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Abstract: Background: The logistics network design with cross-docking operations enables shipping
service providers to integrate the physical flow of products between vendors and dealers in logistics
management. The collective goal is to synchronize the goods in both pickup and delivery operations
concurrently to reduce the handling cost, inventory cost, and operation cost generated. Therefore,
the optimal vehicle routing plan is crucial to generate a truck routing schedule with minimal total
cost, fulfilling the purchasing requirements and the distribution demand. Global warming and
climate change are important topics due to increasing greenhouse gas emissions. Sustainable logistics
management with optimized routes for trucks can assist in reducing greenhouse gas emissions and
easing the effects of temperature increases on our living environment. Methods: A heuristic approach
based on Particle Swarm Optimization, called ePSO, was proposed and implemented in this paper to
solve the vehicle routing problems with cross-docking and carbon emissions reduction at the same
time. Results: Performance comparisons were made with the Genetic Algorithm (GA) through the
experiments of several vehicle routing problems with pickup and delivery benchmark problems to
validate the performance of the ePSO procedure. Conclusions: Experimental results showed that the
proposed ePSO approach was better than the GA for most cases by statistical hypothesis testing.

Keywords: sustainable logistics management; cross-docking; particle swarm optimization; vehicle
routing problem

1. Introduction

With the global economic depression during COVID-19 and the war between Russia
and Ukraine, enterprises pay much attention to supply chain management (SCM) and
global logistics management restructure. One of the most important considerations in
implementing SCM is controlling the physical flow of goods in the supply chain efficiently.
An efficient and effective logistics operation enables companies to quickly respond to
customers’ requirements and to build their own competitive edge over competitors. As a
matter of fact, logistics costs weigh on companies’ total production and distribution costs
significantly. For example, transportation costs account for one third to two thirds of a
company’s overall distribution costs in general. The authors of [1] identified logistics costs
that account for approximately 10% of a company’s revenue, while the authors of [2] argued
that 30 percent of the final cost is incurred in the distribution channel. Therefore, to lower
costs, increase profits, and improve a company’s overall performance, a well-organized
and highly efficient logistics network appears essential [3,4]. Therefore, cross-docking
(CD) operations for depots in the supply chain are considered a good method to reduce
inventory and improve responsiveness to various customer demands [5].

CD is a concept of flowing goods from receiving to shipping without ever putting
them into the warehouse for storage, with the aim of reducing the delivery time and the
storage cost. In a traditional CD warehouse, shipments are unloaded from incoming trucks,
which unload goods from suppliers, at the unloading area. Then, warehouse operations are
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performed, such as unpacking, sorting, and repacking shipments according to the orders of
customers, and then loading them into outgoing trucks at the loading area to be delivered
to customers. It is also considered as the optimal vehicle route for the associated direct
service fulfillment, subject to truck capacity limitations and service time constraints [6–8].

The time for the shipments in a CD warehouse usually does not exceed 24 h [9]. To
achieve an optimized routing plan, the physical flow of goods in the distribution channel
and the CD scheduling should be considered together with the routing of outgoing vehicles
in a vehicle routing problem with cross-docking (VRPCD) to generate the lowest transport
costs and increase the performance of supply chain. For a complete review of VRPCD-
related literature, see [10]. The primary objective of VRPCD is to avoid inventory and
handling costs so that there will ideally be no inventory stored in the central warehouse.
The author of [11] mentioned that a successful CD system can bring companies significant
benefits, including inventory reduction, low space requirements and transportation costs,
increased customer responsiveness, and the smooth control of the distribution process.
Figure 1 shows a typical layout of the CD operation. The physical flow of goods is collabo-
ratively optimized from suppliers and retailers on both sides of the pickup and delivery
processes, respectively, in order to achieve no inventory and no delayed shipment scenario
to reduce overall transportation costs as well as to increase customer satisfaction and the
speed of responses, as shown in the following Figure 1.
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Figure 1. A vehicle routing network begins with picking up raw materials from suppliers, trans-
porting them to the cross-docking center for the sorting, repacking, and dispatching processes, and
delivering them to retailers.

