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Abstract: Truffles are certainly the most expensive mushrooms; the price depends primarily on
the species and secondly on the origin. Because of the price differences for the truffle species, food
fraud is likely to occur, and the visual differentiation is difficult within the group of white and
within the group of black truffles. Thus, the aim of this study was to develop a reliable method for
the authentication of five commercially relevant truffle species via Fourier transform near-infrared
(FT-NIR) spectroscopy as an easy to handle approach combined with chemometrics. NIR-data
from 75 freeze-dried fruiting bodies were recorded. Various spectra pre-processing techniques and
classification methods were compared and validated using nested cross-validation. For the white
truffle species, the most expensive Tuber magnatum could be differentiated with an accuracy of 100%
from Tuber borchii. Regarding the black truffle species, the relatively expensive Tuber melanosporum
could be distinguished from Tuber aestivum and the Chinese truffles with an accuracy of 99%. Since
the most expensive Italian Tuber magnatum is highly prone to fraud, the origin was investigated and
Italian T. magnatum truffles could be differentiated from non-Italian T. magnatum truffles by 83%. Our
results demonstrate the potential of FT-NIR spectroscopy for the authentication of truffle species.

Keywords: truffle; Tuber spp.; food authentication; species differentiation; near-infrared
spectroscopy; chemometrics

1. Introduction

Today’s globalization leads to an increase of known cases of food fraud [1]. At the same time,
consumer demand is moving towards food products of higher quality [2]. Many cases of food fraud
pose a risk to health if toxic or allergenic substances get into the products through adulteration.
However, even in cases of food fraud, which in many cases do not lead to a health hazard, it must
be ensured that the consumer is not economically harmed, i.e., that no unjustifiably high prices are
charged for inferior goods.

The increasing interest of the consumer in higher quality food [3], and also the willingness to pay
more money for it, provides the incentive for criminally motivated actors to stretch high-end products
with cheaper ingredients. Since many falsifications cannot be detected immediately by laymen or
even by trained personnel in companies, it is becoming increasingly important to have appropriate
instrumental detection methods for possible food adulteration at hand [4].

Because of the unique aroma and taste emitted from the fruiting bodies, truffles (Tuber spp.)
are considered as delicacies. The underground growing ascomycetes represent the most expensive
of all edible fungi, whereby the white Piedmont Truffle (Tuber magnatum) and the black Périgord
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Truffle (T. melanosporum) are the most valuable species: prices do range between 3000–5000 €/kg and
700–1200 €/kg, respectively [5–7].

Because of their high price, truffles are often subject to fraud, especially when the species are very
similar in their morphological appearance: T. borchii (syn. Tuber albidum Pico) is a truffle morphologically
and biochemically similar to T. magnatum, both are classified as white truffles. The latter is the most
expensive truffle species of all, so it is obvious that it is the subject of an intended counterfeit [8,9].
However, even unintentional cases of fraud are reported when other truffles, such as T. borchii are
harvested, although the roots have initially been colonized by T. magnatum [10,11].

Amongst black truffles, the species T. melanosporum is the most expensive and highly valued for
its organoleptic properties [12]. The Asian black truffles (e.g., Tuber indicum, Tuber himalayense, and
Tuber sinense) form fruiting bodies morphologically very similar to T. melanosporum [13]. In view of
the higher price of T. melanosporum, there is also a risk of fraud, especially since Asian black truffles are
imported into Europe from China [14–16].

Due to the above-mentioned potential fraud cases, analytical authentication techniques are
necessary, which must also be time-efficient due to the short-term storage of the industry.

In 2006, Zhao et al. compared five Chinese truffle fruiting bodies using Fourier transform infrared
(FT-IR) spectroscopy [17] and successfully differentiated T. magnatum, T. indicum, and Tuber excavatum
from each other. More recently, El Karkouri et al. proposed a matrix-assisted laser desorption/ionisation
time of flight mass spectrometry (MALDI-TOF-MS) strategy, analysing proteins and applying database
search algorithms [5]. In 2020, Krauß et al. analysed different tuber species regarding their geographical
origin and species authentication via stable isotope ratio analysis showing that a differentiation with this
method is possible [18]. However, these techniques still require costly instrumentation, maintenance
and sophisticated handling. Instead, our practical approach is, to our knowledge, the first Fourier
transform near-infrared (FT-NIR) spectroscopy study addressing the authentication of truffles with
a relatively large number of samples.

