Roles of Technology in Improving Perishable Food Supply Chains
Abstract
:1. Introduction
1.1. Defining the Food Supply Chain
1.2. Review Objectives
- (1)
- Identify the different technological driven interventions throughout the different phases of the food supply chain, which include agriculture, processing, packaging, shipping, and selling, and to discuss their impacts on the efficiency of the perishable foods.
- (2)
- Identify the impact of integrating technologies on the characteristics of the perishable food supply chain.
- (3)
- Identify the impact of integrating technologies on the traceability of the perishable food supply chain.
2. Literature Review
2.1. Technology Integration in the Food Supply Chain
2.1.1. Agricultural Raw Materials
2.1.2. Transformation and Processing
2.1.3. Packaging
2.1.4. Shipping
2.1.5. Selling
3. Methodology
3.1. Data Collection
3.2. Data Analysis
4. Discussion
4.1. Technologies Used in Different Phases of Perishable Food Supply Chain
4.1.1. Technologies Widely Implemented in the Food Supply Chain
4.1.2. Emerging Technologies and Their Implementation in Phases of the Food Supply Chain
4.2. Technology Integration to Improve Perishable Food Supply Chains
4.2.1. Impact of Integrating Technologies on the Characteristics of the Perishable Food Supply Chain
4.2.2. Impact of Integrating Technologies on the Traceability of the Perishable Food Supply Chain
5. Review Findings
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashley, J.M. Food Security in the Developing World; Senior International Consultant, Geopolicity Inc.: Dubai, UAE, 2016. [Google Scholar]
- Tian, F. An Information System for Food Safety Monitoring in Supply Chains Based on HACCP, Blockchain and INTERNET of Things. Doctoral Dissertation, Wirtschafts Wien University of Economics and Business, Wien, Austria, 2018. Available online: https://epub.wu.ac.at/6090/1/Dissertation_of_Feng_Tian.pdf (accessed on 11 November 2020).
- Hammoudi, A.; Grazia, C.; Surry, Y.; Traversac, J.B. (Eds.) Food Safety, Market Organization, Trade and Development; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Jaynes, R.S.; Darlington, S. The Federal Food Safety Working Group Working Groups Process and Assessments; Nova Science Publisher, Inc.: New York, NY, USA, 2013. [Google Scholar]
- Paam, P.; Berretta, R.; Heydar, M.; Middleton, R.H.; García-Flores, R.; Juliano, P. Planning models to optimize the agri-fresh food supply chain for loss minimization: A review. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 19–54. [Google Scholar] [CrossRef]
- Pang, Z.; Chen, Q.; Han, W.; Zheng, L. Value-centric design of the internet-of-things solution for food supply chain: Value creation, sensor portfolio and information fusion. Inf. Syst. Front. 2015, 17, 289–319. [Google Scholar] [CrossRef]
- Marsden, T.; Banks, J.; Bristow, G. Food supply chain approaches: Exploring their role in rural development. Sociol. Rural. 2000, 40, 424–438. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khalid, A.; Iqbal, J. Towards realizing robotic potential in future intelligent food manufacturing systems. Innov. Food Sci. Emerg. Technol. 2018, 48, 11–24. [Google Scholar] [CrossRef][Green Version]
- Farahani, P.; Grunow, M.; Günther, H.O. Integrated production and distribution planning for perishable food products. Flex. Serv. Manuf. J. 2012, 24, 28–51. [Google Scholar] [CrossRef]