Climate change causes devastating impacts: extreme weather conditions such as
flooding, tsunamis, and storms; polar ice caps melt and sea level rise; increased food
insecurity; and other disasters. Global warming and climate change are important topics
due to the theoretical increase in greenhouse gas emissions into the atmosphere, and require
immediate attention for all countries in the world. One of the interesting observations
during COVID-19 beginning from the year 2020 up to the time of this paper’s preparation
period is that several regions have been on lockdown for months, especially for areas
in East Asia. As people stay at home or work from home for longer than normal times,
the pollutants in the atmosphere, especially the troposphere, are reduced by around 9%
to 64% [12]. It is obvious that peoples’ behaviors have a huge impact on the amount of
pollutants in the atmosphere. In addition, electricity usage increased at the same time due
to the power required by air conditioning systems. Therefore, how to reduce greenhouse
gases emission in regular activities and manufacturing industries has become an important
issue. Inefficient logistics management produces more greenhouse gas emissions since
vehicles need to travel for a longer time and require more gas. International enterprises
must pay more attention, not only to protecting our environment but also to handling
supply chain disruptions, and take actions to green their supply chains [13].

This paper focuses on solving the vehicle routing problem with cross-docking while
reducing CO2 emissions in sustainable logistics management. To effectively implement
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the CD system into logistics networks, both receiving (pickup) and shipping (delivery)
processes must be considered at the same time. The authors of [14] argued that the core issue
in the pickup process is that all routing vehicles must arrive at the CD depot simultaneously.
In other words, the early returned vehicle must wait at the depot till all other vehicles
arrive from their pickup tasks. Moreover, the number of arrived products from suppliers
must be equal to the number of products ready to be delivered to customers from the
sorting centers. Then, through the sorting, repacking, and dispatching processes in the
CD warehouse, the designated shipments are loaded into each corresponding vehicle for
delivery to their respective destinations. In addition, to minimize total processing time
(sorting, repacking, dispatching) or to maximize the throughput of the CD system, the
authors of [15] studied a CD system that has a temporary storage area in front of the
dispatching dock for automated guided vehicle systems. One of the objectives is to find
the best truck docking sequence for both inbound and outbound trucks. In addition to
AGVs, several information technology projects were also proposed to assist route planning.
The authors of [16] proposed to track cars (4000 taxis) by using Global Positioning System
signals. They developed a cell-based algorithm to forecast travel times to provide traffic
conditions for drivers. The authors of [17] proposed industrial information integration by
using an elitist nondominated sorting GA to help companies develop supply chain systems.
The model was used to minimize transportation, carbon emissions, and time-window
penalty costs.

Since the VRPCD is a well-known NP hard (non-deterministic polynomial-time hard)
problem, applying an efficient heuristics technique is necessary to obtain a best or near
optimum solution within a reasonable amount of computation time. The authors of [18]
proposed a modified Ant Colony Optimization (ACO) to solve the vehicle routing problem
(VRP) and found out the competitiveness of the proposed multi-ACO algorithm in terms of
computation time, particularly when the number of customers is large. The author of [19]
dealt with the pickup and delivery VRP by the tour-partitioning heuristics. The goal was to
obtain the optimal set of vehicle routes as well as to minimize the total traveling distance.
The author of [20] deals with the VRP with simultaneous pickup and delivery (VRPSPD) by
the adaptive memory algorithm, which proved to be rather effective and efficient than other
heuristics. Furthermore, they found some new best-known solutions for the numerous
VRPSPD instances. The authors of [21] proposed a centralized route-management solution
for autonomous vehicles in urban areas to control traffic that generates benefits for citizens.
Their experimental results proved that their traffic prediction equation on the route server
can achieve substantial improvements for average travel speeds and travel times. In this
paper, we aim to propose a heuristic approach based on the Particle Swarm Optimization
(PSO), called ePSO, to solve the VRPCD by adding CO2 emissions reduction and CD
operation in the objective function and constraints.

Research assumptions and the mathematical model’s limitations are listed here:

1. Each route begins and goes back to the same depot. All trucks for delivery depart at
the same time.

2. There are no product categories (or stock-keeping units) in the study.
3. Customers are visited exactly once by a service truck during the pickup and delivery

route, and have known inhomogeneous demand; the service time is assumed to be
close to 0.

