenarios
in different disasters and the prediction can be updated annually to reflect new disasters.
However, it is unlikely that the DSA and, therefore, predictions change drastically, unless
very large outliers arrive in the data set regularly due to regular devastating disasters with
high human impact. At that point, these outliers will become part of the pattern and the
updated pattern will then require an updated DSA and will lead to different predictions.

Another argument is that the author believes that the PRED model presented here
exceeds the existing frameworks in a variety of criteria. First of all, the existing methods,
such as Hazard US or HAZUS [72], require a high degree of precise data provided by highly
funded and equipped entities, such as NASA, with extremely well trained staff and they
are less applicable in developing countries. The model can work with the simple freely
available data on variables such as population, HDI, DRI and disaster type, and it can be
quickly employed in any country regardless of their level of socio-economic development.
It can also be complimentary to the method developed to be used in the countries with
less developed infrastructures [31] as it focuses on mitigation and preparedness phases. To
that end, the model presented in this paper can be used to inform the decisions further in
the response phase after the planning for mitigation has been implemented and before the
planning for recovery is launched. The model is also different from the decision support
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tools for severity assessment [44], which aims to assist the NGOs in the prioritisation of
their tasks after the disaster strike. Although their method is robust and sophisticated,
it requires a great deal of mathematical and analytical expertise. The step-by-step guide
of the PRED model with a platform of embedded formulas requires almost no technical
expertise and any decision maker with a minimum level of literacy could benefit from
it. PRED is also different from other methods, such as EMPROV, which are designed to
support improvised decision-making [72] because they assume the data are available and
do not provide frameworks for predicting the unavailable data, such as fatalities during the
disaster response. The method of pattern finding in this study is, to some extent, similar to
rule-based clustering used for prediction in various studies [72,73]. However, it is unique
in a sense that it uses the available data to predict the impact in the early hours of disaster
strike, with no real-time data drawn from the area. All of the other frameworks discussed
above use some level of data drawn from the disaster area days after the disaster strike.
They also do not specifically address every disaster type and country.

However, it is important to acknowledge that the predictive accuracy of the model is
contingent upon the quality and availability of data. Discrepancies may arise due to factors
such as delayed reporting and population movements, which can affect the accuracy of
predicted numbers of injured and homeless individuals. Nevertheless, the PRED model
presents a promising approach that can continually improve through the integration of
updated data and refinement of the prediction methodology. In summary, the PRED
model offers a viable solution for predicting the impact of disasters during the response
phase, enabling timely and efficient decision-making to minimise loss of lives and reduce
disaster impacts. While there are inherent limitations, the model’s practical benefits and its
ability to utilise available data make it a valuable tool for decision-makers in the field of
disaster management.

One of the limitations of this study is the discrepancies between the observed and
predicted numbers of injured and homeless. This can be explained in two ways. First,
that there is no evidence whether the accumulated number of affected populations counts
the injured people who are also homeless twice. This might cause discrepancies. The
non-accumulated account of homeless and injured were not available from Munich RE,
and CRED databases. In addition, it should be taken into account that the observations are
reported months after a disaster strike and do not necessarily comply with the early hours
of the disaster. For example, some of the injured people in the early hours of the disaster
might, unfortunately, be reported later on. Some of the homeless people in the early hours
after the disaster might be relocated to other cities to join family and friends later on, when
the panic of the early hours has passed. Furthermore, some disasters, such as floods, could
last months, whilst some disasters, such as earthquakes, happen in a matter of seconds.
When a disaster lasts a long time, the number of the affected population could increase
over the following weeks, and therefore, there is a huge discrepancy between the reported
number in the early hours after the disaster strike and the numbers reported months later.
Therefore, the above model needs to be applied, considering the above limitations. Another
limitation is that the model is built upon secondary data from various sources [11,28,40,53],
amongst others in which the data varies from case to case. Therefore, the model is only
as accurate as its data feed. In addition, the prediction of the injured and the homeless
population is based on the available aggregated data, in the absence of separate data sets.
Despite the authors’ attempts, data individually reporting the injured and homeless were
not found for any of the 4252 cases. However, if they become available in the future, the
author believes that repeating the process of prediction may greatly improve the quality of
the predictions.

Future research in this area can build upon the PRED model presented in this paper
and explore the following directions. First, enhancing data accuracy: Since the model
relies on secondary data from various sources, future research can focus on improving
the accuracy and reliability of the data feed. This can be achieved by collecting more
comprehensive and standardised data sets specifically targeting disaster-related variables,
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such as fatalities, injuries and homelessness. Second, including additional variables: The
current model incorporates variables such as disaster type, HDI, DRI, population and pop-
ulation density. Future research can explore the inclusion of additional relevant variables
that may influence the human impact of disasters, such as infrastructure resilience, early
warning systems and response capabilities. Third, fine-tuning prediction accuracy: The
study acknowledges discrepancies between observed and predicted numbers of injured
and homeless individuals. Future research can delve deeper into understanding these
discrepancies and work towards refining the prediction accuracy by accounting for factors
such as population movement, delayed reporting and the varying duration of different
types of disasters. Fourth, addressing geographical and temporal variations: While the
PRED model considers multiple disasters and geographical locations, future research can
focus on capturing the specific nuances and characteristics of different regions and coun-
tries. This can involve conducting case studies in diverse locations and examining the
applicability and effectiveness of the model in various contexts. And finally, integration
with decision support systems: The PRED model can be integrated into decision support
systems for disaster management. Future research can explore ways to integrate the model
into existing systems or develop new decision support tools that utilise the predictions
provided by PRED to aid decision-making during the response phase of disasters.
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