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Abstract: Background: Nowadays, variable domination structure is instrumental in studying multi-
objective decision making problems. We investigate multiobjective location problems with respect
to variable domination structure and its applications in supply chain management. Methods: We
formulate practical problems in supply chain management as an optimization problem with a variable
domination structure. Moreover, we present the mathematical methods to solve such problems. We
investigate two kinds of solutions derived from the concept of minimal and nondominated solutions
from vector optimization problems with respect to variable domination structure. Furthermore,
we explore how these solution concepts are characterized in practical problems. Results: We ex-
pose how those solutions are beneficial in practical problems. However, these results hold true
for multiobjective decision making problems with a continuous feasible set; we present a practical
problem in the case of a finite set of feasible locations. Conclusions: In many multiobjective location
problems, each location’s characterizations, preferences, and restrictions are involved in the decision
making process. This study investigates the decision making problems, where different preferences
of objective functions at each location are assumed. Moreover, we present a numerical experiment for
selecting a new hub airport.

Keywords: decision analysis; multiobjective decision-making problem; variable domination structure;
weights of objective functions; hub location

1. Introduction

Multicriteria decision-making (MCDM) problems deal with solving problems to deter-
mine the feasible solution/solutions according to the considered criteria. In many classifi-
cations, MCDM problems are divided into two sections: multiobjective decision-making
(MODM) problems and multiattribute decision-making (MADM) problems [1].

Facility location decisions play an important role in logistics planning, business man-
agement, strategic management, industrial engineering, etc. The facility location problem
asks for a new facility location such that one or more objective functions are to be optimized.
In the formulation of the objective function of many location problems, distances between
existing facilities and a new facility are involved, see [1,2]. In real-world applications, other
objectives may affect the decision, including cost (e.g., land cost, labor cost, production
cost, material cost, logistics cost, and the like), time, financial risks, laws and regulations,
quality, economic factors, etc.

Melo et al. [3] reviewed the literature on facility location problems in supply
chain management.

The multiobjective facility location problem plays a critical role in the strategic design
of supply chain management, especially the logistics part of supply chain management.
Some objectives in supply chain management are optimizing quality, minimizing logistics
costs (transportation costs, administration costs, and inventory carrying costs), optimizing
customer satisfaction, optimizing inventory, optimizing delivery speed, minimizing the
ordering time, etc.
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Thus far, multiobjective location problems assume a fixed ordering cone and find the
optimal solution/solutions considering this fixed ordering cone.

Recently, vector optimization problems with respect to (w.r.t.) variable domination
structure has been significant for studying MODM problems. The variable domination
structure was first introduced by Yu [4], and he used variable cones in preference mod-
eling [4,5]. To find Pareto optimal solutions in MODM problems, one uses an ordering
cone C in the image space. Yu introduced an optimal element of a vector optimization
problem w.r.t. a variable domination structure called the non-dominated element, which is
not dominated by another element of objective space w.r.t. the associated set to this other
point. Chen, Huang and Yang [6] defined minimal elements of the vector optimization
problem w.r.t. variable domination structure which is not dominated by another element of
objective space, w.r.t. the associated set to this candidate point [7]. Many researchers have
subsequently investigated different solution concepts and applications of variable domi-
nation structures. Bao, Mordukhovich, and Soubeyran developed mathematical models
of variable domination structure in behavioral sciences [8,9]. Eichfelder [10–12] discussed
variable ordering structures and demonstrated an application of variable ordering struc-
tures in medical engineering. Soleimani et al. [7,13] introduced concepts for approximate
minimal, approximate non-dominated, and an approximate minimizer for vector optimiza-
tion problems w.r.t. variable ordering structure. Tammer et al. proposed decision support
for location problems in town planning and multicriteria location routing problems for
travel management in tourism [14,15].

Table 1 presents some studies on multiobjective location problems.

Table 1. Literature review [16–20].