4. The location of each customer for pickup and delivery is separately known.
5. Assume every truck has a homogeneous vehicle capacity. The total demand for each

route cannot exceed the truck’s capacity.
6. The distance per unit in the plane coordinates is 1 km.
7. Assume that every liter of gas consumed produces 2.2 kg of CO2 and converts it to an

equivalent cost in the mathematical model by [22].

This paper is organized as follows. Section 2 provides a literature review of the study.
In the third section, research problems and an ePSO approach were proposed to solve the
vehicle routing problem with cross-docking while reducing CO2 emissions at the same time
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in sustainable logistics management. Section 4 describes experiments and results. Finally,
Section 5 reports the conclusions and findings of the study.

2. Literature Review

The concept of VRP was initially brought up by the author of [23] as solving the
“Truck Dispatching Problem”, in which a linear programming formulation was proposed
to generate a near-best solution for the truck scheduling problem. Afterwards, numerous
studies and algorithmic approaches have been proposed to solve the developing routing
problems based on their study. The author of [24] used the TOPSIS multi-criteria technique
to identify the most widespread performance objectives for the VRPs and found out the
performance objectives in route plans “level of service”, “total number of vehicles” and
“total distance traveled” were the most important factors for route planning. The author
of [25] dealt with the multiple pickup and multiple delivery VRP with time windows and
heterogeneous fleets by ACO approach. The goal was to obtain the optimal set of vehicle
routes as well as to minimize the total travel distance and to solve the problem on the
large-scale.

Moreover, the authors of [26] proposed an integer linear programming approach,
under constraint relaxation and sub-tour elimination, to solve the VRP with capacity and
distance restrictions. The authors of [27] applied a hybrid heuristic which incorporates a
genetic algorithm with neighborhood search to solve the basic VRPs. The results showed
that the hybrid GA has a significant improvement over the pure GA and is competitive with
the simulated annealing approach [28] and the tabu search [29,30] based on the comparison
of the benchmark problems.

The PSO is a newly developed evolutionary meta-heuristic in the field of Swarm
Intelligence, like the ACO mentioned in Section 1. It was first introduced by the authors
of [31] as the observation of simplified social models of bird flocks. After the introduction,
various modifications have been presented. The authors of [32] and the authors of [33]
added the inertia weight W to the original PSO equation. They argued that the W plays
a role in balancing between local and global search and proved that when the value of
W ranged from 0.9 to 1.2 on average, this results in a better performance. Moreover, a
discrete binary version of PSO was presented by the authors of [34]. The concept of the
PSO function remains the same, except the trajectories are changed in terms of probability.

The author of [35] first applied a discrete-type particle optimizer to the Traveling
Salesman Problem (TSP). The author used the integer-based mapping approach to transfer
the position of particles to the sequence of TSP’s combinatorial solution. The velocity then
is defined as exchange numbers between two positions. Around the same period, the
authors of [36] applied PSO to solve the task assignment problem, where they adopted
the real-number-based representation to map an M-task assignment into corresponding
M-coordinate particle positions. The result showed the performance of their proposed
PSO is better than GA, based on the solution quality and computation time over several
randomly generated instances.

The authors of [37] presented a developed PSO algorithm with an indirect real-number-
based representation of (n + 2m) to map the priority lists of an n-customer and m-vehicle.
The priority of the customer is assigned based on the value of a given dimension of particles.
Next, the concept of the vehicle orientation point is introduced to indirectly cluster the
customers and then prioritize each further. At the same time, the same authors of [38]
introduced another representation method of 3m dimensional particles and replaced the
concept of the vehicle orientation point with the vehicle coverage radius to construct the
routes. The result showed the 3m mapping method outperformed the (n + 2m) one in
solving the capacitated VRP instances.

Moreover, the authors of [39] applied an extended version of discrete PSO (DPSO)
to solve the flow-shop scheduling problems, and following the authors of [40], expanded
the proposed DPSO by introducing an inheritance scheme into the particle construction
step to solve the lot-streaming flow-shop scheduling problem. Both results showed the
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proposed/improved DPSO algorithms are efficient in solving the benchmark problems for
single/multiple-objective flow-shop and lot-streaming flow-shop problems, respectively,
over the comparisons with GA/hybrid GA algorithms.

