# Supplier Selection Risk: A New Computer-Based Decision-Making System with Fuzzy Extended AHP

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

## 3. Methodology

## 4. Application of the FEAHP-Based Computing System in a Real Case of Supplier Selection Risk

## 5. Results and Discussions

## 6. Conclusions, Limitations and Future Work

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Yoon, J.; Talluri, S.; Yildiz, H.; Ho, W. Models for supplier selection and risk mitigation: A holistic approach. Int. J. Prod. Res.
**2018**, 56, 3636–3661. [Google Scholar] [CrossRef] - Chan, F.T.S.; Kumar, N. Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega
**2007**, 35, 417–431. [Google Scholar] [CrossRef] - Lima Junior, F.R.; Osiro, L.; Carpinetti, L.C.R. Multicriteria decision methods for supplier selection: A literature review on the state of the art. Gest. Prod.
**2013**, 20, 781–801. [Google Scholar] [CrossRef] - Kahraman, C. Multi-criteria decision making methods and Fuzzy sets. In Fuzzy Multicriteria Decision Making: Theory and Applications with Recent Development, 1st ed.; Kahraman, C., Ed.; Springer US: Istanbul, Turkey, 2008; Volume 1, pp. 1–18. Available online: https://www.springer.com/gp/book/9780387768120 (accessed on 11 December 2020).
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Yadav, V.; Sharma, M.K. Multi-criteria decision making for supplier selection using fuzzy AHP approach. Benchmarking Int. J.
**2015**, 22, 1158–1174. [Google Scholar] [CrossRef] - Zadeh, L.A. Fuzzy sets. Inf. Control
**1965**, 8, 338–353. [Google Scholar] [CrossRef] [Green Version] - Zapa, E.; Cogollo, J. Fuzzy-BSC Methodology for Decision Making in Indemnity Area of Insurance Companies. IEEE Latam Trans.
**2018**, 16, 2539–2546. [Google Scholar] [CrossRef] - Chang, D.Y. Applications of the Extent Analysis Method on Fuzzy AHP. Eur. J. Oper. Res.
**1996**, 95, 649–655. [Google Scholar] [CrossRef] - Sheffi, Y. Supply chain management under the threat of international terrorism. Int. J. Logist. Manag.
**2001**, 12, 1–11. [Google Scholar] [CrossRef] - Jüttner, U.; Peck, H.; Christopher, M. Supply chain risk management: Outlining an agenda for future research. Int. J. Logist. Res. Appl.
**2003**, 6, 197–210. [Google Scholar] [CrossRef] [Green Version] - Stecke, K.E.; Kumar, S. Sources of Supply Chain Disruptions, Factors That Breed Vulnerability, and Mitigating Strategies. J. Mark. Channels
**2009**, 16, 193–226. [Google Scholar] [CrossRef] - Fahimnia, B.; Tang, C.S.; Davarzani, H.; Sarkis, J. Quantitative models for managing supply chain risks: A review. Eur. J. Oper. Res.
**2015**, 247, 1–15. [Google Scholar] [CrossRef] - Tang, C.S. Perspectives in supply chain risk management. Int. J. Prod. Econ.
**2006**, 103, 451–488. [Google Scholar] [CrossRef] - Peck, H. Reconciling supply chain vulnerability, risk and supply chain management. Int. J. Logist. Res. Appl.
**2006**, 9, 127–142. [Google Scholar] [CrossRef] - Faisal, M.N.; Banwet, D.K.; Shankar, R. Quantification of risk mitigation environment of supply chains using graph theory and matrix methods. Eur. J. Ind. Eng.
**2007**, 1, 22–39. [Google Scholar] [CrossRef] - Wagner, S.; Bode, C. An empirical examination of supply chain performance along several dimensions of risk. J. Bus. Logist.
**2008**, 29, 307. [Google Scholar] [CrossRef] - Ho, W.; Zheng, T.; Yildiz, H.; Talluri, S. Supply chain risk management: A literature review. Int. J. Prod. Res.
**2015**, 53, 5031–5069. [Google Scholar] [CrossRef] - Aqlan, F.; Lam, S.S. Supply chain optimization under risk and uncertainty: A case study for high-end server manufacturing. Comput. Ind. Eng.
**2016**, 93, 78–87. [Google Scholar] [CrossRef] - Bugert, N.; Lasch, R. Supply chain disruption models: A critical review. Logist. Res.
**2018**, 11, 1–35. [Google Scholar] [CrossRef] - Fan, Y.; Stevenson, M. A review of supply chain risk management: Definition, theory, and research agenda. Int. J. Phys. Distr. Logist. Manag.
**2018**, 48, 205–230. [Google Scholar] [CrossRef] [Green Version] - Oliveira, J.B.; Jin, M.; Lima, R.S.; Kobza, J.E.; Montevechi, J.A.B. The role of simulation and optimization methods in supply chain risk management: Performance and review standpoints. Simul. Model. Pract. Theory
**2019**, 92, 17–44. [Google Scholar] [CrossRef] - Smeltzer, L.R.; Siferd, S.P. Proactive Supply Management: The Management of Risk. Int. J. Purch. Mater. Manag.