Author Name Year Title Source

Chr. Tammer et al. 2003 Location Problems in
Mining Landscapes

Wirtschaftsinformatik und
Operations Research

R. Zanjirani Farahani et al. 2010 Multiple criteria facility location
problems: A survey Applied Mathematical Modelling

H. A. Eiselt et al. 2011 Foundations of location problems Springer New York Dordrecht
Heidelberg London

S. Alzorba et al. 2017
A new algorithm for solving planar
multiobjective location problems
involving the Manhattan norm

European Journal of
Operational Research

B. Zargini et al. 2018 Multi-objective location problems with
variable domination structure Investigacion Operacional

Ch. Bierwirth et al. (Editorial) 2019 Preface “Logistics Management” Springer

M. Behnke et al. 2021
A column generation approach for an
emission-oriented vehicle routing
problem on a multigraph

European Journal of
Operational Research

In [21], we studied multiobjective location problems w.r.t. variable domination struc-
ture; we introduced an inverse variational inequality to investigate the solutions of such
problems. Since each location has its characterization, preferences, and restrictions in many
multiobjective location problems, these characterization, preferences, and restrictions af-
fect the value of optimizing each objective function. For instance, in one feasible location,
minimizing the time is more preferred to minimizing the cost, while, in the other feasible
location, it could be vice-versa. Variable domination structure represents these variable
preferences of objective functions in multiobjective location problems.

Therefore, the locations are compared in terms of their preferences and restrictions.
The aim of this study is to show that certain problems arising in Logistics lead to opti-
mization problems w.r.t. variable domination structure. Furthermore, we developed the
mathematical methods for solving such problems, see [21]. Multiobjective location problems
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w.r.t. variable domination structure is proposed where different preferences of objective
functions are assumed at each location.

Xiong and Yu [22] studied selecting a hub airport based on a Steiner tree model.
Paul [23] investigated assessment of constraints for market power on the transfer market
and in the local catchment for European Hub Airports. This paper is organized as follows:
Section 2 discusses the fundamental concepts of vector optimization problems w.r.t. vari-
able domination structures. Section 3 presents a mathematical method to solve MCDM
problems with variable criteria weights based on alternative preferences. We use the result
of Proposition 1 to present two types of solutions in MODM problems w.r.t. variable domi-
nation structure. The advantage of this model is that alternatives are compared with the
corresponding preferences. Section 4 investigates a numerical experiment for selecting a
new hub airport. We discuss the importance of the two types of solutions in more detail.

2. Preliminaries

To present solution concepts for MCDM problems with a variable domination struc-
ture, we present some basic concepts of a Pareto efficient solution. Afterward, minimal
and non-dominated elements in vector optimization problems w.r.t. variable domination
structure are presented.

Let X ⊂ Rn be a set of alternatives or locations (in the location problems). X is called
feasible set , and f (X) :=

⋃
x∈X

f (x). Let objective function f : Rn → Rp be defined as

f (x) :=

 f1(x)
. . .
fp(x)

, (1)

where x ∈ X, fi : Rn → R, for i = 1, p. The spaces Rn and Rp are called decision space
and objective space, respectively.

The concept of Pareto efficiency assumes a fixed ordering cone (in this case, we assume
Rn
+) The vector optimization problem w.r.t. fixed ordering cone Rn

+ is given by

Min( f (X),Rn
+), (P)

and a point x0 ∈ X is called Pareto efficient solution for (P) if

f (X) ∩ ( f (x0)−Rn
+ \ {0}) = ∅.

Consider the objective function defined in (1); let C : Rn ⇒ Rp be a set-valued map-
ping, known as a variable domination map. The vector optimization problem corresponding
to this variable domination structure C(·) is expressed as

Min( f (X), C(·)). (PC(·))

In the sequel of this study, minimal and non-dominated solutions for the problem
(PC(·)) are used under Definition 1 (compare to [24]).