- Lemma, Y.; Kitlaw, D.K.; Gatew, G. Loss in perishable food supply chain: An optimization approach literature review. Int. J. Sci. Eng. Res. 2014, 5, 302–311. [Google Scholar]
- Aung, M.M.; Chang, Y.S. Temperature management for the quality assurance of a perishable food supply chain. Food Control 2014, 40, 198–207. [Google Scholar] [CrossRef]
- Markina, I.; Safonov, Y.; Zhylinska, O.; Diachkov, D.; Varaksina, E. Defining the dimensions of national security, financial security and food supply chain in Ukraine. Int. J. Supply Chain Manag. 2018, 7, 608–620. [Google Scholar]
- Smith, D.; Sparks, L. Temperature controlled supply chains. In Food Supply Chain Management; Bourlakis, M.A., Weightman, P.W.H., Eds.; Blackwell Publishing: Oxford, UK, 2004; pp. 179–198. [Google Scholar]
- Balaji, M.; Arshinder, K. Modeling the causes of food wastage in Indian perishable food supply chain. Resour. Conserv. Recycl. 2016, 114, 153–167. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control 2013, 33, 32–48. [Google Scholar] [CrossRef]
- Squire, B.; Burgess, K.; Singh, P.J.; Koroglu, R. Supply chain management: A structured literature review and implications for future research. Int. J. Oper. Prod. Manag. 2006, 26, 703–729. [Google Scholar] [CrossRef][Green Version]
- Büyüközkan, G.; Göçer, F. Digital supply chain: Literature review and a proposed framework for future research. Comput. Ind. 2018, 97, 157–177. [Google Scholar] [CrossRef]
- Opara, L.U. Traceability in agriculture and food supply chain: A review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 2003, 1, 101–106. [Google Scholar]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, I. A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Mundekkad, D.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanotechnology in agro-food: From field to plate. Food Res. Int. 2015, 69, 381–400. [Google Scholar] [CrossRef]
- Ray, P.P. Internet of Things for smart agriculture: Technologies, practices and future direction. J. Ambient Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar] [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sun, J.; Zhou, W.; Huang, D.; Fuh, J.Y.; Hong, G.S. An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol. 2015, 8, 1605–1615. [Google Scholar] [CrossRef]
- Brody, A.L.; Bugusu, B.; Han, J.H.; Sand, C.K.; Mchugh, T.H. Innovative food packaging solutions. J. Food Sci. 2008, 73, 107–116. [Google Scholar] [CrossRef]
- Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 2011, 363, 1–24. [Google Scholar] [CrossRef]
- Ghaani, M.; Cozzolino, C.A.; Castelli, G.; Farris, S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 2016, 51, 1–11. [Google Scholar] [CrossRef][Green Version]
- Li, Z.; Liu, G.; Liu, L.; Lai, X.; Xu, G. IoT-based tracking and tracing platform for prepackaged food supply chain. Ind. Manag. Data Syst. 2017, 117, 1906–1916. [Google Scholar] [CrossRef]
- Yu, S.S.; Yu, S. U.S. Patent Application No. 15/648,532, 2017. Available online: https://patentimages.storage.googleapis.com/1e/1b/f9/0f5fad7ed629a8/US20170308098A1.pdf (accessed on 11 November 2020).
- Jeppsson, A.; Olsson, O. Blockchains as a Solution for Traceability and Transparency. Master’s Thesis, Lund University, Lund, Sweden, 2017. Available online: https://lup.lub.lu.se/student-papers/search/publication/8919957 (accessed on 11 November 2020).
