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Abstract: This research aims to develop a classification model based on untargeted elaboration of
volatile fraction fingerprints of virgin olive oils (n = 331) analyzed by flash gas chromatography
to predict the commercial category of samples (extra virgin olive oil, EVOO; virgin olive oil,
VOO; lampante olive oil, LOO). The raw data related to volatile profiles were considered as
independent variables, while the quality grades provided by sensory assessment were defined as
a reference parameter. This data matrix was elaborated using the linear technique partial least
squares-discriminant analysis (PLS-DA), applying, in sequence, two sequential classification models
with two categories (EVOO vs. no-EVOO followed by VOO vs. LOO and LOO vs. no-LOO followed
by VOO vs. EVOO). The results from this large set of samples provide satisfactory percentages of
correctly classified samples, ranging from 72% to 85%, in external validation. This confirms the
reliability of this approach in rapid screening of quality grades and that it represents a valid solution
for supporting sensory panels, increasing the efficiency of the controls, and also applicable to the
industrial sector.
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1. Introduction

The official methodology for sensory evaluation of virgin olive oils (VOOs), known as a panel
test, is a fundamental tool to assess the quality of products that cannot be replaced by instrumental
methods, considering that the overall and complex perceptual attributes (e.g., fruity and defects)
are the indicators of the quality of VOOs. Despite its proven effectiveness in evaluating the quality
grades of samples, tested in EU countries since 1991 [1,2], the scientific community has highlighted
some drawbacks on its application that are mainly related to the following: (i) the reproducibility of
results among different panels; (ii) critical attribution of the category when, e.g., a defect is borderline;
(iii) costs, assessor fatigue and other limitations associated with a method working with humans.

Specifically, according to decisions taken at International Olive Council (IOC) level, the Reg. (EU)
1348/2013 [3] recommends the number of oils to be assessed by the sensory panels, fixing a maximum
number of four samples at each session. Moreover, a maximum of three sessions per day is specified,
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to leave enough time between a session and another, thus avoiding the contrast effect that could be
produced by immediately tasting sequences of samples. These specifications strongly limit the number
of samples that can be assessed by one panel per day. On the other hand, to enhance panel skills in
recognizing, identifying, and quantifying sensory attributes, the introduction of new artificial reference
materials (obtained by chemical or biotechnological approaches), could improve the proficiency of
the individual panels and their global alignment by overcoming some limitations associated with a
natural matrix (e.g., limited amounts available, difficultly obtaining, low homogeneity year by year)
and offering advantages such as preparation in each laboratory, reproducibility over time, possibility
of purchase, and therefore their availability for the market.

In this context, the development of an instrumental method for rapid screening of quality grades of
samples (extra virgin olive oil, EVOO; virgin olive oil, VOO; lampante olive oil, LOO) could represent
a solution to support sensory panels (particularly for large private industries), decreasing their daily
work by reducing the samples that need to be assessed (e.g., by excluding those definitely compliant),
with a consequent increase in the efficiency of quality controls and reducing the number of samples
that need to be controlled.

In this way, improvement of the activity of sensory panels, whose work remains central to
ensuring the quality of the product, would be achieved by focusing sensory analysis only on uncertain
samples (i.e., borderline oils between two product categories that can be the object of disagreement
among panels).

It is well known that volatile compounds are crucial to determine VOO quality and that they
are responsible for the different VOO sensory profiles [4–6]; their determination in a rapid way
(e.g., screening method) could support sensory analysis and represents one of the current challenges
in the olive oil sector where fast, accurate, and easy-to-use approaches providing real-time results
are required.

Recently, different analytical techniques combined with chemometric statistical approaches have
been proposed to predict sensory information [7–9].

Alongside the traditional techniques (targeted) in which specific and selected molecular markers are
monitored during the analysis to assess the presence or absence of compounds and their quantification,
untargeted analyses, based on a holistic approach and able to provide information such as a spectral
fingerprint, giving a simplified and overall picture of the food under analysis, have gained an increasing
relevance over the last years [10].

Among the latter, different analytical methods for determination of volatile compounds combined
with multivariate chemometric techniques for VOOs quality testing have been described in the literature
and proposed to the industrial sector as fast and high throughput screening techniques [9,11–18].

In particular, as an alternative to headspace gas chromatography-mass spectrometry (HS-GC/MS),
which is the most widely used technique to quantify and characterize the profiles of volatile compounds
of VOOs thanks to its high sensitivity and selectivity, the application of the HS-GC ion mobility
spectrometry (HS-GC-IMS) has been proposed. This technique combines high selectivity and sensitivity
with high robustness and cost-efficiency, and has given promising results in discriminating VOOs
according to quality grades [9,11,12,14,18] or geographical origin [13,15].

