Supplementary information

For the manuscript entitled: In Vivo Anti-inflammatory Potential of Viscozyme[®]-Treated Jujube Fruit

Includes

- Supplementary Materials and Methods
 Supplementary Figures: Fig. S1–3
 Supplementary Tables: Table S1–2

1) Supplementary Materials and Methods

Determination of free radical scavenging capability and ferric-reducing antioxidant power

The antioxidant activities of NHJE and HJE were determined by the assays of 2,2-diphenyl-1picrylhydrazyl (DPPH) radical scavenging activity and ferric-reducing antioxidant power (FRAP) as previously described [1-3]. α -tocopherol was used as a positive control.

Cell viability assay

cells were dispensed into a 96-well plate at a density of 5×10^3 cells/well, treated with jujube extract at the designated concentrations for 24 h, and assayed using the Cell Counting Kit (CCK-8; Dojindo Laboratories, Kumamoto, Japan) as previously described [2].

Measurement of reduced glutathione level

The lung tissue homogenates were used for analysis of the ratio of reduced glutathione (GSH) over oxidized glutathione (GSSG) level using glutathione detection kits (Cat # ADI-900-160; Enzo Life Sciences, Farmingdale, NY, USA). The analysis was performed according to the manufacture's instructions. Values were normalized to the quantity of total proteins.

References

- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2, 2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2 '-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151-1157.
- 2. Woo, Y.; Lee, H.; Jeong, Y.S.; Shin, G.Y.; Oh, J.G.; Kim, J.S.; Oh, J. Antioxidant Potential of Selected Korean Edible Plant Extracts. *BioMed Res. Int.* **2017**.
- 3. Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. *Anal. Biochem.* **1996**, *239*, 70-76.

2) Supplementary Figures

Supplementary Figure S1. DPPH radical scavenging activity (A) and FRAP (B) of jujube extracts. Both extract samples (HJE and NHJE) showed a concentration-dependent antioxidant capability; in particular, HJE was more effective than NHJE. Values are presented as mean \pm SD (N = 3). NHJE, non-hydrolyzed jujube extract. HJE, hydrolyzed jujube extract.

Supplementary Figure S2. Cytotoxicity of jujube extracts in THP-1 human monocytes (A) and A549 human lung epithelial cells (B). Both types of cells were treated with jujube extracts at the designated concentrations. The both extracts were non-toxic at $\leq 500 \ \mu g/mL$. Values are presented as mean \pm SEM (n = 3).

Supplementary Figure S3. Dietary HJE increased the ratio of reduced to oxidized glutathione (GSH/GSSG) in lung homogenates. Values are presented as mean \pm SD (n = 5). Different alphabetical letters presented on the bars indicate statistically significant difference from each other (p < 0.05).

3) Supplementary Tables

	Ethanol concentration of extraction solvent (v/v) in water				
	0%	20%	50%	80%	100%
Total phenolic content (mg GAE ²⁾ /g DW ³⁾)	$\begin{array}{c} 2.01 \pm \\ 0.88^a \end{array}$	$\begin{array}{c} 4.02 \pm \\ 0.19^{a} \end{array}$	6.73 ± 0.83^{b}	5.33 ± 1.20^{b}	5.88 ± 1.59 ^b
Total flavonoid content (mg QE ⁴⁾ /g DW)	$\begin{array}{c} 2.35 \pm \\ 0.09^a \end{array}$	$\begin{array}{c} 2.48 \pm \\ 0.09^a \end{array}$	$\begin{array}{c} 3.61 \pm \\ 0.12^{b} \end{array}$	$\begin{array}{c} 2.64 \pm \\ 0.12^a \end{array}$	$\begin{array}{c} 2.31 \pm \\ 0.03^a \end{array}$

Supplementary Table S1. Total phenolic and flavonoid contents in jujube ethanolic extracts using various concentrations of ethanol in water¹⁾

¹⁾Values are expressed as means \pm SD (n = 3). Different alphabetical letters presented on the bars indicate statistically significant difference from each other (p < 0.1).

²⁾GAE, gallic acid equivalent

³⁾DW, dry weight of ethanol extract

⁴⁾QE, quercetin equivalent

Supplementary Table S2. Total phenolic content in 50% ethanol extract of jujube hydrolyzed with various enzymes¹)

Enzyme used	Total phenolic content (mg GAE ²⁾ /g DW ³⁾)	
No Enzyme	18.59 ± 10.26	
Viscozyme (β-glucanase, cellulase, hemicellulase)	27.09 ± 11.64	
Fungamyl (α-amylase)	14.20 ± 2.95	
AMG (α-glucosidase)	15.38 ± 4.67	
Viscozyme + Fungamyl	17.46 ± 3.01	
Viscozyme + AMG	18.89 ± 4.86	

¹⁾Values are expressed as means \pm SD (n = 3). ²⁾GAE, gallic acid equivalent ³⁾DW, dry weight of ethanol extract