Definition 1. Let x0 ∈ X. For problem (PC(·)), we say that:

(i) x0 is a minimal solution of (PC(·)) if f (x0) is a minimal element of f (X) w.r.t. the domination
map C(·), i.e,

[ f (x0)− (C(x0) \ {0})] ∩ f (X) = ∅.
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The set of all minimal elements of f (X) w.r.t C(·) is denoted by M( f (X), C(·)).
(ii) x0 is a non-dominated solution of (PC(·)) if f (x0) is a non-dominated element of f (X) w.r.t.

the domination map C(·), i.e,

[ f (x0)− (C(x) \ {0})] ∩ { f (x)} = ∅, ∀x ∈ X.

The set of all non-dominated elements of f (X) w.r.t C(·) is denoted by N( f (X), C(·)).
(iii) x0 is a weakly non-dominated solution of (PC(·)) if f (x0) is a weakly non-dominated element

of f (X) w.r.t. the domination map C(·), i.e,

[ f (x0)− int C(x)] ∩ { f (x)} = ∅, ∀x ∈ X.

In this case, it is assumed that int C(x) 6= ∅, for all x ∈ X. The set of all weakly non-
dominated elements of f (X) w.r.t. C(·) is denoted by WN( f (X), C(·)).

Remark 1. Properties and relationships in these solutions have been investigated in several studies,
including [10,13].

In [21], the authors derive a new method for solving multiobjective location problems
using definitions of minimal and weakly non-dominated solutions. In the next section, we
also use these concepts.

3. Minimal and Weakly Non-Dominated Solutions of Vector Optimization Problems
and Inverse Variational Inequality

The following assumption is used through this study; it describes a formula for a
special domination map.

Assumption 1. Let f : Rn → Rp be a vector function, m, n ∈ N, X ⊂ Rn, and X :=
m⋃

j=1
Xj

where Xj ⊂ Rn for j = 1, m, and Xs
⋂

Xr = ∅ whenever s 6= r. Assume that

αj := (α
j
1, · · · , α

j
p)

T ∈ Rp for j = 1, m, C : Rn ⇒ Rp is a convex domination map defined as

C(x) :=
{
(y1, y2, . . . , yp)

T ∈ Rp | αj
1y1 + α

j
2y2 + . . . + α

j
pyp ≥ 0

}
, x ∈ Xj, (2)

We recall the following proposition, which discusses a result concerning the sufficient
conditions of the minimal and weakly non-dominated solutions of problem (PC(·)) [16,21].

Proposition 1. [21]. Let Assumption 1 be fulfilled. Consider Xj =
{

xj}, X =
{

x1, · · · , xm},
x0 ∈ X, αi

j > 0 for j = 1, m and i = 1, n.

• If the following inequality holds for all xj ∈ X,

p

∑
i=1

α
j
i fi(x0) ≤

p

∑
i=1

α
j
i fi(xj). (3)

Then, f (x0) is a weakly non-dominated element of f (X) w.r.t. C(·).

• Furthermore, for x0 ∈ X, α0 := (α0
1, · · · , α0

p), if the following assertion holds true for all
xj ∈ X,

p

∑
i=1

α0
i fi(x0) ≤

p

∑
i=1

α0
i fi(xj), j = 1, m (4)
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f (x0) is a minimal element of f (X) w.r.t. C(·).

4. MCDM Problems w.r.t. Variable Domination Structures

This section demonstrates relationships between vector optimization problems, w.r.t.
variable domination structures and MCDM problems. In this section, we consider a
finite set of alternatives/locations and criteria/objective functions. We show that it is
possible to obtain more appropriate solutions for MCDM problems by considering vector
optimization w.r.t. appropriate domination structures, where different preferences of
objective functions related to each alternative/location are at hand. We begin with the
formulation of MCDM problems.