With the continuous development of the VRPs, the Pollution-Routing Problems (PRPs)
are linked directly to one of the United Nations’ 17 Sustainable Development Goals. The
PRPs were first proposed in 2011 by the authors of [41], which served as a variant of classical
VRPs, with objective functions that considered not only the transportation range, but also
greenhouse gases emission, gas usage, transportation times, and their costs. Moreover,
variants of the PRP attracted many researchers’ attention for environmental-protection
purposes. The authors of [42] extended the PRP into a dual objectives model pertaining
to the minimization of fuel consumption and driving time in 2014. They developed an
adaptive large neighborhood search method, combined with speed optimization, to solve
the bi-objective PRP. The authors of [43] added time-dependent constraints into the PRP,
considering that traffic congestion at peak hours lead to increased CO2 emissions, for a
time-dependent PRP model, in 2017. The authors of [44] proposed an ε-accurate method
in a continuous optimization module to solve the continuous PRP. The authors of [45]
proposed an improved GA approach to solve the PRP by minimizing CO2 emissions in the
objective function and constraints of the PRP’s formulation. Finally, the authors of [46] dealt
with a time-dependent pollution-routing problem with one general period of congestion
(PRP-1GPC), where the start and finish times of this period can be set freely. They used an
adaptive large neighborhood search to optimize the routing plan.

3. Problem Proposition and Proposed ePSO Heuristics Approach
3.1. Vehicle Routung Problem with Cross-Docking Mathematical Formulation

The VRP generally is described as a graph format, with vertices standing for terminal
points and arcs as vehicle routes, as shown in Figure 2. The basic notations for all VRPs are
shown as follows:

G = (V , E∪A),

where V = {v0, . . . , vn} is a vertex set;
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Figure 2. An example of a VRP roadwork.

A = {(vi, vj): i 6= j, vi, vj ∈ V} denotes the directed arc set;
E = {(vi, vj): i < j, vi, vj ∈ V} denotes the set of undirected edges;
v0 stands for the central depot where pickups and deliveries are made from this point.
On the problem of the vehicle routing with one CD hub introduced by the authors

of [14], the constraints for the simultaneous arrival of each truck from the pickup routes
and the equivalent quantity of goods transported in both sides of the supply chain are
particularly emphasized. Therefore, several assumptions are made in the VRPCD for-
mulation. First, we have n nodes, which are comprised by both suppliers and retailers
serviced by m vehicles. Each vehicle must be sent out and arrived at the CD (i = 0) hub,
particularly restricting the simultaneous arrival of vehicles from pickup routes. Second, for
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each customer, only one vehicle is assigned and associated with a cost amount of Cij. Every
customer has the same amount of demand d, which is restricted to the capacity limit q of
each truck. Moreover, time horizon T specifies the total distance traveled by trucks which
cannot be exceeded. Two types of cost are considered in this model: (1) transportation cost;
and (2) CO2-emission-equivalent cost. The overall scope is to obtain the optimal routing
schedule while minimizing the number of vehicles used in the planning. The following
presents the decision variables of VRPCD model in this paper.

Decision variables:
Xijk: a binary variable representing the route from i to j is serviced by vehicle k.

Xijk =

{
1, if vehicle k is in the tour from i to j;
0, otherwise.

Yijk: loaded quantity of vehicle k from pickup trip i to j.
Zijk: unloaded quantity of vehicle k from delivery trip i to j.
tcijk: the transportation and CO2 emission cost of vehicle k from customer i to j.
etijk: time for vehicle k to move from i to j.
δik: service time required by vehicle k to load/unload the quantity demand at i.
m: total number of trucks.
n: total number of demand points.
ck: fixed cost of vehicle k.
q: maximum capacity for each vehicle.
T: planning horizon.
P: unit demand from each pickup stop.
D: unit demand from each delivery stop.
DTjk: departure time for truck k to leave node j.
ATk: arrival time for truck k.
Objective function:

Minimize Z =
n

∑
i=0

n

∑
j=0

m

∑
k=1

tcijkXijk+
m

∑
k=1

n

∑
j=1

ckX0jk (1)

Subject to:
n

∑
i=0

m

∑
k=1

Xijk = 1, for j = 1, 2, . . . , n; (2)

n

∑
j=0

m

∑
k=1

Xijk = 1, for i = 1, 2, . . . , n; (3)

n

∑
i=1

Xihk =
n

∑
j=1

Xhjk, for k = 1, 2, . . . , m; h = 1, 2, . . . , n; (4)

n

∑
j=1

X0jk ≤ 1, for k = 1, 2, . . . , m; (5)

n

∑
i=1

Xi0k ≤ 1, for k = 1, 2, . . . , m; (6)

Yijk + Zijk ≤
n

∑
i=1

Qi

n

∑
j=1

Xijk, for k = 1, 2, . . . , m; (7)

Yjik −Yijk =


Pj, if j ∈ P, i = 1, 2, . . . , n,
0, if j ∈ D, i = 1, 2, . . . , n,

−
n
∑

i=1
Pi, if j ∈ 0, i = 1, 2, . . . , n;

(8)
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Zijk − Zjik =


0, if j ∈ P, i = 1, 2, . . . , n,
di, if j ∈ D, i = 1, 2, . . . , n,

n
∑

i=1
di, if j ∈ 0, i = 1, 2, . . . , n;

(9)

n

∑
i=0

n

∑
j=0

δikXijk +
n

∑
i=0

n

∑
j=0

etijkXijk ≤ T, for k = 1, 2, . . . , m; (10)

DTjk =
(
etij + DTik + δj

)
Xijk, for k = 1, 2, . . . , m; (11)

ATk = (eti0 + DTik)Xi0k, for k = 1, 2, . . . , m; (12)

ATk = ATk′ , for k′ 6= k. (13)

Equation (1) states the overall objective is to minimize transportation costs, CO2
emission equivalent costs, and fixed costs. Equations (2) and (3) specify that a customer is
serviced by only one truck, and Equation (4) means each truck arriving at that customer
node must also leave from that node. The constraints of each vehicle are that it is only
allowed to start from and return to the CD hub and is used to serve at most one route,
which are shown in (5) and (6), respectively. Equation (7) specifies that the loaded and
uploaded demand from pickup and delivery processes cannot exceed the vehicle quantity
limit. Equations (8) and (9) each detail the quantity limit for pickup and delivery processes.
The total distance visited and time traveled cannot exceed the planning horizon specified
in Equation (10). Equations (11) and (12) state the departure and arrival time, respectively.
Equation (13) constrains the simultaneous arrival of vehicles at the CD hub.

3.2. Particle Swarm Optimization

As a metaphor for a group of birds randomly searching for food in an area, the best
strategy to find the food is to follow the one who is closest to the source of the food. The
velocity (Vid

t) of a particle is determined by three terms at each iteration. First, the inertia
factor forces the particle to fly in the same direction as its previous iteration. Second, the
self-cognitive factor forces a particle to go back to its previous best position (Pid). Third, the
social term forces a particle to move to the group’s best position (Pgd). Afterwards, each
particle is able to update its current position (Xid

t) to the next one (Xid
t+1) based on the new

direction generated. Figure 3 illustrates the searching behavior of particles.
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The evolutionary step of our proposed PSO heuristics is developed based on the
following formulations, where Rand1() and Rand2() are two random-number generators:

Vid
t = W ×Vid + ϕid1 × Rand1()×

(
Pid − Xid

t)+ ϕid2 × Rand2()×
(

Pgd − Xid
t
)

, (14)
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Xid
t+1←Xid

t + Vid
t. (15)

Subject to:
If Vid > Vmax, then Vid = Vmax;

If Vid < Vmax, then Vid = −Vmax;

In addition, the individual best position is updated using:

Pid =

{
Pid, if f (Xid) > f (Pid),
Xid, if f (Xid) ≤ f (Pid).