FT-NIR spectroscopy is a simple and cost-effective approach, nowadays widely used for
the monitoring as well as for the controlling of product quality and safety [19] alike the evaluation of
the freshness [20] or of pesticide residues of fruits and vegetables [21]. FT-NIR spectroscopy is widely
used for the authentication of foodstuffs [9,22–24] or for controlling the intentionally or unintentionally
adulteration of exogenous substances or process by-products [25–27] and was recently used to monitor
the post-harvest ripening of white truffles [28].

Data pre-processing of the obtained data is a crucial step in spectroscopic analysis. Therefore,
pre-processing techniques, such as scatter correction, smoothing, or detrending steps are used in
order to reduce the variability between samples due to scattering caused e.g., by heterogeneous
sample size of powdery samples. Furthermore, additive and multiplicative effects in the spectra are
removed and a subsequent exploratory analysis, a bi-linear calibration model or a classification model
is improved [29]. It is essential to carefully compare and select the data pre-processing techniques to
avoid misleading results and overfitting [29–31]. The decision on the classification model is crucial as
well, and therefore, similarly to the evaluation of different data pre-treatment steps, we have examined
and compared various classification models.

The aim of this study was to develop a reliable, easy-to-handle and low-cost method using
the FT-NIR technology coupled to chemometric tools for the differentiation and authentication of five
economically relevant truffle species. In this regard, we concentrated on the real truffles of the genus
Tuber defined in the German Guidelines for mushrooms and mushroom products [32] and used in
foodstuffs: the expensive species T. melanosporum and T. magnatum, as well as the less expensive species
T. aestivum, T. borchii, and T. indicum. In this study, 75 truffle samples from three years of harvest and
eleven growing countries were analysed. Different common pre-processing techniques were applied
to the raw spectra and the results were compared using various classification models.
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2. Materials and Methods

2.1. Sample Acquisition

In total, 75 truffle samples of relevant, market available white and black truffle species (harvest
years 2017–2020) from 11 different countries were analysed in this study.

More precisely, the sample set consisted of two white species T. magnatum (20 samples) and
T. borchii (5 samples) and three black species T. melanosporum (10 samples), T. aestivum (synonym T.
uncinatum [33], 29 samples), and T. indicum (11 samples).

Regarding the T. aestivum species, molecular biological analyses have shown that T. aestivum
and T. uncinatum are one species. Both terms should therefore be regarded as synonymous. Since
T. aestivum was described before T. uncinatum, the species should be named T. aestivum [33]. Based
on these molecular biological findings, T. aestivum and T. uncinatum were subsumed and named T.
aestivum in this study.

An overview of the collected samples is given in Table S1. Some samples were commercially
purchased and, therefore, considered as non-origin-authentic, so the origin is stated as ‘unknown’ in
Table S1. Still, information regarding the truffle species were secured for all samples either by personal
participation in harvest or by DNA analysis carried out within the Hamburg School of Food Science [34].
On arrival, all samples were frozen in liquid nitrogen and stored at −80 ◦C until further treatment.

2.2. Sample Preparation

Per sample, several fruiting bodies, at least 75 g, were cleaned with pure water obtained by
a Direct-Q purifying system (Merck Millipore, Burlington, MA, USA) for removing remaining soil.
Subsequently, the fruiting bodies were milled using a knife mill (Grindomix GM 300, Retsch, Haan,
Germany) with dry ice at a ratio of 1:1 (w/w) and freeze-dried for 72 h [24]. The truffles were freeze-dried
because of two reasons, which are more discussed in Section 3.1: (i) FT-NIR spectra of fresh truffles
showed unspecific spectra with large water bands. (ii) It was known from the literature that such
a freeze-drying step can enhance the accuracy of the classification models [35]. Freeze-dried material
was crushed using a mortar and a pestle to obtain a fine homogeneous powder.

2.3. Spectra Acquisition

For the acquisition of near-infrared spectra, a TANGO FT-NIR spectrometer with an integrating
sphere (Bruker Optics, Bremen, Germany) was used. The signals were recorded between
11550–3950 cm−1, collecting 50 scans at a resolution of 4 cm−1. All spectra were acquired at room
temperature of 22 ± 2 ◦C. Samples of 300 mg, weighed in a glass vial (52.0 × 22 mm × 1.2 mm, Nipro
Diagnostics Germany GmbH, Ratingen, Germany), were analysed in triplicate, in-between individual
spectra recordings the lyophilisate was shaken in the glass vial.

2.4. Spectra Pre-Processing

FT-NIR spectra were pre-processed using MATLAB R2019a (The MathWorks Inc., Natick, MA,
USA). After having omitted a specific range of higher wavenumbers (see Table 1 and discussion
below), different pre-processing techniques or combinations of them were applied and compared (see
Table 1) [36].