4.1. MCDM Problems

MCDM problems deals with finding the best alternative or ranking of them in terms
of considered objective functions or criteria [25]. In multiobjective location problems, a
decision maker must select the best location among a set of candidate locations, w.r.t. a set
of objective functions. This section recalls basic concepts of MCDM problems, solutions for
these problems, and methods for addressing them. A decision-making process contains the
following steps:

1. Determining the goal of the decision-making process;
2. Selecting the set of criteria or objective functions;
3. Collecting the alternatives or locations in location problems (feasible set);
4. Considering a cone in order to compare the objective function values;
5. Choosing a weighting method to represent the relative importance of criteria (if needed);
6. Choosing a method to solve the MCDM problem.

Further details can be found in [25–27].
Here, we consider a special case of problem (PC(·)), where X ⊆ Rn is a finite feasible

set of alternatives, locations, or possible actions. A function f : X → Y ⊆ Rp represents
the value of each alternative on p different criteria, where f (X) = Y ⊆ Rp is the objective
space [4,27]. We consider the following MCDM problem:

Min( f (X), C(·)), X = {x1, . . . , xm}, (PX
C(·))

where the solution concepts of (PX
C(·)) are introduced in Definition 1.

Remark 2. For all x ∈ Rn. The concept of Pareto-optimal solutions is an important special case of
non-dominated solutions, see [4].

After obtaining the set of all images of alternatives { f (x1), . . . , f (xm)}, we obtain a
family of points in the space Y ⊆ Rp. There are several methods for finding solutions
to MCDM problems. For instance, the simple additive weighting (SAW) method was
first introduced to address a portfolio selection problem. In this method, a weight vector
W = (w1, . . . , wm) ∈ Y is assigned, and solutions are determined based on computations
of all utilities of alternatives xj, i.e., U( f (xj)) = w1 f1(xj) + . . . + wm fm(xj), where j = 1, m
(see [25], Section 4.1 for more detail on this method). In addition, in fuzzy multi-attribute
decision-making (FMADM) problems, if we assume that there is a mutually independent
relationship among the criteria, the fuzzy simple additive weighting (FSAW) method is
used. For other methods, we refer to [25,28,29] for more detail.

Section 4.3 presents the solution concepts of MCDM problems w.r.t. variable domina-
tion structure.

4.2. Decision Matrix and Weight Matrix

This section presents some notions to solve MCDM problems, using a decision matrix
and a weight matrix. A decision matrix helps to prioritize which decisions meet our goals.
Table 2 collects alternatives and objective functions, for which columns and rows are created
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to derive a decision matrix, representing the alternatives and objective function values,
respectively, where xj, j = 1, m and fi, i = 1, p represent the alternatives and objective
functions, respectively.

Table 2. Decision table.

f1(x) f2(x) · · · fp(x)

x1 f1(x1) f2(x1) · · · fp(x1)
...

xm f1(xm) f2(xm) · · · fp(xm)

Here, fi(xj), i = 1, p, j = 1, m represents the performance of the jth alternative to the
ith criterion. A corresponding decision matrix Dm×p to solve the problem (PX

C(·)) is given
using Table 1 as follows:

Dm×p :=

 f1(x1) . . . fp(x1)
...

. . .
...

f1(xm) · · · fp(xm)

. (5)

In MCDM problems, it is helpful to normalize the decision matrix to allow aggre-
gation of criteria with numerical and comparable data. Normalization is a conversion
process to create numerical and comparable data using a common scale. After collecting
data in the decision matrix, pre-processing is necessary for helpful decision modeling.
Jahan et al. [30] evaluated and compared different normalization techniques. We present
the vector normalization and linear normalization techniques in Table 3, see [31].

Table 3. Normalization techniques.