- Angeles, R. RFID technologies: Supply-chain applications and implementation issues. Inf. Syst. Manag. 2005, 22, 51–65. [Google Scholar] [CrossRef]
- Pfaltzgraff, L.A.; Clark, J.H. Green chemistry, biorefineries and second generation strategies for re-use of waste: An overview. In Advances in Biorefineries; Waldron, K., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 3–33. [Google Scholar] [CrossRef]
- Taticchi, P.; Garengo, P.; Nudurupati, S.S.; Tonelli, F.; Pasqualino, R. A review of decision-support tools and performance measurement and sustainable supply chain management. Int. J. Prod. Res. 2015, 53, 6473–6494. [Google Scholar] [CrossRef]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F. The rise of the blockchain technology in agriculture and food supply chain. Inst. Agric. Food Res. Technol. 2018, 91, 1–15. [Google Scholar] [CrossRef][Green Version]
- Sufiyan, M.; Haleem, A.; Khan, S.; Khan, M.I. Analyzing attributes of food supply chain management: A comparative study. In Advances in Industrial and Production Engineering; Shanker, K., Shankar, R., Sindhwani, R., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Pagnon, W. Overview of techniques and applications for autonomous vehicles. Lovotics 2014, 1, 106–107. [Google Scholar] [CrossRef]
- Costa, C.; Antonucci, F.; Pallottino, F.; Aguzzi, J.; Sarriá, D.; Menesatti, P. A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol. 2013, 6, 353–366. [Google Scholar] [CrossRef]
- Kros, J.F.; Liao, Y.; Kirchoff, J.F.; Zemanek, J.E., Jr. Traceability in the supply chain. Int. J. Appl. Logist. (IJAL) 2019, 9, 1–22. [Google Scholar] [CrossRef][Green Version]
- Prakash, G. Review of the food processing supply chain literature: A UK, India bilateral context. J. Adv. Manag. Res. 2018, 15, 457–479. [Google Scholar] [CrossRef]
- Rong, A.; Akkerman, R.; Grunow, M. An optimization approach for managing fresh food quality throughout the supply chain. Int. J. Prod. Econ. 2011, 131, 421–429. [Google Scholar] [CrossRef]
- Arunachalam, D.; Kumar, N.; Kawalek, J.P. Understanding Big Data Analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 416–436. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T.; Fosso Wamba, S. World class sustainable supply chain management: Critical review and further research directions. Int. J. Logist. Manag. 2017, 28, 332–362. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. 3D printing of meat. Meat Sci. 2019, 153, 35–44. [Google Scholar] [CrossRef]
- Ricci, I.; Derossi, A.; Severini, C. 3D printed food from fruits and vegetables. In Fundamentals of 3D Food Printing and Applications; Godi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 117–149. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R. 3D printing of food materials: A state of art review and future applications. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Godoi, F.C.; Prakash, S.; Bhandari, B.R. 3D printing technologies applied for food design: Status and prospects. J. Food Eng. 2016, 179, 44–54. [Google Scholar] [CrossRef][Green Version]
- Singh, A.; Mishra, N.; Ali, S.I.; Shukla, N.; Shankar, R. Cloud computing technology: Reducing carbon footprint in beef supply chain. Int. J. Prod. Econ. 2015, 164, 462–471. [Google Scholar] [CrossRef][Green Version]
- Manning, L.; Soon, J.M. Building strategic resilience in the food supply chain. Br. Food J. 2016, 118, 1477–1493. [Google Scholar] [CrossRef]
- Mogale, D.G.; Kumar, M.; Kumar, S.K.; Tiwari, M.K. Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network. Transp. Res. Part E Logist. Transp. Rev. 2018, 111, 40–69. [Google Scholar] [CrossRef]
- Petersen, M.; Hackius, N.; von See, B. Mapping the sea of opportunities: Blockchain in supply chain and logistics. It-Inf. Technol. 2018, 60, 263–271. [Google Scholar] [CrossRef]
- Óskarsdóttir, K.; Oddsson, G.V. Towards a decision support framework for technologies used in cold supply chain traceability. J. Food Eng. 2019, 240, 153–159. [Google Scholar] [CrossRef][Green Version]
- Verghese, K.; Lewis, H.; Lockrey, S.; Williams, H. Packaging’s role in minimizing food loss and waste across the supply chain. Packag. Technol. Sci. 2015, 28, 603–620. [Google Scholar] [CrossRef]
