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Abstract: The aim of the present study was to investigate antioxidant, angiotensin converting
enzyme (ACE) inhibitory, and anti-microbial activities of wheat wafers enriched with 1%, 2%, or 3%
(w/w) of millet flour (M1, M2, or M3, respectively). All samples were characterized by a richer
composition of protein, polyphenols, flavonoids, phenolic acids, and reducing sugar in comparison
with the control sample. The highest content of the components, i.e., 1.03 mg mL−1, 0.021 mg mL−1,
2.26 mg mL−1, 0.17 µg mL−1, and 0.63 mg mL−1, respectively, was detected in sample M3. The same
sample was characterized by 803.91 and 42.79% of water and oil absorption capacity, respectively.
The additive did not change the rheological features of the wafers. The 3% addition of millet flour
to the wafer formulation induced the highest antioxidant activity against DPPH, Fe2+ chelation,
and ACE inhibitory activity of hydrolysates (IC50 = 191.04, 0.46, and 157.73 µg mL−1, respectively).
The highest activities were determined in the M3 fraction <3.0 kDa (IC50 = 3.46, 0.26, and 16.27 µg
mL, respectively). In turn, the M2 fraction was characterized by the highest antimicrobial activity
against Listeria monocytogenes with a minimum inhibitory concentration (MIC) value of 75 µg mL−1.

Keywords: millet flour; wafers; antioxidant; rheological properties; biological compounds

1. Introduction

Cereal products are the most common part of nutrition and are an important source of nutrients for
the populations of both developed and developing countries. They are a good source of carbohydrates,
protein, and fiber and contain vitamins, e.g., vitamin E, thiamin, riboflavin, niacin, vitamin B6,
and folate, as well as minerals such as potassium, calcium, magnesium, or zinc [1]. Consumption
of cereal products is associated with a lower risk of cardiovascular diseases, type 2 diabetes, obesity,
and arteriosclerosis. The impact of this plant food on human health is determined by the cereal species
and the processing methods.

Nowadays, problems with nutrition are involved in energy balance disorders. Consumers prefer
ready-to-eat products, but this type of food is associated with high content of fat and calories. It is
important that products with low calories and rich in bioactive compounds should be consumed in the
daily diet. The latest epidemiological studies have indicated that consumption of excessive amounts of
meat products is one of the main risk factors of cardiovascular diseases, obesity, cancers, and other
dysfunctions of the organism [2–4].
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One of the most common health problems worldwide is hypertension, which is a consequence
of obesity and oxidative stress. Moreover, hypertension is associated with excessive activity of the
rennin-angiotensin-aldosterone system (RAAS), which plays an important role in hormone regulation
or maintenance of water and electrolyte balance. The main and best-recognized enzyme in RAAS
is the angiotensin-I converting enzyme (ACE), which hydrolyzes inactive angiotensin I to active
vasoconstrictor angiotensin II [5]. Therefore, reduction of ACE activity in an organism is important
for regulation of blood pressure and water balance. Some synthetic inhibitors of ACE activity
(e.g., lisinopril, enaparil, or ramipril) are commonly used as drugs for treatment of cardiovascular
diseases and high blood pressure [6–8]. Another main factor in the development of hypertension is
oxidative stress, i.e., imbalance between generation of reactive oxygen species (ROS) in the organism
and antioxidant mechanisms. In the case of excessive activity of adipose tissue caused by its overgrowth,
active particles such as pro-inflammatory cytokines, free fatty acids, angiotensinogen, and reactive
oxygen species (ROS) are produced. All of them are involved in increased blood pressure and reduced
vasodilation, fluid retention, and/or increased vascular stiffness. High content of ROS with reduced
activity of antioxidant systems causes a number of diseases, including cancer, inflammation, diabetes,
or cardiovascular disorders. Therefore, it is reasonable to find food compounds that can protect against
the destructive effects of oxidative stress [9].

Wheat wafers are popular products among consumers used as a snack or part of meals. Wheat
flour is deficient in some essential amino acids and other nutrients; therefore, to improve their
nutritional value, wheat products can be enriched with protein, fiber, or bioactive compound-rich [10]
or fiber-rich products [11,12]. Millet grains are a good source of dietary fiber and non-gluten proteins
(kafirins) and have a high level of phytochemicals. Moreover, millet products are characterized
by a low glycemic index; thus, they can especially be used by patients suffering from diabetes
and carbohydrate metabolism disorders. Many studies have revealed that regular intake of millet
products is associated with various health benefits such antiinflammatory, antioxidative, hypoglycemic,
and cholesterol-lowering properties [13].