Normalization Method Condition of Use Formula

Linear normalization sum-based method Minimization criteria nij :=
1

rij√
m
∑

j=1

1
rij

Linear normalization sum-based method Maximization criteria nij := rij√
m
∑

j=1
rij

Vector normalization Minimization criteria nij := 1− rij√
m
∑

j=1
r2

ij

Vector normalization Maximization criteria nij := rij√
m
∑

j=1
r2

ij

Where rij := fi(xj) for i = 1, p, j = 1, m.
Based on the decision matrix (Dm×p), we introduce the normalized decision matrix

Dn
m×p := (nij)

Dn
m×p := (nij), i ∈ 1, p, j ∈ 1, m, (6)

where nij represents the element of a normalized matrix to the ith criteria and the jth alternative.
After deriving the normalized decision matrix, we define a weight matrix Wm×p which

represents the relative importance of each criterion. In many MCDM problems, the weights
are different for different alternatives. Therefore, we assume that the weights are not the
same for different alternatives (locations). This is different from approaches in the literature
that consider the fixed domination structure for all locations or alternatives [26,32,33].
The current study assigns different weights to the criteria. According to the characterization
of each location. For instance, a selected strategy can affect the relative importance of the
criteria. An appropriate weight vector is considered for each location, and all weight vectors
are collected in a weight matrix Wm×p. We denote the rows of the weight matrix (weight
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vectors) by αj ∈ Rp, j = 1, m. To compute the weight matrix, we suppose that α
j
i ∈ R is the

weight of the ith criteria w.r.t. the jth alternative. The formulation of the weight matrix is
given as

Wm×p :=

 α1
1 . . . α1

p
...

. . .
...

αm
1 · · · αm

p

. (7)

There are several methods for obtaining weight vectors (criteria weights), such as
Entropy, Linmap, and Eigenvector [32,34]. The authors in [35] show how to determine
weights by considering objective and subjective weights. The aforementioned methods
have several advantages and have been studied from mathematical and practical perspec-
tives [26,36]. In other techniques, a decision maker uses a pairwise comparison matrix to
assign the weight vector.

A pairwise comparison method of weighting compares criteria weights in pairs to
judge which criterion is preferred. In the MCDM process, a pairwise comparison matrix
determines the criteria weights [37]. A pairwise comparison matrix is constructed with the
criteria in rows and columns. A numeric value from 1–9 is assigned (9 if the criterion is
strongly preferred, one if the compared criteria are equally important). The criteria weights
are calculated by normalizing a comparison matrix, and each value in the matrix is divided
by the sum of the values in its column. If the pairwise comparison matrix is a consistent
matrix (see the condition of consistency [37]), a decision maker can use a normalization
technique to determine the weight vector [37,38]. In this study, we assume the pairwise
comparison matrix has a condition of consistency, and we use linear normalization to obtain
the weight vectors [31]. In the next section, we use the weight matrix and the decision
matrix to generate solutions for MCDM problems.

4.3. Solution Concepts for MCDM Problems w.r.t. Variable Domination Structure

In this section, we consider problem (PX
C(·)). In the literature, one takes a fixed weight vec-

tor α = (α1, . . . , αp) w.r.t. each criterion and obtains a solution by minimizing ∑
p
i=1 αi f (xj),

j = 1, m. Considering the formulation of the general weight matrix Wm×p given in (7).
However, in many practical problems, it is necessary to consider different weights

corresponding to different alternatives. For instance, if the goal is to select the proper
location among candidate locations, it is more beneficial to consider a please replace
by: various criteria weights according to each location. These criteria could be quality,
cost, stakeholder satisfaction, time, proximity to market, proximity to a supplier, and
other objectives. Minimizing proximity to the market is preferred at some locations, and
minimizing proximity to the supplier is preferred at other locations. In the problem
(PX

C(·)), we assume that the set of alternatives can be separated into different groups of

candidates Xj, j = 1, m with X :=
m⋃

j=1
Xj. Here, Xj contains ’similar’ candidates in that

the candidates have similar preferences. In this study, we assume that each location has
different preferences. In this section, Xj =

{
xj}.