The need to support organoleptic analysis was also reported in a specific call of the Horizon 2020 EU
program (H2020-SFS-14a-2014) and is one of the main objectives of the OLEUM project (Horizon 2020,
Grant Agreement No. 635690). In the framework of this project, two analytical instrumental techniques,
headspace-solid phase micro extraction–gas-chromatography/mass spectrometry (HS-SPME-GC/MS)
and flash gas chromatography (FGC) based on the determination of volatile compounds, have been
proposed as the most promising rapid screening methods that can support sensory panels in the
determination of quality grades.

In a recent work by Quintanilla-Casas and co-authors (2020) [17], the results obtained with
HS-SPME-GC/MS with a fingerprinting approach to classify VOO categories has been demonstrated.
Herein, a classification model based on minor fraction fingerprints that is able to predict the commercial
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category of olive oil samples (EVOOs, VOOs, LOOs) obtained by FGC is presented. The FGC is
an innovative analytical approach for analysis of volatile compounds of VOOs based on the FGC
separation: the headspace of VOOs, previously conditioned, is sampled by a syringe, the volatile
organic compounds are adsorbed on a Tenax trap and subsequently desorbed by rapid heating, and,
finally, transferred to a FGC step. The elution of analytes runs in parallel using two metal capillary
columns with different polarity of the stationary phase. This gives rise to slight differences in the
separation capability of molecules that are detected by a flame ionization detector (FID) located at the
end of each column.

The main advantage of the FGC technique is its short analysis time (total separation time is 100 s);
moreover, its application associated with sensory analysis for calibration and chemometric tools is
promising to support the work of panel tests in discriminating samples of different product categories.
A classification model, once built, could be easily applied in any laboratory or industry.

The effectiveness of this technique is already demonstrated by previous works aimed to differentiate
VOOs according to their geographical origin declared by labels such as “100% Italian” and “non-100%
Italian” oils [19] or “EU” and “extra-EU” [16].

The aim of this study was to classify VOOs according to quality grade, combining FGC data
with the multivariate classification technique partial least squares discriminant analysis (PLS-DA).
To provide robustness to our model, a set of 331 oils belonging to the three different commercial
categories (EVOO, VOO, LOO) involving two harvesting/production years was analyzed. The adopted
validation protocol (repeatability and reproducibility tests) and related performance are also shown.

2. Materials and Methods

2.1. Olive Oil Samples

An initial set of 334 EVOOs, VOOs, and LOOs oils representative of the most common
olive cultivars, geographical origin, sensory positive attributes, and sensory defects were sampled.
Specifically, in addition to a first set of 180 oils collected during the first year of the OLEUM project
(2016–2017 olive season), another set of 154 samples (2017–2018 olive season) was collected and
analyzed during the second year (Tables S1–S4 in the Supplementary Materials).

The panel test method was carried out by six panels involved in the OLEUM project as described
by Barbieri et al. 2020 [20] and sensory data were expressed as mean of medians. The procedure deals
with possible disagreement between panels with a decision tree in order to have definitive classification
of samples in which definitive agreement is reached. In agreement with the sensory results reported in
Tables S1 and S2 (Supplementary Materials), in the first year of the project 178 of 180 samples were
immediately classified by panels (54 EVOO, 78 VOO, and 48 LOO). Classification was not possible for
only two samples (UN_10, UP_14), as agreement among panels was not reached on the category (V/L).
The sensory evaluation of oils from the second sampling allowed classification of 153 oils (69 EVOO,
51 VOO and 33 LOO); 1 sample was not classified due to an anomalous lemon smell (ZRS_1) and
was therefore excluded from the set [20]. For these reasons, the classification model was built on
331 samples.

The oils collected were representative of possible commercial samples and borderline samples that
can be the object of disagreement between panels in terms of sensory characteristics. Different aliquots
of the samples, stored in the lab at 10–12 ◦C (for sensory analysis) and at −18 ◦C (for instrumental
analysis), were reconditioned at room temperature before analysis.

2.2. Analytical Conditions

The FGC system (FGC-E-nose Heracles II, AlphaMos, Toulouse, France) is based on the technology
of ultra-fast gas-chromatography.