The constantly changing lifestyle and the occurrence of diseases of civilization have stimulated a
demand for novel and enriched foods produced from various non-wheat flours. Therefore, the aim of
this study was to determine the influence of addition of whole millet grain flour on the properties
(antioxidant, ACE inhibitory, and anti-microbial) of wheat wafers.

2. Materials and Methods

2.1. Materials

The millet grains (Panicum miliaceum L.) were purchased from The Horticulture and Nursery
Industry (PNOS) in Ożarów Mazowiecki, Poland.

2.2. Preparation of Wafers

Wafers were prepared by As-Babuni Company Sp. z o.o. (Niemce, Poland). Four types of wafers
were prepared. The wheat flour was replaced with milled grain flour: average protein 11.0 g/100 g;
ash 2.2 g/100 g; moisture content 11% (1%, 2%, 3%; M1, M2, M3, respectively). Wheat flour wafers
without millet flour were used as a control (CW). The wafers were prepared by mixing the following
ingredients: flour 50 kg (type 500: average protein 14.3 g/100 g; ash 0.5 g/100 g; moisture content
13.5%), water 65 L, oil 3 L, milk powder 2.15 kg, ammonium bicarbonate 0.4 kg, baking powder 0.4 kg,
whey 1 kg, and lecithin 0.9 L to a homogenous structure and baking at 142 ◦C (ø 12.0 cm); (Figure 1).
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The supernatants were combined and made up to a volume of 25 mL with distilled water. All 
extracts were made in triplicate. 

2.3.2. Protein Content in the Extracts 

The protein content was determined according to the Bradford method [14]. 

2.3.3. Peptide Content in the Extracts 

The Adler-Nissen [15] method with L-leucine as a standard was used. 

2.3.4. Total Phenolic Content in the Extracts 

The amount of total phenolic was determined using Folin–Ciocalteau reagent [16]. The amount 
of total phenolic content was calculated as gallic acid equivalent (GAE). 

2.3.5. Reducing Sugar Content in the Extracts 

The reducing sugar content before hydrolysis was determined with the 3,5-Dinitrosalicylic acid 
(DNS) method [17]. 

2.4. Texture 

The texture profile analyses of the wafer samples (62 × 77 mm) from the midsection of the 
wafers were performed using a texture analyzer (TA-XT Plus, Stable Micro Systems Ltd., Surrey, 
UK) with a 3 mm diameter cylindrical probe and a test speed of 1.0 mm s−1. The texture profile was 
determined using Texture Expert 1.05 software (Stable Microsystems). The other parameters were 
defined as: pre-test speed 1.0 mm s−1, post-test speed 1.0 mm s−1, and trigger force 5 g. The texture 
parameters recorded were hardness, fracturability, and puncture strength. 

2.5. Colour 

The color parameters of the wafers were measured using an Envisense NH310 colorimeter and 
the CIE Lab scale. The total color difference (ΔTC) of the wafers was calculated using formula (1), 
where L0*, a0*, and b0* are color parameters of control wafers: 

Figure 1. Wheat wafers (CW) with addition of millet grain flour (1%, 2%, 3%; M1, M2, M3, respectively).

2.3. Nutrient Compounds

2.3.1. Preparation of Extracts

About 10 mL of water were added to 0.5 g of the tested material and shaken at room temperature
for 30 min. After that, the samples were centrifuged 8000× g, 10 min. The supernatant was decanted
into a dry test tube; next, 10 mL of water were added to the residue, and the mixture was shaken for
30 min at room temperature. The samples were centrifuged for 10 min at 8000× g. The supernatants
were combined and made up to a volume of 25 mL with distilled water. All extracts were made
in triplicate.

2.3.2. Protein Content in the Extracts

The protein content was determined according to the Bradford method [14].

2.3.3. Peptide Content in the Extracts

The Adler-Nissen [15] method with L-leucine as a standard was used.