Multiplicative scatter correction (MSC) using the average of all spectra as the reference spectra
was performed to eliminate scatter effects for all approaches i–vi. First order derivate (approach ii)
was calculated to eliminate offset, baseline drifts and additive scattering effects, and second order
derivate (approach iii) was calculated to remove multiplicative scattering effects in beyond. Detrending
(polynomial order = 1) was applied for approach iv and vii. The effect of smoothing (moving average,
span = 5) before MSC was investigated for approach v–vii.
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Table 1. Pre-processing steps to the raw spectra in the order 1–2–3. For all approaches, a binning was
added as a last step. MSC, multiplicative scatter correction.

Approach No. Cut Smoothing MSC 1st Derivative 2nd Derivative Detrending

(i) >9000 1

(ii) >9000 1 2

(iii) >9000 1 2

(iv) >9000 1 2

(v) >9000 1 2 3

(vi) >6000 1 2 3

(vii) >9000 1 2 3

After the pre-processing methods stated in Table 1, a binning by averaging 10 adjacent features
was carried out with all spectra. Lastly, the triplicate spectra were averaged [24,25,36,37]. For certain
issues (e.g., only black or white truffles or origin determination of T. magnatum samples), the MSC
correction was only applied to the selected spectra.

2.5. Multivariate Data Analysis

For data investigation and visualization, principal component analysis (PCA) and line plots were
calculated using MATLAB R2019a after applying spectra pre-treatments and mean centring the data.

For the different pre-processing approaches i–vii (see Table 1) it was each evaluated which
classification model achieved the best prediction accuracy using MATLAB R2019a. The classification
models examined in this context are stated in Table 2.

Table 2. Overview of the classification models examined in this study.

Classification Models Hyperparameters Used References

a Linear Discriminant Analysis
(LDA) discrimination type: linear [38]

b Linear Support vector machine
(lin. SVM)

kernel function: polynomial polynomial
order = 1

kernel scale = 1
box constraint level = 1

[23,24,35,37,39]

c Quadratic Support vector machine
(quad. SVM)

kernel function: polynomial
polynomial order = 2

kernel scale = 1
box constraint level = 1

d Subspace Discriminant (SSD)
method: subspace learners:

discriminant
number learning cycles = 30

[40]

e Random Forest (RF) split criterion: Gini’s diversity index
max. number of splits = 100: [41]

f k-nearest neighbour (k-NN)
number of neighbours = 1

distance: Euclidean
distance weight: equal

[22,42,43]

For optimising the model parameters and for obtaining an unbiased estimate of the model’s
performance, stratified nested cross-validation was used [44,45]. Therefore, the whole data set was
split into four parts whereby the samples were stratified by the species to ensure a representative
and balanced training set (three fourths) and test set (one fourth). For the training set, 10-fold cross
validation was applied to select the optimal model parameters, referred to as inner cross-validation.
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The performance of the calculated model was then evaluated by predicting the test set. This process
was repeated for all four folds, so every part of the four-fold outer cross validation was once used as
the test set.

Finally, since the results by a single nested cross validation can vary, the entire nested
cross-validation and the prediction of the test set were repeated 100 times, of which the mean
accuracy and the standard deviation are reported.

3. Results and Discussion

3.1. Spectra Investigation

Figure 1A shows all untreated spectra of the raw data, coloured in accordance to the different truffle
species. As anticipated and seen from Figure 1A, the absorbance rises towards lower wavenumbers
because of the transition probability which is higher for the first transition than for higher overtones [46].
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Figure 1. (A) Raw Fourier transform near-infrared (FT-NIR) spectra, triplicate measurements from all
75 samples, coloured by truffle species. (B) Mean FT-NIR spectra for each truffle species after omitting
the >9000 cm−1 range, MSC and binning.

However, in the range from 11,550−9000 cm−1 some spectra show strong absorbance. Calculating
the corresponding wavelength, this region from 11,000–9000 cm−1 relates to the region from
1111−909 nm, which is close to the visual region. Here, the 4th overtone of the –OH bond occurs,
and the colour of the truffle lyophilisate itself might cause an offset, which could have increased
the absorbance [47]. Since the spectra vary in a strong way for this region, chemometric analyses, such
as PCA, would excessively focus on this region and would neglect the information that is present
in the spectra for smaller wavenumbers, so we excluded the >9000 cm−1 region. In fact, the range
>9000 cm−1 is often excluded in various FT-NIR studies—also because this region is prone to noise
when performing data pre-processing methods, such as first or second derivative [37,43].