The FGC is equipped with two columns working in parallel: a non-polar column (MXT5: 5%
diphenyl, 95% methylpolysiloxane, 10 m length and 180 µm diameter) and a polar column (MXT-1701:
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14% cyanopropylphenyl/86% dimethyl polysiloxane, 10 m length, 180 µm diameter). At the end of
each column, a FID detector is placed and the acquired signal is digitalized every 0.01 s.

The analytical conditions applied were the same described by Melucci et al. 2016 [19]. The only
difference was related to the temperature of the conditioning step of the samples before injection: the
vial is placed in the auto-sampler (HS 100, CTC Analytics), which moves it in a shaker oven where it
remains for 20 min at 40 ◦C, shaken at 500 rpm.

2.3. Validation Protocol

To confirm that the analytical procedure employed has performance capabilities consistent with
the required application, a validation strategy for non-targeted approaches was performed.

A QC (quality control) sample, representative of the qualitative and quantitative VOO volatile
composition (presence of volatile compounds along the entire interval of the chromatogram), was used.
In this study, the QC sample was obtained by pooling the same volume of three case-control samples
(1 EVOO, 1 VOO with median of 1.9 for fusty-muddy defect, and 1 VOO with a median of 2.5 for
rancid defect) and seven replicates were taken into consideration.

The quality of the instrumental performance intended for fingerprinting analysis was checked
by the calculation of the relative standard deviation (RSD) as proposed by the Food and Drug
Administration [21]. Specifically, the repeatability (intra-day repeatability and inter-day repeatability
performed according to EC 657/2002) [22] of the chromatographic signal evaluated in terms of RSD%
of each chromatogram data point, with intensities above noise signal of the replicates of the same QC
samples, was considered [23,24].

Prior to RSD calculation, data were aligned using the COW algorithm (correlation optimized
warping) [25] and autoscaled (mean-centering followed by division of variable by the standard deviation
of that column) to correct shifts in retention time and possible differences in the signal amplification of
the instrument. All elaborations were made using PLS Toolbox for Matlab (MatlabR2018a®) (Natick,
MA, USA).). For calculation of RSD% for each chromatogram data point, the evaluation and exclusion
of noise signal is carried out to avoid considering non-relevant RSD%.

For precision, the FDA recommends a RSD not higher than 15% regarding the analytical variability
for target analysis, except for concentrations close to the detection limit where a RSD of 20% is
acceptable (FDA Bioanalytical Method Validation-Guidance for Industry, 2018). This, in agreement
with the trend described by the Horwitz equation for targeted methods [26], demonstrates that the
repeatability is strongly correlated with the intensity of the variables.

Although fingerprinting represents a different analytical approach and more variation is expected
when doing untargeted analysis, these guidelines are used as a benchmark towards repeatability
evaluation. Specifically, for intra-day repeatability, the acceptance criteria were as follows: more than
90% of signals with RSD < 15%; more than 95% of signals with RSD < 20% and distribution of RSD%
vs. signal intensity in accordance with the Horwitz equation. For inter-day repeatability or within-lab
reproducibility, the acceptance criteria were as follows: more than 85% of signals with RSD < 15%,
more than 90% of signals with RSD < 20% and distribution of RSD% vs. signal intensity in accordance
with Horwitz’s equation.

In addition, the examination of system performance by checking the signal to noise ratio in
standard solutions (instead of the evaluation of representative VOO profiles) to facilitate the assessment
and comparison of method sensitivity for other laboratories was proposed. The sensitivity of the
analytical system was evaluated by analyzing 2 g of each standard solution in refined olive oil (ethanol
0.05 mg·kg−1, CAS Number 64-17-5; assay ≤ 97.2%; density 0.789 g/mL at 25 ◦C; hexanal, 0.1 mg·kg−1

CAS Number 66-25-1; assay ≥ 95% (GC); density 0.815 g/mL at 25 ◦C; (E)-2-hexenal, 0.75 mg·kg−1

CAS Number 6728-26-3; assay ≥ 97.0% (GC); density 0.846 g/mL at 25 ◦C). The S/N (S = intensity of
the peak of the compound; N = mean intensity of the noise measured considering the baseline of the
chromatographic zone between 43 and 50 s) for the selected analytes in the chromatograms should be
>3 (acceptance criteria).
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2.4. Classification Models

In order to predict the assignment of samples to a specific quality grade, full chromatograms were
used to develop classification models. The raw data of each chromatogram, for a total of 19,900 points,
were aligned by the COW algorithm and autoscaled using PLS Toolbox for Matlab (MatlabR2018a®).
Subsequently, the noise was excluded and 8401 points were consecutively selected from first to last
peak observed in the chromatogram.