- Pal, M. Nanotechnology: A new approach in food packaging. J. Food Microbiol. Saf. Hyg. 2017, 2, 1000121. [Google Scholar] [CrossRef]
- Almasi, H.; Jahanbakhsh Oskouie, M.; Saleh, A. A review on techniques utilized for design of controlled release food active packaging. Crit. Rev. Food Sci. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Brahma, S.; Mackay, J.; Cao, C.; Aliakbarian, B. The role of smart packaging system in food supply chain. J. Food Sci. 2020, 85, 517–525. [Google Scholar] [CrossRef][Green Version]
- Tianfei, D. Automatic control of food packaging machinery. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, July 2020; Volume 546, p. 052067. [Google Scholar]
- Tripathi, S.; Shukla, S.; Attrey, S.; Agrawal, A.; Bhadoria, V.S. Smart industrial packaging and sorting system. In Strategic System Assurance and Business Analytics; Springer: Singapore, 2020; pp. 245–254. [Google Scholar]
- Wu, D.; Zhang, M.; Chen, H.; Bhandari, B. Freshness monitoring technology of fish products in intelligent packaging. Crit. Rev. Food Sci. Nutr. 2020, 1–14. [Google Scholar] [CrossRef]
- Urbano, O.; Perles, A.; Pedraza, C.; Rubio-Arraez, S.; Castelló, M.L.; Ortola, M.D.; Mercado, R. Cost-effective implementation of a temperature traceability system based on Smart RFID Tags and IoT Services. Sensors 2020, 20, 1163. [Google Scholar] [CrossRef][Green Version]
- Liegeard, J.; Manning, L. Use of intelligent applications to reduce household food waste. Crit. Rev. Food Sci. Nutr. 2020, 60, 1048–1061. [Google Scholar] [CrossRef] [PubMed]
- Kshetri, N. Blockchain’s roles in meeting key supply chain management objectives. Int. J. Inf. Manag. 2018, 39, 80–89. [Google Scholar] [CrossRef][Green Version]
- Lu, S.; Wang, X. Toward an intelligent solution for perishable food cold chain management. In 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS); IEEE: Piscataway, NJ, USA, August 2016; pp. 852–856. [Google Scholar]
- Forrest, A.D.; Konca, M. Autonomous Cars & Society. Digital WPI. 2007. Available online: https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=3253&context=iqp-all (accessed on 11 November 2020).
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Beloev, I.H. A review on current and emerging application possibilities for unmanned aerial vehicles. Acta Technol. Agric. 2016, 19, 70–76. [Google Scholar] [CrossRef][Green Version]
- Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
- Kelepouris, T.; Pramatari, K.; Doukidis, G. RFID-enabled traceability in the food supply chain. Ind. Manag. Data Syst. 2007, 107, 183–200. [Google Scholar] [CrossRef]
- Sarac, A.; Absi, N.; Dauzère-Pérès, S. A literature review on the impact of RFID technologies on supply chain management. Int. J. Prod. Econ. 2010, 128, 77–95. [Google Scholar] [CrossRef]
- Toyoda, K.; Mathiopoulos, P.T.; Sasase, I.; Ohtsuki, T. A novel blockchain-based product ownership management system (POMS) for anti-counterfeits in the post supply chain. IEEE Access 2017, 5, 17465–17477. [Google Scholar] [CrossRef]
- Prajapati, S.; Dwivedi, P.; Dubey, A.D.; Singh, M.; Chaturvedi, S. Introduction to Blockchain. Int. J. Sci. Res. Rev. 2019, 7, 1800–1805. [Google Scholar]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin. Org. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 4 November 2020).
- Duan, J.; Zhang, C.; Gong, Y.; Brown, S.; Li, Z. A content-analysis based literature review in blockchain adoption within food supply chain. Int. J. Environ. Res. Public Health 2020, 17, 1784. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Salah, K.; Rehman, M.H.U.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review and open research challenges. IEEE Access 2019, 7, 10127–10149. [Google Scholar] [CrossRef]
- Mao, D.; Wang, F.; Hao, Z.; Li, H. Credit evaluation system based on blockchain for multiple stakeholders in the food supply chain. Int. J. Environ. Res. Public Health 2018, 15, 1627. [Google Scholar] [CrossRef][Green Version]
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future challenges on the use of blockchain for food traceability analysis. Trac Trends Anal. Chem. 2018, 107, 222–232. [Google Scholar] [CrossRef]