(16)

The global best of each individual particle is updated using:

Pgd =

{
arg{min f (Pid)}, if min f (Pid) < f (Pgd),
Pgd, else.

(17)

3.3. Research Methodology

To ensure the potential for minimization of the total cost incurred, each dispatched
vehicle must serve the maximum number of customers under the capacity limit and the
route’s minimum traveling distance. Accordingly, clustering customers based on their
area closeness to assigned deliveries must be established first. In this paper, we apply this
practical strategy of a two-phase route construction approach to solve the VRPCD problem.
Figure 4 shows the standard cluster-route shipping approach. Moreover, there are many
gene string representations in the literature, including binary representation, floating point
representation, and integer representation. In this paper, we chose an integer representation
to represent our gene string. Figure 5 shows a gene string representation as an example.
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Every gene can be represented as an integer number, as shown in Figure 5. Each
node number is the gene and has a corresponding DNA order. In this paper, number 0
means depot, and other numbers represent customer’s number. This representation in
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route planning means a vehicle starts from depot 0, visits node 1, node 2, node 3, node 4,
node 5, and finally returns to depot 0.

In the route-generating phase, the nearest neighbor search or closest point search [47]
is executed to circle different shipping networks that cover relatively narrow areas traveled
by vehicles in order to fulfill the maximum number of customers under the capacity limit.
In this case, we increase the potential of generating the least number of vehicles used and
distances traveled by vehicles.

Second, a permutation-based mapping technique is developed in the route optimizing
phase in order to apply particles’ continuous flying trail to the discrete solution domain of
the VRPCD. We inherit the initial routes generated in the first step to determine the number
of vehicles needed to fulfill total demands. Within each cluster of customers, the particle
dimension is set to be the number of customers served. In other words, we deem different
groups of particles as the number of vehicles to move toward each best solution, which
represents the best combination of routing sequences we desire.

3.4. ePSO Heuristics Procedure

As mentioned, a permutation-based representation is developed to perform the parti-
cle construction phase. The dimension of a particle represents the position of the nodes
to be visited by vehicles. Consequently, the velocity is then generated as real-value-based,
representing the following difference in nodes between two random permutations from
the same route. Therefore, the differences in velocities have different means of direction
change, leading to the adjustment of an individual particle’s searching path. In addition,
with the inclusion of inertia weight W factors, the velocity then plays a role of probability
in the occurrence of executing the rate of direction change.

Moreover, each particle can record its own best experience of flying as well as detect
and share other particles’ knowledge. The best experience here implies whichever per-
mutation set generates the best fitness value. Based on this characteristic, we initiated
the movement of pursuing quality positions (learning) to compose the cognition mode
(Pid − Xid) and social mode (Pgd − Xid), respectively. Therefore, the difference in velocity
can be obtained by this subtraction procedure.

Afterwards, with the composition of two learning factors ϕid1 and ϕid2, which each
control the speed of acceleration that pulls particles toward Pbest and Gbest, the probability
of transpositions can thus be performed. In other words, the pace of direction change is
determined by the probability assigned. The following Table 1 details the procedure of the
proposed ePSO algorithm.

Table 1. The algorithm of the proposed ePSO heuristics for solving VRPCD.

Step 0. Begin procedure
Initial parameters: ϕid1, ϕid2, and W, swarm size, and maximum number of iterations, etc.

Step 1. Generate initial solution

1.1 Generate initial solutions for pickup and delivery routes by clustering nodes (Np and Nd) under the consideration of vehicle
capacity (Q) that fulfills the total demand (D) aggregated and least distance traveled for each route.

1.2 Least distance traveled and minimization of CO2 emissions costs within each cluster: first served supplier or customer is
determined by the shortest distance from the cross-docking depot (i0). The next nodes are assigned based on the principle of
the nearest neighbor from the previous node.

1.3 Number of clusters formed so that the number of vehicles (m) to dispatch is determined.

Step 2. Initialization (start iteration 0)
For i = 1 to NumSwarmSize; d = 1 to NumParticleDim

2.1 Randomly permuting particle positions Xid
0 = [Xi1

0, Xi2
0, . . . .., Xid

0], which are inherited from the initial permutation
generated in 1.2 and 1.3.