2.3.4. Total Phenolic Content in the Extracts

The amount of total phenolic was determined using Folin–Ciocalteau reagent [16]. The amount of
total phenolic content was calculated as gallic acid equivalent (GAE).

2.3.5. Reducing Sugar Content in the Extracts

The reducing sugar content before hydrolysis was determined with the 3,5-Dinitrosalicylic acid
(DNS) method [17].

2.4. Texture

The texture profile analyses of the wafer samples (62 × 77 mm) from the midsection of the wafers
were performed using a texture analyzer (TA-XT Plus, Stable Micro Systems Ltd., Surrey, UK) with a
3 mm diameter cylindrical probe and a test speed of 1.0 mm s−1. The texture profile was determined
using Texture Expert 1.05 software (Stable Microsystems). The other parameters were defined as:
pre-test speed 1.0 mm s−1, post-test speed 1.0 mm s−1, and trigger force 5 g. The texture parameters
recorded were hardness, fracturability, and puncture strength.

2.5. Colour

The color parameters of the wafers were measured using an Envisense NH310 colorimeter and
the CIE Lab scale. The total color difference (∆TC) of the wafers was calculated using formula (1),
where L0*, a0*, and b0* are color parameters of control wafers:
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∆TC =
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L∗ − L∗0

)2
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)2
+
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)2

2.6. Functional Properties

2.6.1. Water Absorption Capacity (WAC)

WAC of the prepared samples was determined according to the method described by Khattab
and Arntfield [18] with modification as follows: each 0.5 g sample was added to 15 mL of distilled
water and stirred for 5 min using a magnetic stirrer. The suspension was then centrifuged at 5000 × g
for 30 min, and the supernatant was measured in a 10 mL graduated cylinder. WAC was determined
as the difference between the initial volume of water added to the sample and the measured volume of
the supernatant after centrifugation.

2.6.2. Oil Absorption Capacity (OAC)

OAC was determined according to Khattab and Arntfield [18] with modification. One gram of
the meal was mixed with 5 mL of oil in a centrifuge tube and allowed to stand at room temperature
for 30 min. It was then centrifuged at 15000× g for 15 min. The volume of oil on the sediment was
measured. OAC was calculated as milliliters of oil absorbed per gram of meal.

2.7. Nutrients Compounds

2.7.1. Extract Preparation

About 10 mL of water was added to 0.5 g research material and shaken at room temperature
during 30 min. After that, samples were centrifuged 8000× g, 10 min. The supernatant was decanted
into a dry test tube, and to the residue was added 10 mL of water and shaken for 30 min in room
temperature. The samples were centrifuged 10 min, 8000× g. The supernatants were combined and
made up to a volume of 25 mL with distilled water. All extracts were made in triplicate.

2.7.2. Protein Content of Extract

The protein content was determined according to Bradford method [14].

2.7.3. Peptides Content of Extract

The method used was according to Adler-Nissen [15] method with L-leucine as a standard.

2.7.4. Total Phenolic Content of Extract

The amount of total phenolic was determined using Folin–Ciocalteau reagent [16]. The amount of
total phenolic content was calculated as gallic acid equivalent (GAE).

2.7.5. The Reducing Sugar Content of Extract

Then, the reducing sugar content before hydrolysis was determined by using the DNS method [17].

2.8. In Vitro Hydrolysis

In vitro digestion of the wafers was carried out with the method described by Jakubczyk et al. [19].
The hydrolysates were clarified by centrifugation at 8000 g for 10 min (MPW, 350R, Poland) and kept
at −20 ◦C.

All hydrolysates were centrifuged with Amicon Ultra-15 Centrifugal Filter Units, Merck Millipore
(Membrane NMWL, 3 kDa), and fractions <3.0 kDa were obtained.
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2.9. Antioxidant Activity

2.9.1. ABTS•+

Antiradical activity against 2,2’-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS•+) was
determined with the method described by Re et al. [20].

2.9.2. DPPH•

Antiradical activity against di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH•) was
determined using the method proposed by Brand-Williams, Cuvelier, and Berset [21].

2.9.3. Fe2+ Chelating Activity

The method developed by Decker and Welch [22] was used to investigate the ferrous ion (II)
chelating ability of the samples.