Regarding the exclusion of some regions in the FT-NIR spectra, special care has to be taken to
bands, which can be affected by the water content. Particularly in the region around 5312 cm−1 (O−H
stretching, first overtone) and around 7142 cm−1 (O−H deformation, second overtone), water can affect
the absorbance of protein or carbohydrate specific bands [43]. The analysis of fresh truffle samples
has shown that a drying step is necessary, as otherwise large water bands and unspecific spectra are
obtained which superimpose the information beneath. Thus, the truffle samples were freeze-dried
because such a sample preparation can enhance the accuracy of the classification models [35]. Due to
the freeze-drying step, the water content in the samples can be seen as negligibly small and in the same
range, so it should have no impact on the differentiation with chemometric models in the following
steps. In addition, in the region 6500−5300 cm−1, not only water molecules absorb electromagnetic
radiation, but also C–H vibrations do, which could be a useful parameter for the differentiation of
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the truffle species. In order to avoid the loss of useful information, we have not excluded other regions
for this non-targeted approach, as several other research groups do in practice [24,37].

For powdered samples, multiplicative scatter effects occur due to differences in the materials’
particle size, and have to be corrected for a reasonable data interpretation. To overcome such scattering
effects, two approaches are commonly used: MSC and standard normal variate (SNV). According
to Dhanoa et al., both pre-processing steps are two alternative approaches, which lead to similar
results [48]. In the present study, MSC was chosen to correct for scattering effects. It should be noted
that the sequence of the various pre-processing steps is always decisive. In Figure S1, the effect of
applying MSC on the raw data, after having omitted the >9000 cm−1 region, is shown. On the contrary,
applying MSC first and omitting the >9000 cm−1 region afterwards will have misleading results, as
shown in Figure S1B on the right: the unwanted variance in the >9000 cm−1 region is not excluded,
but persists in the spectra as an error propagation. By applying pre-processing steps, it is therefore
important to examine and to compare the impact of different orders, noted in the same way by
Gerretzen et al. [49]. Any further pre-processing steps will be investigated and discussed more deeply
in Section 2.4.

3.2. Spectra Interpretation and Assignment of Bands

The FT-NIR spectra reflect the major constituents of the truffles. Naturally low in fat, lyophilised
truffle samples are rich in dietary fibre and proteins [50]. These components can be recognised in
the spectrum by their characteristic bands; however, it should be noted that an exact assignment of
bands for complex samples is difficult due to overlapping effects. For the sake of clarity, the mean
spectra have been calculated for each truffle species, and the resulting representation is shown in
Figure 1B. At around 6667 cm−1 a vast band can be located induced by N−H stretching (first overtone)
that can be attributed to proteins and amino acids. Furthermore, N−H combinations are also present
around 4687 cm−1 and the bands at 4859 cm−1 and 4600 cm−1 are caused by amide groups [24,38,47].

Regarding the carbohydrates, the double peak at 4338 cm−1 and 4257 cm−1 can be assigned to
−CH2 asymmetric stretching and symmetric stretching, respectively [51]. In addition, C−H stretching
(first overtone) and −CH2 vibration lead to peaks at 5760 cm−1 and 5742 cm−1, respectively [24,37,47].

In order to put these observations into context, the work of Saltarelli et al. with an analysis of
the protein and carbohydrate content of T. magnatum, T. borchii, T. aestivum, and T. melanosporum is
of great importance. Although their work did not emphasise the species differentiation but storage
effects, they have already noticed differences in the major constituents for the truffle species [52]. This
can be illustrated well e.g., by the protein fraction: In ascending order, T. melanosporum, T. aestivum, T.
borchii, and T. magnatum have a soluble protein content of 8.7, 11, 13, and 24%, respectively [52]. Such
an order can be found at the wavenumber 6318 cm−1: T. melanosporum showing the lowest absorbance
for this protein-specific region and T. magnatum the highest, so the above-mentioned study and our
FT-NIR analysis is therefore consistent. Admittedly, this order is not properly given over the entire
protein-specific range, especially T. magnatum shows an individual curve, but it should be noted that
FT-NIR analysis is not capable of specifically measuring soluble proteins, as Saltarelli et al. (2008) did in
their approach. Instead, it returns a general parameter, so the amount of scleroprotein and non-soluble
protein fractions could cause the discrepancy. Consequently, it should be possible to distinguish species
by—albeit very costly—quantitation of soluble protein and carbohydrate content. FT-NIR analysis, on
the other hand, enables the indirect and rapid identification of these major constituents.