2.2 Velocity is established randomly as Vid
0 = [Vi1

0, Vi2
0, . . . .., Vid

0] in accordance with the particle dimension d and is bounded
with the limit of Vmax.
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Table 1. Cont.

Step 3. Evaluation

3.1 Evaluate the fitness value (f value) of each particle in the swarm.
3.2 Set the individual best (Pbest) equal to Xid

0, where Pid
0 = [Pi1

0 = Xi1
0, Pi2

0 = Xi2
0, . . . .., Pid

0 = Xid
0].

3.3 Obtain the group best Pgd
0 (Gbest) by sorting out the Pid

0 with smallest f value.

Step 4. Iteration process
Loop: iteration t = t + 1
Update velocity and position

4.1 Compute Rand1() × ϕid1 (Pid − Xid) by establishing a change in probabilities with sequence exchanges between the two
permutations, Pid and Xid. The same step is applied on Rand2() × ϕid2 (Pgd − Xid).

4.2 New Vid
t updated by W × Vid

t−1 + ϕid1 × Rand1() × (Pid
t – Xid

t) + ϕid2 × Rand2() × (Pgd
t − Xid

t).
4.3 Update individual particle’s positions Xid

t+1 = Xid
t + Vid

t.

Determine new Pbest and Gbest

Pid
t+1 =

{
Pid

t, if f (Xid
t+1) > f (Pid

t),
Xid

t+1, if f (Xid
t+1) ≤ f (Pid

t).

Pgd
t+1 =

{
argmin f (Pid

t+1), if min f (Pid
t+1) < f (Pgd

t),
Pgd

t, else.
Repeat
If maximum iteration is achieved, stop; otherwise, go Loop.

4. Computational Experiments

The Design of Experiment (DOE) is initiated to verify the optimal PSO parameter
settings (ϕid1, ϕid2, and W) for the proposed heuristics as a preliminary step. The recom-
mended ranges of the three were derived from previous literature [33,48] and applied
on one randomly selected instance. Therefore, a complete 43 factorial experiment design
is constructed, specifying that ϕid1 and ϕid2 were set at the range of [0.4, 1.9] with an
increment of 0.5, while W was suggested as [0.8, 1.4] with an increment of 0.2. Figure 6
shows the main effects plot from the results of DOE. A, B, and C are each symbolized as
ϕid1, ϕid2, and W. Y is the response of the total cost, including carbon pollution cost.
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It is observed that our proposed ePSO algorithm produced a better quality of solution
when the three were all assigned at level 1, which is 0.4 for both ϕid1 and ϕid2, and 0.8 for
W. Other than that, the number of particle sizes is given at 200, and the maximum iteration
is set at 1000 trials as the termination criterion. On the other hand, the population size of
genes in the GA method is set at 50, with a mutation rate of 0.06 and a crossover rate of
0.15. The maximum iteration number is 1000 trials, with 30 replications for each instance.



Logistics 2022, 6, 62 11 of 15

Sixty datasets of VRP pickup and delivery benchmark problems with the condition of
homogeneous demand were experimented on. Each instance is replicated for 30 runs for
both the GA and the ePSO algorithms. The experimental results are given in Table 2.

Table 2. Comparisons of minimum total cost for the ePSO with GA.

No. Instance GA ePSO No. Instance GA ePSO

1P1 1617.71 1572.09 31P1 1041.12 1025.50
2P1 1788.00 1791.85 32P1 1223.01 1206.50
3P1 2175.71 2175.71 33P1 1649.25 1632.81
4P1 1513.00 1505.17 34P1 955.92 957.60
5P1 1588.97 1574.28 35P1 1183.73 1178.87
6P1 2075.80 2062.60 36P1 1642.65 1632.16
7P1 1688.25 1654.85 37P1 1142.94 1127.24
8P1 1740.61 1721.43 38P1 1293.50 1289.56
9P1 2085.49 2034.57 39P1 1698.30 1693.74
10P1 2021.74 1998.01 40P1 1026.61 1020.44