Subsequently, PLS-DA (partial least square discriminant analysis) models [27] were built by using
the intensity values of the points as variables X (matrix X), while the commercial categories (EVOO,
VOO, LOO) were considered as variable Y. In particular, classification models with 2 categories were
developed in sequence: EVOO vs. no-EVOO followed by VOO vs. LOO and LOO vs. no-LOO
followed by EVOO vs. VOO, as proposed by Quintanilla-Casas et al. 2020 [17].

The sample dataset was split in calibration (venetian blinds cross validation, including 75% of the
samples) and external validation set (25% of the samples) by using the Kennard–Stone method [28].
The dataset was deposited for possible consultation in an on-line repository [29].

The threshold value able to identify the belonging category of each sample into one of the groups
was defined by using a probabilistic approach based on Bayes’s rule [30]. Finally, to assess the goodness
of the method, the receiver operating characteristic (ROC) curves were evaluated.

3. Results and Discussion

3.1. Performance of FGC

Most of the procedures proposed in the literature for validation of non-targeted methods focus
on post-analytical data treatment and validation of statistical models. Nevertheless, a few studies
have investigated control procedures as well as performance criteria and requirements to ensure the
consistence of the analytical signal (fingerprint) [24,31].

Conventional performance criteria adopted for targeted methods are not applicable as such to
fingerprinting methods. Fingerprinting methods intended for sample classification are not aimed at
identification and quantification of analytes, but on finding distinctive patterns that are specific for a
given food category (i.e., VOO commercial category) in raw analytical signals (i.e., chromatograms).
Therefore, the main constraint of the fingerprinting analytical method is to provide a repeatable and
reproducible signal with sufficient sensitivity to collect the information from samples for the final
purpose of the method, i.e., quality classification.

For evaluation of intra-day repeatability, the pooled QC sample was analyzed by the same
operator with the same equipment and in the same instrument operative conditions within the same
day. For each variable (data points), mean value, SD, and RSD% were calculated considering the seven
replicates. More than 97.5% of signals presented RSD < 10%, while it achieves 99.8% in correspondence
of RSD < 20% (Table 1). To analyze the variability as related to the magnitude of the variables, RSD%
was plotted versus signal intensity (data not shown). As expected, data points with RSD > 10% are
characterized by low values of intensity. This is in agreement with the trend described by the Horwitz
equation for targeted methods [26].

In the case of the inter-day repeatability (within-lab reproducibility), seven replicates of the pooled
QC sample were analyzed by the same operator with the same equipment but on different days,
consequently involving different environmental conditions, and the mean value, SD, and RSD% were
calculated. More than 91% and 99.4% of the signals presented RSD < 10% and RSD < 20%, respectively
(Table 1). A relation between intensity and RDS% was also observed in this study, similarly to that
previously observed in the intra-day repeatability test.

As the fingerprinting approach intended for sample classification is not aimed in determining
the concentration of single analytes, limits of detection or quantification cannot be calculated for the
analytical outcome. However, the analytical method needs to be sufficiently sensitive to allow detection
of minor constituents to avoid missing any valuable information.
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Table 1. Frequency of each relative standard deviation percentage (RSD%) class obtained for intra-day
and inter-day repeatability evaluated on the quality control (QC) sample.

Intra-Day Repeatability Inter-Day Repeatability

Class (RSD%) Frequency % Class (RSD%) Frequency %

10 8185 97.5 10 7690 91.5
15 166 1.5 15 552 6.6
20 33 0.8 20 106 1.3
30 17 0.2 30 16 0.2
40 0 0 40 37 0.4
50 0 0 50 0 0
60 0 0 60 0 0
70 0 0 70 0 0
80 0 0 80 0 0
90 0 0 90 0 0

100 0 0 100 0 0

On this basis, the method’s sensitivity needs to be set as a reference parameter to be evaluated in
the validation process. A target-type strategy applied to standard solutions was proposed.

Standard solution compounds were chosen as most representative of the qualitative and
quantitative volatile composition of VOOs, especially regarding the presence of volatile compounds
over the entire interval of the chromatogram considered in fingerprinting analysis. Differences between
the concentrations used for each compound are related to their different amounts generally present in
a VOO sample. Results of the S/N are reported in Table 2.

Table 2. Concentration (mg·kg−1) of each compound included in the standard solution used for
method’s sensitivity evaluation and related S/N. The standard mix were prepared by spiking refined
olive oil with each compound and analysed by flash gas chromatography (FGC). S = intensity of the
peak of the compound; N = mean intensity of the noise measured considering the baseline of the
chromatographic zone between 43 and 50 s.