3.3. Principal Component Analysis

PCA is widely used for visualising high dimensional data by transforming them into a low
dimensional space. As an unsupervised approach, it is useful for the qualitative data exploration,
checking for potential outliers and rechecking the research hypothesis before using supervised
classification models [53,54].
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Figure 2A shows the score-plot for all 75 truffle samples. Tendencies of cluster formations
according to the truffle species can be identified: the T. magnatum samples are located in the lower-left,
whilst the T. melanosporum samples are located to the right and the T. aestivum samples are in the centre
of the plot. T. borchii und T. indicum samples scatter across the plot. These intermediate results give
reason to assume that a classification of truffle species is possible. However, with a differentiation of
all five species we do not address real issues in the incoming goods inspection: the truffle’s colour
can be checked visually; thus, it only makes sense to consider the white and black truffles separately
especially because falsification occurs within the white and within the black truffle, and these are not
adulterated with each other. Therefore, PCA was calculated only for white and black truffle species and
the score-plots are shown in Figure 2B–D, respectively. The trends from the score-plot in Figure 2A are
also noticeable here, and FT-NIR analysis appears to be an appropriate method for differentiating truffle
species. For the T. indicum samples in Figure 2C, some samples are spread over the entire score-plot,
but tend to higher PC2 values in the PC4 vs. PC2 plane, already indicating the need for multivariate,
non-linear analysis tools hereinafter. Moreover, the fact that there is still cluster formation shows that
the important information for the species differentiation is not only contained in the >9000 cm−1 region,
which was omitted, but is present over the whole spectra.
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3.4. Evaluation of Pre-Processing and the Suitability for the Species Classification

Whereas applying MSC or SNV correction is necessary without question and is common practice
in FT-NIR studies, the need and the impact of any further pre-processing steps should be investigated
experimentally [55]. For evaluating the quality of such steps, only visual comparison of ‘before-and-after’
PCA plots is unlikely to find the most suitable pre-processing strategy and may mislead to an approach,
which is not appropriate for a supervised model, so we calculated classification models and compared
the prediction accuracy [36,49].

Spectra comparison of different pre-processing approaches examined are shown in Figure 3.
The effect of smoothing is not recognisable visually. In addition, it turned out that neighbouring wave
numbers show almost identical absorbance values. In order to avoid redundant data and overfitting,
a binning was carried out by calculating the mean value of the absorbance for 10 adjacent wavenumbers
and combining the measuring points into 248 variables.
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Figure 3. Spectra comparison of different pre-processing approaches, also refer to Table 1. First row:
one-step pre-processing: (i) MSC. Second row: two-step pre-processing: (ii) MSC, 1st derivative. (iii)
MSC, 2nd derivative. (iv) MSC, detrending. Third row: three-step pre-processing: (v) smoothing, MSC,
1st derivative. (vi) Smoothing, MSC, 2nd derivative. (vii) Smoothing, MSC, detrending.

For every pre-processing approaches, all five classification models stated in Table 2 were calculated
and validated using stratified nested cross-validation. As the main result parameter for comparing
the approaches, we used the mean accuracy instead of the overall accuracy to account for the different
size of the groups. The classification accuracies and precision for the test set for the differentiation of
white and black truffles are given in Tables 3 and 4, respectively. For the training set used for validation,
the classification accuracies and precisions are given in Tables S2 and S3, respectively.
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Table 3. Mean accuracy and precision of the prediction of the external test set for different pre-treatments and classification models for the differentiation of the white
truffle species (20 T. magnatum samples and 5 T. borchii samples, all values in %).

Classification Models

(a) LDA (b) lin. SVM (c) quad. SVM (d) SSD (e) RF (f) k-NN

pre-processing

(i) MSC 99.2 ± 1.1 91.2 ± 3.9 98.8 ± 1.4 98.7 ± 1.5 98.7 ± 3.2 99.1 ± 1.2

(ii) MSC, 1st derivative 99.9 ± 0.4 100 ± 0.0 100 ± 0.0 99.8 ± 0.7 94.7 ± 3.4 98.7 ± 1.4

(iii) MSC, 2nd derivative 98.0 ± 1.7 87.1 ± 1.9 94.9 ± 2.1 97.7 ± 2.0 96.3 ± 4.2 93.8 ± 2.0

(iv) MSC, detrend 98.9 ± 1.3 94.2 ± 3.5 99.5 ± 0.9 99.0 ± 1.4 97.9 ± 2.6 99.1 ± 1.2

(v) smoothing, MSC, 1st derivative 99.8 ± 0.6 99.5 ± 0.9 99.8 ± 0.6 98.9 ± 1.3 95.0 ± 3.2 98.5 ± 1.5