We suppose that problem (PX
C(·)) is equipped with domination map C(·) given by (2),

where αj, j = 1, m, are given. The role of this domination structure is to compare different
candidate alternatives. To define solutions for problem (PX

C(·)), we use the decision matrix

and the weight matrix introduced in the previous section. Let Φm×m := Dm×p ×WT
p×m,

where WT
m×p denotes the transpose matrix to Wm×p:

Φm×m =


p
∑

i=1
α1

i fi(x1) · · ·
p
∑

i=1
αm

i fi(x1)

. . .
p
∑

i=1
α1

i fi(xm) · · ·
p
∑

i=1
αm

i fi(xm)

, (8)
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where, Φkl represents the performance of alternative xk corresponding to the weight vector
αl = (αl

1, · · · , αl
p), i.e., Φkl = αl

1 f1(xk) + . . . + αl
p fp(xk).

We recall two types of solutions for problem (PX
C(·)) [16].

Definition 2. Consider xk ∈ X, k = 1, m.

• xk is a solution of Type I of (PX
C(·)) if the performance of this alternative (corresponding to its

weight vector αk) does not exceed the performances of other alternatives corresponding to the
weight vector αk. This is equivalent to

Φkk ≤ Φlk,

for all l = 1, m.
• xk is a solution of Type II of (PX

C(·)) if the performance of this alternative (corresponding to an

arbitrary weight vector αl) does not exceed the performances of alternative xl corresponding to
its weight vector αl , for all l = 1, m. This is equivalent to

Φkl ≤ Φll ,

for all l = 1, m.

5. Selection of a New Hub Airport Using the MCDM Problem w.r.t. Variable
Domination Structure

Investigating the selection of a new hub facility is related to the development and
operation of a hub transport network. It has many applications in operations research,
economics, strategic management, logistics, etc. Several operational research methods
involve determining the route structure and the location of one or a few hubs by minimizing
the total cost of the transport operator.

The goal is to select a new hub airport, i.e., a hypothetical European Union hub (EU
hub), to be a hub transport within the EU market. Janic and Reggiani have investigated
a similar problem with a fixed domination structure [39]. However, the results given in
Proposition 1 hold true for a continues feasible set; here, we assume a finite set of feasible
locations. The candidate airports create the set of alternatives; the criteria are defined to
identify and compare the given alternatives.

The European air transport system contains airlines, airports, and air traffic controls.
The service and the condition of airports are investigated for both passengers and freight.
Figure 1 depicts the busiest European airports with passenger traffic of over one million in
2019 [40].

Figure 2 depicts the European freighter hubs in 2020, as reported by Air Cargo News.
Note that these statistical data vary from time to time. Therefore, the purpose behind
presenting these problems is just to show the application of the multicriteria location
problem with respect to the variable domination structure.

Some EU airlines desire to establish a new hub airport abroad as an appropriate option
to build up their market position within the EU and reduce the risk of failure. Therefore,
establishing a hub airport is considered by both national and international EU airlines. For
instance, Finnair, which operates hub in the Vantaa Airport in Helsinki, has proposed the
Arlanda Airport in Stockholm as a potential new hub. Iberia, whose hub is in the Barajas
Airport in Madrid, has considered the Schiphol Airport in Amsterdam or Frankfurt-Main
Airport as its second hub.

However, the actual data of the problem may be different in recent years, and these
numerical data are considered in this section just to show how a most preferred solution can
be selected for a new hub airport w.r.t. the variable domination structure. Let us consider a
set of alternatives and attributes as presented in [39]. Suppose that an EU airline already
utilizes a network with a hub located at Rome’s Leonardo da Vinci Airport. The airline is
going to consider a new hub.
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Figure 1. The busiest airports in Europe in 2019 [40].

Figure 2. Average daily movement for the busiest European freighter hubs.

The following criteria can be considered as relevant for selecting a new hub [39]:

• Climatological characteristics of the airport;
• Geographical location and proximity to most in-demand destinations;
• Airport size (millions of passengers per year);
• The market size of the airport;
• Airport capacity;
• Number of destinations served;
• Number of gates at the airport;
• Per capita income;
• Generalized access cost;
• Total airline cost of operating this hub;
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• Market share at the given airport;
• The efficiency of airport capacity throughout the peaks.