- Treiblmaier, H. The impact of the blockchain on the supply chain: A theory-based research framework and a call for action. Supply Chain Manag. Int. J. 2018, 23, 545–559. [Google Scholar] [CrossRef][Green Version]
- Kiviat, T.I. Beyond bitcoin: Issues in regulating blockchain transactions. Duke Law J. 2015, 65, 569–608. [Google Scholar]
- Saadé, R.G.; Jaoude, J.N.A.; Sharma, M.C. Review of blockchain Literature–Its application and acceptance. In Proceedings of the Informing Science and Information Technology Education Conference, Jerusalem, Israel, 30 June–4 July 2019; pp. 297–306. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef][Green Version]
- Gautam, R.; Singh, A.; Karthik, K.; Pandey, S.; Scrimgeour, F.; Tiwari, M.K. Traceability using RFID and its formulation for a kiwifruit supply chain. Comput. Ind. Eng. 2017, 103, 46–58. [Google Scholar] [CrossRef]
- Michael, K.; McCathie, L. The pros and cons of RFID in supply chain management. In Proceedings of the International Conference on Mobile Business (ICMB’05), Sydney, New South Wales, Australia, 11–13 July 2005; pp. 623–629. [Google Scholar] [CrossRef][Green Version]
- Gaukler, G.M.; Seifert, R.W. Applications of RFID in supply chains. In Trends in Supply Chain Design and Management; Jung, H., Jeong, B., Chen, F.F., Eds.; Springer Series in Advanced Manufacturing; Springer: London, UK, 2007; pp. 29–48. [Google Scholar] [CrossRef]
- Jia, X.; Feng, Q.; Fan, T.; Lei, Q. RFID technology and its applications in Internet of Things (IoT). In Proceedings of the 2nd International Conference on Consumer Electronics, Communications and Networks, Yichang, China, 21–23 April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1282–1285. [Google Scholar] [CrossRef]
- Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Challenges and opportunities. Future Gener. Comput. Syst. 2018, 88, 173–190. [Google Scholar] [CrossRef]
- Bhayani, M.; Patel, M.; Bhatt, C. Internet of Things (IoT): In a way of smart world. In Proceedings of the International Congress on Information and Communication Technology; Bhatt, S.S.Y., Joshi, A., Mishra, D., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2016; Volume 438, pp. 343–350. [Google Scholar] [CrossRef]
- Tian, F. A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In Proceedings of the 2017 International Conference on Service Systems and Service Management, Dalian, China, 16–18 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Hu, F.; Li, L.I.; Liu, Y.; Yan, D. Enhancement of agility in small-lot production environment using 3D printer, industrial robot and machine vision. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 32–37. [Google Scholar] [CrossRef]
- Davidson, P.; Spinoulas, A. Autonomous vehicles: What could this mean for the future of transport? In Proceedings of the Australian Institute of Traffic Planning and Management (AITPM) National Conference, Brisbane, QLD, Canada, 28–31 July 2015; Available online: http://transposition.com.au/papers/AutonomousVehicles.pdf (accessed on 11 November 2020).
- Bagloee, S.A.; Tavana, M.; Asadi, M.; Oliver, T. Autonomous vehicles: Challenges, opportunities, and future implications for transportation policies. J. Mod. Transp. 2016, 24, 284–303. [Google Scholar] [CrossRef][Green Version]
- Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Campoy, P. A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, 3296874. [Google Scholar] [CrossRef]
- Chan, H.K.; Griffin, J.; Lim, J.J.; Zeng, F.; Chiu, A.S. The impact of 3D Printing Technology on the supply chain: Manufacturing and legal perspectives. Int. J. Prod. Econ. 2018, 205, 156–162. [Google Scholar] [CrossRef]
- Pohlmann, C.R.; Scavarda, A.J.; Alves, M.B.; Korzenowski, A.L. The role of the focal company in sustainable development goals: A Brazilian food poultry supply chain case study. J. Clean. Prod. 2020, 245, 118798. [Google Scholar] [CrossRef]
- Khan, M.J.; Kumari, S.; Selamat, J.; Shameli, K.; Sazili, A.Q. Reducing meat perishability through pullulan active packaging. J. Food Qual. 2020. [Google Scholar] [CrossRef]
- Kim, J.; Tang, K.; Kumara, S.; Yee, S.T.; Tew, J. Value analysis of location-enabled radio-frequency identification information on delivery chain performance. Int. J. Prod. Econ. 2008, 112, 403–415. [Google Scholar] [CrossRef]