11P1 1937.52 1923.21 41P1 1294.75 1284.06
12P1 2224.89 2191.13 42P1 1743.6 1724.90
13P1 1687.86 1676.29 43P1 1200.26 1185.10
14P1 1822.42 1793.59 44P1 1355.71 1333.86
15P1 2065.08 2009.82 45P1 1656.96 1631.16
16P1 1368.41 1364.13 46P1 1100.42 1087.80
17P1 1466.61 1462.48 47P1 1248.41 1248.41
18P1 1801.82 1772.76 48P1 1641.21 1641.21
19P1 1079.62 1076.95 49P1 1140.18 1135.11
20P1 1179.45 1174.99 50P1 1346.41 1336.44

21P1 1526.74 1517.37 51P1 1734.86 1724.98
22P1 1141.29 1132.40 52P1 1358.85 1331.17
23P1 1239.31 1222.51 53P1 1508.96 1492.33
24P1 1568.71 1550.76 54P1 1823.91 1819.08
25P1 1045.00 1022.92 55P1 1375.68 1362.92
26P1 1131.59 1120.17 56P1 1532.66 1502.50
27P1 1471.00 1462.20 57P1 1981.11 1949.11
28P1 1207.28 1204.93 58P1 1310.87 1295.22
29P1 1298.99 1288.95 59P1 1442.05 1425.48
30P1 1630.19 1615.41 60P1 1867.95 1849.82

A paired T-test was conducted to verify the performance of the two methods. The
hypothesis test is:

H0: µGA − µePSO = 0

HA: µGA − µePSO > 0

Result showed that the t-value is 9.62 and the p-value = 0. Hence, we can reject the null
hypothesis under a 0.05 significant level and conclude that µePSO is significantly smaller
than µGA. That is, the total cost, including transportation cost, CO2 emission cost, and fixed
asset cost, generated by the ePSO approach is smaller than the total cost generated by the
GA in our experiments. Figure 7 presents the optimum routing plan for instance 16P1 with
a central depot located at (50, 50) as an example.
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5. Conclusions

This research studies the practical operation of cross-docking between the pickup and
delivery routing schedule in the logistics network, with the optimization of vehicle route
scheduling aiming to minimize the distribution costs incurred in the supply chain activities.
Major contributions of this paper include the integration of the operational modeling of
cross-docking, minimizing cost for both pickup and delivery process, and minimizing CO2
emissions costs in the supply chain optimization design. A significant development lies in
synchronization for hub operations between upstream suppliers and downstream retailers.
With the establishment of this model, the desirable scenario of no customer order delay
and no inventory stocking in the central warehouse can be practically achieved.

One important contribution of this paper is to consider carbon emissions costs in both
objective functions and set of constraints in the mathematical model, and to propose a
metaheuristic approach to solve this model. By doing this, the mathematical model can
optimize routes for trucks, not only considering transportation costs and operation costs,
but also embed CO2 costs in the model as a study in sustainable logistics management.
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A third significant effort reflects on the proven robustness of the proposed ePSO
approach, which can be effectively applied to solve combinatorial optimization problems.
The experimental results from 60 pickup and delivery benchmark problems showed that
the proposed ePSO approach can produce significant improvements over the GA algorithm
for the total minimum cost, validated by the paired T-test. In addition, the ability of the
proposed ePSO to discover a better best solution than the GA was verified in a set of
55 instances out of the 60 benchmarks in the experiment.

For future work, there are many unfinished studies that are not covered in this paper.
First, the estimated pay-off limit may be calculated to provide evidence for the model. There
are many factors that are worth investigating, such as the duration of the transport task and
the road, transport path, emissions of harmful compounds, the safety of vehicle traffic, legal
restrictions, and psychophysical condition of drivers. Moreover, the features of transport
roads may be taken into account, such as the type of surface, season, weather, precipitation,
driver experience, road behavior strategy, cargo safety, random disturbance, kinematics of
traffic, local infrastructure affecting the ability to move vehicles, which directly affects the
time of transport services, overcoming obstacles on the road, the impact of the suspension,
or the strategy of making decisions related to the risk of a reduced coefficient of adhesion.
Finally, there may exist other conversions of carbon emissions with more precise CO2
reduction costs.
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