In the case of the fixed domination structure, the corresponding MCDM problem can
be solved by taking a vector of the criteria’s weight and using the proper MCDM solution
method [38].

Since the mentioned attributes’ preferences are different for each alternative (i.e., air-
port), applying the variable domination structure is proposed to solve such problem. For
instance, the climatic characteristics constitute a more critical criterion up to the geographi-
cal location of the airport. In contrast, in the other airport, up to the condition of the airport,
the efficiency of the airport capacity during peaks is preferred to the other criteria.

In addition, politics, social and governmental regulations, and environmental and
financial risks can be different at the given candidate airports. All these aspects impact the
preferences of the alternatives, and they are considered by variable domination structures.

Consider X is a set of feasible airports where X = {x1, . . . , x7}.
The decision maker is looking for a facility x for a new hub airport considering

seven objective functions. The laws and regulations of each country, even each state,
affect the value of optimizing each objective function. A variable domination structure
represents these variable preferences of optimizing each objective function. The decision
maker considers MODM problem with

Feasible set: The decision maker collects a set of candidate airports for a new hub. xj rep-
resents a feasible airport, xj ∈ X , j = 1, m. For a numerical experiment, the decision
maker considers seven feasible airports X =

{
x1, . . . , x7} as x1: Amsterdam-Schiphol,

x2: Brussels, x3: Düsseldorf, x4: Frankfurt-Main , x5: London-Heathrow, x6: Milan-
Malpensa, and x7: Paris-Charles de Gaulle CDG. Moreover, we propose

Objective functions: The decision maker proposes the following seven objective functions:

• f1(x): Airport size (millions of passengers per year);
• f2(x): Airport capacity (aircraft/hour);
• f3(x): Population of the airport (million);
• f4(x): Per capita income (ECU/inhabitant);
• f5(x): Total airline cost of operating two hubs (million euros);
• f6(x): Generalized access cost (euros/passenger); and
• f7(x): the average airport cost per service (euros/WLU).

Let f : Rn → Rp be the objective function, defined by

f (x) :=

 f1(x)
. . .
f7(x)

, (9)

where fi : Rn → R, for i = 1, . . . , 7.

Preference relation: The social, political, and governmental regulations and financial risks
are different in each country/state. For instance, optimizing generalized access cost
has different preferences at each airport than optimizing the other objective functions;
the decision maker assigns an appropriate parameter α

j
i for each objective function at

each feasible location by a pairwise comparison matrix.

The preferences of the decision maker are described by a variable domination structure
C(·) given by

C(x) :=
{
(y1, y2, . . . , y7)

T ∈ R7 | αj
1y1 + α

j
2y2 + . . . + α

j
7y7 ≥ 0

}
, x ∈ X, (10)
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where α
j
i ∈ R and represents the preference of the decision maker. The corresponding

multi-objective decision-making problem w.r.t. variable domination structure defined in
(10) is given by

Determine nondominated (or minimal) solutions of f w.r.t.C(·) (11)

To present the practical application, we consider the MCDM problem investigated by
Janic and Reggiani [39] in terms of the variable domination structure.

Note that we present this application to show how we formulate the multiobjective
location problem based on the variable domination structure and finding the solution for
such problems. For more details on the given criteria and how they could be obtained, we
can refer to [39].

Criteria f1(x), f2(x), f3(x), and f4(x) will be maximized, while criteria f5(x), f6(x),
and f7(x) should be minimized. The decision maker assigns the domination map, defined
in (10), to each criterion and up to each location (i.e., airport).

In the following, we find the solution/solutions of problem (11) to select the most
preferred location for a new airport hub.

Suppose that an EU airline already utilizes a network with a hub located at Leonardo
da Vinci Airport in Rome and decided to consider a new hub in one of the given airports.