(vi) smoothing, MSC, 2nd derivative 98.5 ± 1.5 94.7 ± 2.0 97.7 ± 1.8 98.3 ± 1.6 95.8 ± 2.7 98.5 ± 1.5

(vii) smoothing, MSC, detrend 98.9 ± 1.5 92.8 ± 3.6 99.4 ± 1.0 98.6 ± 1.8 96.1 ± 3.6 98.5 ± 1.5

Table 4. Mean accuracy and precision of the prediction of the external test set for different pre-treatments and classification models for the differentiation of the black
truffle species (29 T. aestivum samples, 10 T. melanosporum samples, and 11 T. indicum samples, all values in %).

Classification Model

(a) LDA (b) lin. SVM (c) quad. SVM (d) SSD (e) RF (f) k-NN

pre-processing

(i) MSC 98.7 ± 1.2 87.6 ± 1.2 90.4 ± 2.9 99.0 ± 1.0 90.3 ± 2.2 96.3 ± 2.1

(ii) MSC, 1st derivative 98.9 ± 1.3 92.8 ± 2.2 94.9 ± 1.6 99.1 ± 1.2 91.7 ± 1.9 96.4 ± 1.8

(iii) MSC, 2nd derivative 95.7 ± 2.2 79.5 ± 2.6 93.2 ± 2.3 93.7 ± 2.3 90.7 ± 2.5 90.0 ± 3.4

(iv) MSC, detrend 98.7 ± 1.1 88.9 ± 1.4 90.5 ± 2.6 98.7 ± 1.1 91.8 ± 2.0 96.6 ± 2.2

(v) smoothing, MSC, 1st derivative 98.9 ± 1.1 91.7 ± 2.1 95.4 ± 1.4 99.2 ± 1.1 92.0 ± 2.2 96.1 ± 1.9

(vi) smoothing, MSC, 2nd derivative 98.8 ± 1.2 95.3 ± 2.0 98.8 ± 1.4 99.2 ± 1.1 92.7 ± 2.3 95.0 ± 2.7

(vii) smoothing, MSC, detrend 98.8 ± 1.0 88.3 ± 1.4 90.4 ± 2.2 99.0 ± 1.0 91.9 ± 1.9 96.3 ± 2.0



Foods 2020, 9, 922 10 of 16

As can be seen in Table 3, all classification models provide good accuracy (>90%). Only the second
derivation leads to significantly worse results. A pre-treatment of MSC with first derivation with both
a linear and a quadratic SVM lead to an error-free classification of 100% (the most appropriate results are
marked bold in the corresponding tables). Accordingly, any falsification of the expensive T. magnatum
with the cheaper T. borchii can be detected. Because of the clear result based on the available and
analysed truffle samples, the confusion matrix is not needed here, but can be seen in the supplement in
Table S4.

A similar trend can be seen for the black truffles: Here too, high accuracies are generally achieved
(>90%), only the second derivative without previous smoothing performs worse and a linear model
does not seem to be sufficient for this ternary issue. Although the results overlap when the standard
deviation is considered, the best accuracies of 99.1 ± 1.2 % are obtained when using MSC and the first
derivative with the SSD model. A previous smoothing does not yield a significant improvement. Since
every data pre-treatment is also a manipulation of the data, the model with the fewest steps should be
preferred. The corresponding confusion matrix is shown in Table 5. In particular, fraud is common
with T. indicum, which is counterfeited as the high-priced T. melanosporum because the two species are
morphologically very similar and collected at the same harvesting times. Therefore, it is pleasing that
the specificity for T. melanosporum is 97.5%—the error rate of mistakes is only 2.5%.

Table 5. Confusion matrix for classification of the black truffle species with the build subspace
discriminant model after MSC and 1st derivative; resulting in 99.1 ± 1.2% mean sensitivity.
The predictions of 100 repetitions of the test set were accumulated.

Predicted Species

T. indicum T. aestivum T. melanosporum sensitivity [%]

actual species

T. indicum 1073 1 26 97.5

T. aestivum 3 2897 0 99.9

T. melanosporum 1 0 999 99.9

specificity [%] 99.6 100 97.5

Table S5 shows the classification results for the test set for the differentiation of all five truffle species,
indicating that also for this more complex five-class-issue, classification models can be calculated with
high accuracy of 99%, and for the training set used for validation, the classification accuracies and
precisions are given in Table S6. The corresponding confusion matrix is shown in Table S7.