**1998**, 34, 38–45. [Google Scholar] [CrossRef] - Tomlin, B. On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks. Manag. Sci.
**2006**, 52, 639–657. [Google Scholar] [CrossRef] [Green Version] - Chopra, S.; Reinhardt, G.; Mohan, U. The Importance of Decoupling Recurrent and Disruption Risks in a Supply Chain. Nav. Res. Logist.
**2007**, 54, 544–555. [Google Scholar] [CrossRef] [Green Version] - Talluri, S.; Narasimhan, R. Vendor Evaluation with Performance Variability: A Max–Min Approach. Eur. J. Oper. Res.
**2003**, 146, 543–552. [Google Scholar] [CrossRef] - Talluri, S.; Narasimhan, R.; Nair, A. Vendor Performance with Supply Risk: A Chance-constrained DEA Approach. Int. J. Prod. Econ.
**2006**, 100, 212–222. [Google Scholar] [CrossRef] - Fang, C.; Liao, X.; Xie, M. A Hybrid Risks-informed Approach for the Selection of Supplier Portfolio. Int. J. Prod. Res.
**2016**, 54, 2019–2034. [Google Scholar] [CrossRef] - Er Kara, M.; Fırat, S.Ü.O. Supplier Risk Assessment Based on Best-Worst Method and K-Means Clustering: A Case Study. Sustainability
**2018**, 10, 1066. [Google Scholar] [CrossRef] [Green Version] - Micheli, G.J.L.; Cagno, E.; Zorzini, M. Supply risk management vs supplier selection to manage the supply risk in the EPC supply chain. Manag. Res. News
**2008**, 31, 846–866. [Google Scholar] [CrossRef] - Kumar, M.; Vrat, P.; Shankar, R. A Fuzzy Programming Approach for Vendor Selection Problem in a Supply Chain. Int. J. Prod. Econ.
**2006**, 101, 273–285. [Google Scholar] [CrossRef] - Viswanadham, N.; Samvedi, A. Supplier Selection Based on Supply Chain Ecosystem, Performance and Risk Criteria. Int. J. Prod. Res.
**2013**, 51, 6484–6498. [Google Scholar] [CrossRef] - Kull, T.J.; Talluri, S. A Supply Risk Reduction Model Using Integrated Multicriteria Decision Making. IEEE Trans. Eng. Manag.
**2008**, 55, 409–419. [Google Scholar] [CrossRef] - Ravindran, A.R.; Bilsel, R.U.; Wadhwa, V.; Yang, T. Risk Adjusted Multicriteria Supplier Selection Models with Applications. Int. J. Prod. Res.
**2010**, 48, 405–424. [Google Scholar] [CrossRef] - Ruiz-Torres, A.J.; Mahmoodi, F.; Zeng, A.Z. Supplier Selection Model with Contingency Planning for Supplier Failures. Comput. Ind. Eng.
**2013**, 66, 374–382. [Google Scholar] [CrossRef] - Chaudhuri, A.; Mohanty, B.K.; Singh, K.N. Supply Chain Risk Assessment during New Product Development: A Group Decision Making Approach Using Numeric and Linguistic Data. Int. J. Prod. Res.
**2013**, 51, 2790–2804. [Google Scholar] [CrossRef] - Lee, A.H.I. A fuzzy supplier selection model with the consideration of benefits, opportunities, costs and risks. Expert Syst. Appl.
**2009**, 36, 2879–2893. [Google Scholar] [CrossRef] - Wu, D.D.; Olson, D. Enterprise Risk Management: A DEA VaR Approach in Vendor Selection. Int. J. Prod. Res.
**2010**, 48, 4919–4932. [Google Scholar] [CrossRef] - Meena, P.; Sarmah, S.; Sarkar, A. Sourcing Decisions under Risks of Catastrophic Event Disruptions. Transp. Res. Part E Logist. Transp. Rev.
**2011**, 47, 1058–1074. [Google Scholar] [CrossRef] - Sawik, T. Joint Supplier Selection and Scheduling of Customer Orders under Disruption Risks: Single vs. Dual Sourcing. Omega
**2014**, 43, 83–95. [Google Scholar] [CrossRef] - Wu, Z.; Choi, T.Y.; Rungtusanatham, M.J. Supplier–supplier Relationships in Buyer–supplier–supplier Triads: Implications for Supplier Performance. J. Oper. Manag.
**2010**, 28, 115–123. [Google Scholar] [CrossRef] - Chen, P.-S.; Wu, M.-T. A Modified Failure Mode and Effects Analysis Method for Supplier Selection Problems in the Supply Chain Risk Environment: A Case Study. Comput. Ind. Eng.
**2013**, 66, 634–642. [Google Scholar] [CrossRef] - Jharkharia, S.; Shankar, R. Selection of logistics service provider: An analytic network process ANP approach. Omega Int. J. Manag.
**2007**, 35, 274–289. [Google Scholar] [CrossRef] - Rao, C.; Xiao, X.; Goh, M.; Zheng, J.; Wen, J. Compound Mechanism Design of Supplier Selection Based on Multi-attribute Auction and Risk Management of Supply Chain. Comput. Ind. Eng.