The decision matrix represents the relevant value of each objective function for each
alternative airport. The normalized decision matrix is given in Table 4. In this case, we
consider the normalized decision matrix presented by Janic and Reggiani in [39].

Table 4. Normalized decision matrix for the given example.

f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x)

x1 0.89 0.639 0.805 0.662 0.675 0.576 0.618
x2 0.376 0.615 0.592 0.448 0.664 0.777 0.541
x3 0.644 0.572 0.549 0.794 0.662 0.822 0.607
x4 0.703 0.573 0.833 0.764 0.546 0.456 0.814
x5 0.891 0.647 0.637 0.789 0.656 0.777 0.508
x6 0.584 0.689 0.359 0.45 0.65 0.855 0.574
x7 0.574 0.635 0.856 0.632 0.531 0.394 0.825

Consider each row of Table 5 as a vector of R7 and denote the ith component of the jth
row by α

j
i , for j = 1, 7 and i = 1, 7. Compare to the definitions of the domination map and

αk in (2).

Table 5. The relative weights of objective functions corresponding to the given alternatives.

αk
1 αk

2 αk
3 αk

4 αk
5 αk

6 αk
7

α1 0.09 0.18 0.15 0.12 0.14 0.11 0.21
α2 0.14 0.08 0.15 0.14 0.1 0.2 0.19
α3 0.12 0.18 0.15 0.15 0.18 0.14 0.08
α4 0.08 0.22 0.08 0.1 0.2 0.22 0.1
α5 0.14 0.18 0.16 0.14 0.12 0.1 0.16
α6 0.08 0.12 0.2 0.15 0.05 0.22 0.18
α7 0.18 0.08 0.13 0.14 0.21 0.14 0.12

We are looking to find a Type I solution and a Type II solution. The Type I solution
expresses that the most preferred location is a selected hub airport regarding the airports’
current characterization and conditions. On the other hand, the Type II solution selects an
appropriate hub airport based on the preferences of other candidate airports.
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The matrix Φ is calculated using (8) as

φ =



0.57094 0.74192 0.7066 0.65063 0.70538 0.76478 0.72475
0.47932 0.57804 0.60526 0.55007 0.54244 0.65888 0.59899
0.53514 0.70154 0.6775 0.62007 0.65299 0.7688 0.69396
0.56401 0.70852 0.66185 0.62473 0.71772 0.74551 0.66666
0.55577 0.75234 0.71577 0.65146 0.68615 0.79783 0.74568
0.49082 0.58938 0.63042 0.565 0.54657 0.68476 0.65405
0.5482 0.6561 0.63132 0.59832 0.68101 0.7043 0.62775


The decision maker chooses the most preferred solution for the corresponding prob-

lems. When one needs to find a solution that is an efficient solution considering the other
candidate’s preferences and conditions, we propose a non-dominated solution. A minimal
solution is proposed on the condition that the decision maker seeks the solution using the
corresponding domination structure for the alternatives.

Considering Definition 2, we obtain that solution Type I is the Brussels airport, and the
Milan-Malpensa airport is a solution Type II. It refers that the Brussels airport is appropriate
to select as a hub location considering the corresponding preferences and conditions of the
airports. If the Brussels airport is also solution Type II; it means that it is also an appropriate
hub location even by considering the other candidate airports’ preferences.

Up to the condition of the problem, the decision maker selects which type of solution
is appropriate for the problem.

6. Conclusions

In many real-world MODM problems, there are variable preferences of objective
functions for different alternatives or locations (in location problems). Consideration of
these preferences by variable domination structure helps improve the decision-making
process. The current study considered MODM problems w.r.t. variable ordering structure,
and an application of this new method is presented to select a new hub airport. This
study formulated the practical problem in logistics as an multiobjective location problem
w.r.t variable domination structure. To solve such a problem, the mathematical results are
applied; afterward, we expose these solutions in a numerical experiment. The application of
MODM problems w.r.t.variable domination structure in strategic management is a subject
of future research.
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