- Verdouw, C.N.; Wolfert, J.; Beulens, A.J.M.; Rialland, A. Virtualization of food supply chains with the Internet of things. J. Food Eng. 2016, 176, 128–136. [Google Scholar] [CrossRef][Green Version]
- Tse, D.; Zhang, B.; Yang, Y.; Cheng, C.; Mu, H. Blockchain application in food supply information security. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017; pp. 1357–1361. [Google Scholar] [CrossRef]
- Sander, F.; Semeijn, J.; Mahr, D. The acceptance of blockchain technology in meat traceability and transparency. Br. Food J. 2018, 120, 2066–2079. [Google Scholar] [CrossRef][Green Version]
- Thakur, M.; Hurburgh, C.R. Framework for implementing traceability system in the bulk grain supply chain. J. Food Eng. 2009, 95, 617–626. [Google Scholar] [CrossRef]
Grouping | Content | Rational |
---|---|---|
1. Identification of the factors of the perishable food supply chain through literature review | This attempted to identify certain patterns in the chosen articles in this study. Both similarities and dissimilarities in opinions were included in the conceptual framework of this study. | Such attempts allowed the identification of the most commonly mentioned features related to the food to improve the perishable food supply chain in general. |
2. Identification of technologies used to improve the perishable food supply chain | Identification of the different technologies implemented in various stages of the supply chain to specifically improve perishable food. | The technological features can be linked to the general characteristics and factors of a food supply chain and, therefore, can explain the implicative opinions of the authors regarding the connection between the two and define the requirements and expectations from such implementations. |
3. Features of the articles chosen | The articles chosen in this review cover topics including the importance of food supply chains, technological implementations, different approaches, and effects of environment controlling factors on perishable foods. | These articles were chosen to include more versatility in the literature review. |
4. Review and analysis procedure | This was a structured and textual analysis comparison among the articles chosen in the literature review based on keywords. | This was a determination of the different theories and concepts previously existing related to the perishable food supply chain. |
Phases | RFID | IoT | Blockchain | |
---|---|---|---|---|
Technology | ||||
Agriculture | Ruiz-Garcia [19]; Costa et al. [37]; Gautam et al. [80] | Ray [22] | Kamilaris et al. [34] | |
Transformation and Processing | Gaukler and Seifert [82]; Brody et al. [25]; Costa et al. [37] | Li et al. [28] | ||
Packaging | Gaukler and Seifert [82]; Brody et al. [25] | Li et al. [28] | ||
Shipping | Angeles [31]; Gaukler & Seifert [82]; Costa et al. [37] | Jeppsson & Olsson [30]; Petersen et al. [50] | ||
Selling | Angeles [37]; Gaukler & Seifert [81]; Sarac et al. [68]; Toyoda et al. [69] | Toyoda et al. [69] |
Phases | 3DP | AV | UAV | |
---|---|---|---|---|
Technology | ||||
Agriculture | Walter et al. [23] | Zhang and Kovacs [20]; Beloev [65]; Walter et al. [23]; Carrio et al. [90] | ||
Transformation and Processing | Sun et al. [24]; Hu et al. [87]; Godoi et al. [46]; Li et al. [28]; Chan et al. [91] | |||
Packaging | Lu and Wang [62] | |||
Shipping | Chan et al. [91] | Forrest and Konca [63]; Davidson and Spinoulas [88]; Yu and Yu [29]; Bagloee et al. [89] | Beloev [65]; Carrio et al. [90]; Hassanalian and Abdelkefi [64] | |
Selling | Chan et al. [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haji, M.; Kerbache, L.; Muhammad, M.; Al-Ansari, T. Roles of Technology in Improving Perishable Food Supply Chains. Logistics 2020, 4, 33. https://doi.org/10.3390/logistics4040033
Haji M, Kerbache L, Muhammad M, Al-Ansari T. Roles of Technology in Improving Perishable Food Supply Chains. Logistics. 2020; 4(4):33. https://doi.org/10.3390/logistics4040033
Chicago/Turabian StyleHaji, Mona, Laoucine Kerbache, Mahaboob Muhammad, and Tareq Al-Ansari. 2020. "Roles of Technology in Improving Perishable Food Supply Chains" Logistics 4, no. 4: 33. https://doi.org/10.3390/logistics4040033