Compound Retention Time Concentration (mg·kg−1) S/N

Ethanol 21.8 0.05 3.84 ± 0.99
Hexanal 55.6 0.1 5.55 ± 0.96

(E)-2-Hexenal 62.0 0.75 4.42 ± 1.82

3.2. Classification Models

A fingerprinting approach involving chemometric elaboration of the entire profiles in volatile
molecules without identification and quantification was applied.

Two different classification strategies were taken into account: (i) a classification model able to
discriminate EVOO and no-EVOO samples, followed by a model to classify VOO vs. LOO samples;
(ii) a classification model able to discriminate LOO and no-LOO samples, followed by a model to
classify VOO vs. EVOO samples.

The results, in terms of percentage and number of correctly classified samples, are reported
in Table 3 for cross and external validation, respectively. Regarding the first classification strategy,
the percentages of correctly classified samples ranged from 72 to 89% and from 72 to 85%, for cross
and external validation, respectively. In particular, the best results were obtained during the second
step useful to discriminate VOO vs. LOO. For the second strategy, conceptually more correct in terms
of sequence because it first discriminates LOO which are not edible if not refined, the percentage
ranged from 78 to 92% and from 73 to 85%, for cross and external validation, respectively. In this case,
the highest percentages were reached using the first PLS-DA model (LOO vs. no-LOO). Furthermore,
this latter model was the best of all PLS-DA models developed.
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In general, the percentages are in the same range as those obtained by other authors who proposed
chemometric models to discriminate VOO quality grades according to their volatile profile analyzed
by different instrumental techniques [9,17].

The ROC curves (Figure 1) evaluated the sensitivity (number of samples predicted as in the class
divided by number actually in the class) and the specificity (number of samples predicted as not in
the class divided by actual number not in the class) of all PLS-DA models (external validation) [16].
In particular, the area under the curve (AUC) identifies the degree of discrimination (ranged 0.8148 to
0.8899) and suggests that all the models are characterized by a good degree of discrimination.
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Figure 1. Receiver operating characteristic (ROC) curves of all developed PLS-DA models used to
discriminate samples according to quality grade; the red circles identify the sensitivity (number of
samples predicted as in the class divided by number actually in the class) and the specificity (number
of samples predicted as not in the class divided by actual number not in the class) of the models.
EVOO = extra virgin olive oil; VOO = virgin olive oil, LOO = lampante Olive Oil.

The results of all the models (cross and external validation), in term of probability of belonging
to the correct class, are shown in Figure 2. The threshold value was fixed at 0.5, corresponding to a
probability of 50%: a sample classified with a probability lower than this is considered as not correctly
grouped [32].

The definition of a probability level, ranging from 50% to 100%, could be a means of identifying
uncertain samples that need to be checked by sensory evaluation. In other words, the samples
classified with a probability lower than the selected probability level should be submitted to panel test.
These procedures would reduce the amount of the samples analyzed by the panel, but at the same
time, it would insure the accuracy of the classification.
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Figure 2. Class prediction probability of all samples used to develop the models, in cross and external
validation (grey area). Step 1—EVOO (green star) vs. no-EVOO (blue square); step 2—VOO (yellow
diamond) vs. LOO (red circle); step 1—LOO (red circle) vs. no-LOO (yellow square); step 2—VOO
(yellow diamond) vs. EVOO (green star). EVOO = extra virgin olive oil; VOO = virgin olive oil,
LOO = lampante olive oil.

Table 3. Results in terms of percentage and number of samples correctly classified in cross and external
validation of the two classification strategies applied based on the partial least squares-discriminant
analysis (PLS-DA) sequential model. EVOO = extra virgin olive oil; VOO = virgin olive oil,
LOO = lampante olive oil.