**2017**, 105, 63–75. [Google Scholar] [CrossRef] - Lockamy, A., III; McCormack, K. Analysing Risks in Supply Networks to Facilitate Outsourcing Decisions. Int. J. Prod. Res.
**2010**, 48, 593–611. [Google Scholar] [CrossRef] [Green Version] - Moghaddam, K.S. Supplier Selection and Order Allocation in Closed-loop Supply Chain Systems Using Hybrid Monte Carlo Simulation and Goal Programming. Int. J. Prod. Res.
**2015**, 53, 6320–6338. [Google Scholar] [CrossRef] - Jain, N.; Singh, A.R. Sustainable supplier selection under must-be criteria through Fuzzy inference system. J. Clean. Prod.
**2020**, 248, 119275. [Google Scholar] [CrossRef] - Yazdani, M.; Chatterjee, P.; Pamucar, D.; Abad, M.D. A risk-based integrated decision-making model for green supplier selection: A case study of a construction company in Spain. Kybernetes
**2019**, 49, 1229–1252. [Google Scholar] [CrossRef] - Zimmer, K.; Fröhling, M.; Breun, P.; Schultmann, F. Assessing social risks of global supply chains: A quantitative analytical approach and its application to supplier selection in the German automotive industry. J. Clean. Prod.
**2017**, 149, 96–109. [Google Scholar] [CrossRef] - Chai, J.; Liu, J.N.K.; Ngai, E.W.T. Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Syst. Appl.
**2013**, 40, 3872–3885. [Google Scholar] [CrossRef] - Zimmer, K.; Fröhling, M.; Schultmann, F. Sustainable supplier management—A review of models supporting sustainable supplier selection, monitoring and development. Int. J. Prod. Res.
**2016**, 54, 1412–1442. [Google Scholar] [CrossRef] - Konys, A. Green Supplier Selection Criteria: From a Literature Review to a Comprehensive Knowledge Base. Sustainability
**2019**, 11, 4208. [Google Scholar] [CrossRef] [Green Version] - Chai, J.; Ngai, E.W.T. Decision-making techniques in supplier selection: Recent accomplishments and what lies ahead. Exp. Syst. Appl.
**2020**, 140, 112903. [Google Scholar] [CrossRef] - Kafa, N.; Jaegler, A.; Sarkis, J. Harnessing Corporate Sustainability Decision-Making Complexity: A Field Study of Complementary Approaches. Sustainability
**2020**, 12, 10584. [Google Scholar] [CrossRef] - Ahmed, F.; Kilic, K. Fuzzy Analytic Hierarchy Process: A performance analysis of various algorithms. Fuzzy Sets Syst.
**2019**, 362, 110–128. [Google Scholar] [CrossRef] - Cerqueira, T.L.; Bertoni, F.C.; Pires, M.G. Instance Genetic Selection for Fuzzy Rule-based Systems Optimization to Opinion Classification. IEEE Latam Trans.
**2020**, 18, 1215–1221. [Google Scholar] [CrossRef] - Chan, F.T.S.; Chan, H.K. An AHP model for selection of suppliers in the fast changing fashion market. Int. J. Adv. Manuf. Technol.
**2010**, 51, 1195–1207. [Google Scholar] [CrossRef] - Kumar, J.; Roy, N. Analytic hierarchy process (AHP) for a power transmission industry to vendor selection decisions. Int. J. Comput. Appl.
**2011**, 12, 26–30. [Google Scholar] [CrossRef] - Bruno, G.; Esposito, E.; Genovese, A.; Passaro, R. AHP-based approaches for supplier evaluation: Problems and perspectives. J. Purch. Supply Manag.
**2012**, 18, 159–172. [Google Scholar] [CrossRef] - Yu, M.C.; Goh, M.; Lin, H.C. Fuzzy multi-objective vendor selection under lean procurement. Eur. J. Oper. Res.
**2012**, 219, 305–311. [Google Scholar] [CrossRef] - Rezaei, J.; Ortt, R. Multi-criteria supplier segmentation using a fuzzy preference relations based AHP. Eur. J. Oper. Res.
**2013**, 225, 75–84. [Google Scholar] [CrossRef] - Awasthi, A.; Govindan, K.; Gold, S. Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. Int. J. Prod. Econ.
**2018**, 195, 106–117. [Google Scholar] [CrossRef] [Green Version] - Van Laarhoven, P.; Pedrycz, W. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst.
**1983**, 11, 199–227. [Google Scholar] [CrossRef] - Buckley, J.J. Fuzzy hierarchical analysis. Fuzzy Sets Syst.
**1985**, 17, 233–247. [Google Scholar] [CrossRef] - Boender, C.; De Graan, J.; Lootsma, F. Multi-criteria decision analysis with fuzzy pairwise comparisons. Fuzzy Sets Syst.
**1989**, 29, 133–143. [Google Scholar] [CrossRef] - Wang, Y.-M.; Luo, Y.; Hua, Z. On the extent analysis method for fuzzy AHP and its applications. Eur. J. Oper. Res.
**2008**, 186, 735–747. [Google Scholar] [CrossRef]