DNA analysis is often used to authenticate species and varieties, while FT-NIR analysis is widely
established in industrial incoming goods inspection. FT-NIR analysis does not require any specialised
training for handling and any special, eventually hazardous chemicals for sample preparation
and measurement, therefore the FT-NIR analysis is a “green method” [56]. Additionally, possible
contamination due to exponential amplification by PCR quickly leads to false positive results. In order
to keep this danger to a minimum, separate laboratories for sample preparation and DNA analysis
are necessary, whereas NIR does not have such requirements. Optionally, it would be conceivable
to use FT-NIR measurement for sample screening and to countercheck any conspicuous results by
DNA analysis.

Regarding the determination of the geographical origin, however, DNA analysis cannot provide
reasonable answers since the origin rather affects the phenotype. Here, FT-NIR analysis can be a tool for
differentiating the origin [35] and the possibilities for the truffle differentiation by origin are examined
in the following chapter.

3.5. Influence of Harvest Year and Geographical Origin

As shown in the PCA plot (Figure 2A), the truffle species has the dominant influence on the NIR
spectrum, since the scores cluster according to their species in this unsupervised model. This can
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be demonstrated on the T. magnatum samples, which, although dominant from Italy, originate from
Bulgaria, Croatia, and Romania, and are clustering together in the unsupervised PCA. This effect is
similar for the T. aestivum samples originating mainly from Romania, but also from Bulgaria, France,
Iran, Italy, Moldovia, and Slovenia. Thus, the species itself seems to have a much greater influence on
the metabolome to be measured by FT-NIR spectroscopy than the origin.

One model for the origins of all truffle samples is not advisable for this reason, since most Italian
samples are white truffles and most Romanian samples are T. aestivum truffles what is linked to
their natural areas of origin. Such a model might, therefore, correlate on a false causality. However,
the price depends primarily on the species whilst the origin is a second factor in the purchase decision.
Accordingly, for the incoming goods inspection it is important especially for the most expensive T.
magnatum truffle whether it comes from Italy or not, according to the consumer’s expectations. For
this Italy vs. non-Italy issue, all pre-processing was compared with classification models, analogous
to the previous investigations when targeting the species. The results of the test set are shown in
Table 6, and for the training set used for validation, the classification accuracies and precisions are
given in Table S8. Best classification results of 88.4 % are reached after MSC and 2nd derivative in
combination with a Random Forest (RF) classification model. However, we have decided not to
pursue this pre-processing strategy because the spectra line plots in Figure 3iii have shown that a lot
of noise occurs in the range of wavenumbers above 6000 cm−1 and a smoothing an omitting this
range is preferable. This alternative approach leads to a slightly worse accuracy of 82.8 ± 8.1% and
the corresponding confusion matrix is shown in Table 7. The accuracy results provided by the LDA
classification only differ by a few percentage points, and are even better in some cases. However,
we chose the RF model since the PCA plots have arouse the impression that non-linear classification
models might be more suitable for this issue.

Table 6. Mean accuracy and precision of the prediction of the external test set for different pre-treatments
and classification models for the differentiation of Italian vs. non-Italian T. magnatum truffles (all values
in %).

Classification Model

(a) LDA (b) lin.
SVM

(c) quad.
SVM (d) SSD (e) RF (f) k-NN

pre-processing

(i) MSC 82.4 ± 4.5 51.8 ± 2.5 74.5 ± 5.0 82.6 ± 4.7 72.8 ± 5.4 80.2 ± 4.3

(ii) MSC, 1st derivative 80.5 ± 4.5 50.8 ± 2.3 80.9 ± 3.4 82.0 ± 4.3 79.2 ± 5.6 82.5 ± 4.5

(iii) MSC, 2nd
derivative 83.6 ± 4.0 58.0 ± 3.6 82.9 ± 2.4 83.2 ± 3.1 88.4 ± 5.0 80.8 ± 4.5

(iv) MSC, detrend 82.6 ± 4.7 51.7 ± 2.5 74.4 ± 4.9 81.3 ± 4.7 78.9 ± 6.6 81.6 ± 3.8

(v) smoothing, MSC,
1st derivative 81.1 ± 4.1 51.4 ± 2.1 80.8 ± 3.0 81.1 ± 4.2 79.3 ± 5.4 80.9 ± 4.4

(vi) smoothing, MSC,
2nd derivative 83.7 ± 4.2 63.8 ± 3.8 82.3 ± 3.6 82.5 ± 4.5 82.8 ± 8.1 81.8 ± 4.6

(vii) smoothing, MSC,
detrend 82.6 ± 5.0 51.4 ± 2.4 74.3 ± 4.9 81.8 ± 4.5 80.5 ± 6.6 81.5 ± 4.2

Table 7. Confusion matrix for classification for the differentiation of Italian vs. non-Italian T. magnatum
truffles with the build RF model after smoothing. MSC and 2nd derivative; resulting in 82.8 ± 8.1%
mean sensitivity. The predictions of 100 repetitions of the test set were accumulated.