1st CLASSIFICATION STRATEGY 2nd CLASSIFICATION STRATEGY

1st Step: EVOO vs. no-EVOO 1st Step: LOO vs. no-LOO

Cross validation External validation Cross validation External validation
EVOO: 70/90 (78%) EVOO: 26/32 (81%) LOO: 50/61 (81%) LOO: 17/20 (85%)

No-EVOO: 132/164 (81%) No-EVOO: 37/48 (77%) No-LOO: 172/188 (92%) No-LOO: 55/65 (85%)
TOTAL: 202/254 = 80% TOTAL: 63/80 = 79% TOTAL: 222/249 = 89% TOTAL: 72/85 = 85%

2nd Step: VOO vs. LOO 2nd Step: VOO vs. EVOO

Cross validation External validation Cross validation External validation
VOO: 88/99 (89%) VOO: 22/26 (85%) VOO: 84/95 (88%) VOO: 23/27 (85%)
LOO: 41/57 (72%) LOO: 18/25 (72%) EVOO: 74/94 (78%) EVOO: 24/33 (73%)

TOTAL: 129/156 = 83% TOTAL: 41/51 = 78% TOTAL: 158/189 = 84% TOTAL: 47/60 = 78%

4. Conclusions

Despite the undisputed validity of the panel test, its application is time consuming and expensive.
Accordingly, companies and private and public quality control labs could benefit from robust
instrumental pre-classifications, which would reduce the number of samples that have to be assessed
by panels, or at least prioritize their assessment.
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For this reason, the development of rapid screening methods to support the official panel test,
to analyze olive oils and differentiate their quality grades, is one of the challenges in the olive oil sector,
as reported in the EU framework program Horizon 2020.

In this work, FGC combined with the multivariate statistical technique was applied to discriminate
samples according to different quality grades (EVOO, VOO and LOO; examples of GC traces for
EVOOs and LOOs are shown in Figure S1 of the Supplementary Materials). The analytical technique
proposed herein for fingerprinting olive oils combined with chemometrics was effective in reducing
data complexity and time to obtain a response; this rapid screening tool could be adopted for a quick
pre-classification of the quality grades, e.g., by control laboratories in companies of the OO sector,
before buying or blending EVOOs.

In order to propose a robust chemometric model, a large set of samples (n = 331) involving two
different harvesting/production years, the most common olive cultivars, geographical origin, sensory
positive attributes, and sensory defects, was analyzed. In addition, a validation protocol was adopted
for evaluate the reliability of the results.

The proposed analytical fingerprinting method provided repeatable and reproducible signals
with sufficient sensitivity to collect valuable information about samples.

FGC associated with the two-category sequential classification model is promising to support
sensory analysis in discriminating samples of different product categories. Among the proposed
classification strategy, the second (1st step: LOO vs. no-LOO; 2nd step: VOO vs. EVOO) was the best
of all PLS-DA models developed with percentages of correctly classified samples ranging from 78 to
92% and from 73 to 85%, for cross and external validation, respectively.

This analytical approach is very fast, and, in fact, only around 200 s are needed to analyze a
single sample. The classification model, built by using a high number of robust samples classified by
sensorial analysis and representative of the commercial variability (here we used a decision tree and
six panels to ensure their classification) is easily applicable in any laboratory or industry.

Future studies could be addressed to the implementation of this methodology, even in relation
to an increasing interest of the food sector towards volatile compounds and more widespread use
of instruments such as FGC, which are less common in quality control laboratories. An even wider
sampling phase including other variables among oils, since they are natural products, could lead to a
better control of classifications and would lead to implementation of this technique to a broader extent.
Lastly, the use of other statistical approaches, such as nonlinear techniques, could be investigated in
order to improve the results of classification.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/7/862/s1,
Table S1: Sensory results of samples from the first year. Table S2: Sensory results of samples from the second year.
Table S3: available information on samples collected and evaluated during the first year of the Oleum project.
Table S4: available information on samples collected and evaluated during the second year of the Oleum project.
Figure S1: overlapping of the GC traces of extra virgin (EVOO) and lampante (LOO) samples.

Author Contributions: Conceptualization, S.B., A.B. and T.G.T.; Formal analysis, S.B. and C.C.; Data curation,
S.B. and C.C.; Writing—original draft preparation, S.B.; Writing—review and editing, S.B., C.C., A.B., B.Q.-C.;
Supervision, T.G.T. and D.L.G.-G.; Funding acquisition, T.G.T. All authors have read and agree to the published
version of the manuscript.

Funding: This work is supported by the Horizon 2020 European Research project OLEUM “Advanced solutions
for assuring the authenticity and quality of olive oil at a global scale”, which received funding from the European
Commission within the Horizon 2020 Programme (2014–2020), grant agreement No. 635690.

Acknowledgments: The information expressed in this article reflects the authors’ views; the European Commission
is not liable for the information contained herein. We are grateful to all producers who provided us with VOOs for
this study as well as the panel members who performed sensory analysis of VOOs from each institution involved:
Eurofins Analytik GmbH, Hamburg, Germany; Institute of Agriculture and Tourism, Porěc, Croatia; Institut des
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