**Figure 3.**Real problem hierarchy of supplier selection risk. The linguistic variables were used to make the pair-wise comparisons. These linguistic variables were then converted to triangular fuzzy numbers (TFN), as shown in Table 2. That is, for each numerical value of the pair-wise comparison matrices, three values were associated that correspond to the ‘lower’, ‘middle’ and ‘upper’ values.

Risk Type | Risk Factor | Reference |
---|---|---|

1. Quality | Poor quality | [26,27,28,29] |

2. Delivery | Delay in delivery | [26,27,28,29] |

Low delivery speed | [30] | |

3. Performance | Uncertain capacity | [31,32] |

Supplier failure | [33,34,35] | |

Poor performance | [30] | |

Unwillingness to cooperate and lack of supplier involvement | [30,36] | |

Supply restriction, restriction between buyer-supplier and bad supplier profile | [37] | |

Interruption of supply | [28,38,39,40] | |

Poor supplier service | [41,42] | |

Low supplier reliability | [1] | |

Low manufacturing capacity, high defect rate, lack of warranty and after-sales service and lack of plans to deal with interruptions | [29] | |

4. Location | Dispersed geographical location | [2] |

5. Flexibility | Lack of/or low supplier flexibility | [29,43] |

6. Price | High supplier price | [29,30] |

7. Technology | Technological risks | [29,30,44] |

8. Financial | Financial risks | [30] |

Supplier financial stress | [45] | |

Bad financial condition | [29] | |

9. Economic | Economic risks | [44,46] |

Economic sustainability risk | [47] | |

10. Environmental | Environmental risk | [44,47] |

Environmental project defect, high emission of greenhouse gases, pollution, environmental non-compliance and natural wear | [48] | |

11. Social sustainability | Social risks | [44,49] |

Social sustainability risk | [47] |

Linguistic Variables | Triangular Fuzzy Value Corresponding | Triangular Fuzzy Value Corresponding Reverse |
---|---|---|

Equal | (1, 1, 1) | (1, 1, 1) |

Not very strong | (2, 3, 4) | (1/4, 1/3, 1/2) |

Strong | (4, 5, 6) | (1/6, 1/5, 1/4) |

Very strong | (6, 7, 8) | (1/8, 1/7, 1/6) |

Extremely strong | (9, 9, 9) | (1/9, 1/9, 1/9) |

${\mathit{G}}_{\mathit{g}}$ | ${\mathit{C}}_{1}$ | ${\mathit{C}}_{2}$ | ${\mathit{C}}_{3}$ | ${\mathit{C}}_{4}$ | ${\mathit{W}}_{\mathit{o}}$ |
---|---|---|---|---|---|