Predicted Origin

Italian non-Italian sensitivity [%]

actual origin Italian 1247 153 89.1

non-Italian 141 459 76.5

specificity [%] 89.8 75.0
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Additionally, the PCA-plots for the T. magnatum samples were calculated and are shown in
Figure 4, indicating and confirming that a non-linear classification model, such as RF, is more suited
for this issue. Still, there are two aspects to consider: first, the standard deviation is remarkably
high and second, the PCA plots show that the variance within the Italian samples is at least as large
as the variance of the other origins. An origin model with acceptable accuracy is chemometrically
possible, but should be checked with additional samples.Foods 2020, 9, x FOR PEER REVIEW 12 of 16 
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As the results show, FT-NIR can be used for the differentiation of black and white truffles, and
Italian and non-Italian truffles of the species T. magnatum. Since FT-NIR is a simple and cheap method,
it is suitable for industrial applications, for example, for the incoming goods inspection or authenticity
checks on truffles. The process of authentication using FT-NIR is shown schematically in Figure 5.
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Figure 5. Authentication protocol for the stepwise authentication assessment of truffles with FT-NIR
and chemometrics.

4. Conclusions

FT-NIR spectroscopy was combined with chemometrics to distinguish within the white truffles T.
borchii and T. magnatum and the black truffles T. aestivum, T. indicum, and T. melanosporum. Different
techniques for pre-processing in combination with various classification models and their effect on
the accuracy of the model were compared. Classification accuracies >99% showed that the analysis
of truffle samples by FT-NIR spectroscopy is a very suitable tool for species differentiation without
sophisticated sample preparation or instruments. When differentiating between Italian and non-Italian
T. magnatum samples, an accuracy of 83% was achieved. FT-NIR analysis requires no special training
for handling and no special, possibly hazardous chemicals for sample preparation and measurement.
In addition, most quality assurance laboratories already have FT-NIR instruments. Due to its simple,
cost-effective application, FT-NIR analysis is very well suited for industrial screening samples during
incoming goods inspection. Considering the number of 75 truffle samples used, we intend to extend
the results of our study by analysing further samples, including a research on the potential effects of
the harvest year.

Supplementary Materials: The following figures and tables are available online at http://www.mdpi.com/2304-
8158/9/7/922/s1, Figure S1: Influence of the order of pre-processing steps. (A) Raw data. (B) MSC and omitting the >

9000 cm−1 range. (C) Omitting the >9000 cm−1 range first and MSC; Table S1: Overview of the analysed truffle
samples with number of samples, harvest year and country; Table S2: Mean accuracy and precision of the training
set used for validation for different pre-treatment and classification models for the differentiation of the white
truffle species (20 T. magnatum samples, 5 T. borchii samples, all values in %); Table S3: Mean accuracy and precision
of the training set used for validation for different pre-treatment and classification models for the differentiation of
the black truffle species (29 T. aestivum samples, 10 T. melanosporum samples and 11 T. indicum samples, all values
in %); Table S4: Confusion matrix for classification of the white truffle species with the build linear SVM model
after MSC and 1st derivative; resulting in 100% mean sensitivity. The predictions of 100 repetitions of the test set
were accumulated; Table S5: Mean accuracy with standard deviation for different pre-treatment and classification
models for the prediction of the test set for the differentiation of five truffle species (20 T. magnatum samples, 5 T.
borchii samples, 29 T. aestivum samples, 10 T. melanosporum samples and 11 T. indicum samples, all values in %);
Table S6: Mean accuracy and precision of the training set for different pre-treatment and classification models for
the differentiation of the five truffle species (20 T. magnatum samples, 5 T. borchii samples, 29 T. aestivum samples, 10
T. melanosporum samples and 11 T. indicum samples, all values in %); Table S7: Confusion matrix for classification
of five truffle species with the build subspace discriminant model after MSC and 1st derivative; resulting in 99.3 ±
0.9% mean sensitivity. The predictions of 100 repetitions of the test set were accumulated; Table S8: Mean accuracy
and precision of the training set for different pre-treatment and classification models for the differentiation of
Italian vs. non-Italian T. magnatum truffles (all values in %), MATLAB function for the creation of stratified parts
for the nested cross validation.
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