${C}_{1}$ | (1, 1, 1) | (1, 1, 1) | (6, 7, 8) | (4, 5, 6) | 0 |

${C}_{2}$ | (1, 1, 1) | (1, 1, 1) | (9, 9, 9) | (9, 9, 9) | 1 |

${C}_{3}$ | (1/8, 1/7, 1/6) | (1/9, 1/9, 1/9) | (1, 1, 1) | (1, 1, 1) | 0 |

${C}_{4}$ | (1/6, 1/5, 1/4) | (1/9, 1/9, 1/9) | (1, 1, 1) | (1, 1, 1) | 0 |

${\mathit{C}}_{1}$ | $\mathit{S}\mathit{u}\mathit{b}{\mathit{c}}_{1}$ | $\mathit{S}\mathit{u}\mathit{b}{\mathit{c}}_{2}$ | $\mathit{S}\mathit{u}\mathit{b}{\mathit{c}}_{3}$ | ${\mathit{W}}_{\mathit{c}1}$ |
---|---|---|---|---|

$Sub{c}_{1}$ | (1, 1, 1) | (6, 7, 8) | (4, 5, 6) | 0.799 |

$Sub{c}_{2}$ | (1/8, 1/7, 1/6) | (1, 1, 1) | (9, 9, 9) | 0.2 |

$Sub{c}_{3}$ | (1/6, 1/5, 1/4) | (1/9, 1/9, 1/9) | (1, 1, 1) | 0 |

$\mathit{S}\mathit{u}\mathit{b}{\mathit{c}}_{\mathbf{1}}$ | ${\mathit{A}}_{\mathbf{1}}$ | ${\mathit{A}}_{\mathbf{2}}$ | ${\mathit{A}}_{\mathbf{3}}$ | ${\mathit{W}}_{\mathit{S}\mathit{u}\mathit{b}\mathit{c}\mathbf{1}}$ |
---|---|---|---|---|

${A}_{1}$ | (1, 1, 1) | (2, 3, 4) | (4, 5, 6) | 0.536 |

${A}_{2}$ | (1/4, 1/3, 1/2) | (1, 1, 1) | (1/8, 1/7, 1/6) | 0 |

${A}_{3}$ | (1/6, 1/5, 1/4) | (6, 7, 8) | (1, 1, 1) | 0.463 |

Weights | $\mathit{S}\mathit{u}\mathit{b}{\mathit{c}}_{\mathbf{1}}$ 0.799 | $\mathit{S}\mathit{u}\mathit{b}{\mathit{c}}_{\mathbf{2}}$ 0.2 | $\mathit{S}\mathit{u}\mathit{b}{\mathit{c}}_{\mathbf{3}}$ 0 | Alternatives Priority Weights |
---|---|---|---|---|

Alternatives | ||||

${A}_{1}$ | 0.536 | 0.135 | 1 | 0.4552 |

${A}_{2}$ | 0 | 0.15 | 0 | 0.03 |

${A}_{3}$ | 0.463 | 0.713 | 0 | 0.5125 |

Weights of the Criteria | ${\mathit{C}}_{\mathbf{1}}$ 0 | ${\mathit{C}}_{\mathbf{2}}$ 1 | ${\mathit{C}}_{\mathbf{3}}$ 0 | ${\mathit{C}}_{\mathbf{4}}$ 0 | Alternatives Priority Weights |
---|---|---|---|---|---|

Alternatives | |||||

${A}_{1}$ | 0.4552 | 0.848 | 1 | 0.135 | 0.848 |

${A}_{2}$ | 0.03 | 0.151 | 0 | 0.15 | 0.151 |

${A}_{3}$ | 0.5125 | 0 | 0 | 0.713 | 0 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fagundes, M.V.C.; Hellingrath, B.; Freires, F.G.M.
Supplier Selection Risk: A New Computer-Based Decision-Making System with Fuzzy Extended AHP. *Logistics* **2021**, *5*, 13.
https://doi.org/10.3390/logistics5010013

**AMA Style**

Fagundes MVC, Hellingrath B, Freires FGM.
Supplier Selection Risk: A New Computer-Based Decision-Making System with Fuzzy Extended AHP. *Logistics*. 2021; 5(1):13.
https://doi.org/10.3390/logistics5010013

**Chicago/Turabian Style**

Fagundes, Marcus V. C., Bernd Hellingrath, and Francisco G. M. Freires.
2021. "Supplier Selection Risk: A New Computer-Based Decision-Making System with Fuzzy Extended AHP" *Logistics* 5, no. 1: 13.
https://doi.org/10.3390/logistics5010013