2.10. ACE Inhibitory Activity Assay

ACE inhibitory activity was measured with the spectrophotometric method using
o-phtaldialdehyde as described by Jakubczyk et al. [19].

2.11. Antimicrobial Properties

The hydrolysates and the peptide fraction of wafers were tested against the following bacteria:
Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29737, Listeria monocytogenes ATCC BBA-2660,
Bacillus cereus ATCC 14579, Salmonella enteritidis ATCC 4931, and yeast Candida albicans ATCC 90028.
The strains were obtained from the American Type Culture Collection (ATCC, distributors: LGC
Standards, Łomianki, Poland) and stored at 4 ◦C. All strains were cultured at 37 ◦C on Nutrient Broth
(NB) medium.

2.11.1. Determination of the Minimum Inhibitory Concentration (MIC)

Serial two-fold dilutions of wafer samples, hydrolysates, and peptide fraction were made with
Mueller Hinton Broth (MHB) to yield final concentrations ranging from 40 to 2.5 mg mL−1, 2 to 0.125 mg
mL−1, and 300 to 18.75 µg µL−1 respectively, and transferred into 96-well plates. A bacterial suspension
(100 µl) prepared from an overnight culture was adjusted to inoculation of 108 CFU mL−1. Then, 100 µL
of the bacterial culture were added. The wells with MHB or yeast culture were the negative and the
positive control, respectively. The plates were incubated at 37 ◦C for 48 h. The minimal inhibitory
concentration (MIC) is an indication of the lowest concentration of the tested extracts that prevents
visual growth of microorganisms.

2.11.2. Estimation of Biotoxicity Against L. Monocytogenes ATCC BBA-2660 Using Resazurin
Reduction Assays

Resazurine reduction assays were performed to estimate biotoxicity against L. monocytogenes
ATCC BBA-2660. Resazurin is a non-toxic water-soluble dye previously applied in bacterial viability
studies [23]. This assay is based on detection of the metabolic activity of cells. The redox dye
resazurin (7-hydroxy-3H-phenoxazin-3-one 10-oxide) enters the cell in the oxidized form (blue),
where it is converted to a reduced form-resorufin (pink). The reduced and oxidized forms of
resazurin can be measured separately with a spectrophotometer and used to determine the reduction
capability of cells, which reflects the mitochondrial function and the cell viability and shows time-
and concentration-dependent cell growth inhibition. After MIC estimation (2.10.1.), 20 µL of a 60 µM
resazurin solution in phosphate buffered saline (PBS) buffer were added to each well. After incubation
(2 h, 37 ◦C), the viability of cells was monitored by measuring absorbance at 570 nm (reduced) and
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600 nm (oxidized) [23] and calculating bacterial viability (in percentages) against the control (bacterial
growth without samples).

2.12. Statistical Analysis

All determinations were performed in triplicate. Statistical analysis was carried out using
STATISTICA 13.1 for mean comparison using Tukey’s test at the significance level α = 0.05.

3. Results

Generally, the addition of the millet flour to the wafer formulation influenced the content of
bioactive compounds (Table 1). The M3 sample was characterized by the highest content of all
determined compounds, i.e., protein, polyphenols, flavonoids, phenolic acids, and reducing sugar
(1.03 mg mL−1, 0.021 mg mL−1, 2.26 mg mL−1, 0.17 µg mL−1, and 0.63 mg mL−1, respectively). In all
cases, the differences in the content of bioactive compounds were statistically significant, except the
reducing sugar content, i.e., 0.62 mg mL−1 in M2 and 0.62 mg mL−1 in M3, which showed no statistically
significant differences.

Table 1. Characteristic of the content of bioactive compounds and functional properties of wafers.

Color Rheological Properties

Sample L* a* b* ∆TC Hardness (g) Fracturability
(mm)

Puncture
Strength
(N/mm2)

CW 61.92 ± 5.36 a 8.77 ± 1.04 a 23.75 ± 1.95 a - 911.02 ± 108.53 a 68.35 ± 0.39 a 2.63 ± 0.32 a

M1 64.80 ± 2.92 a 8.53 ± 1.02 a 23.93 ± 1.96 a 2.89 ± 0.14 a 870.26 ± 140.58 a 67.60 ± 0.18 b 2.16 ± 0.42 a

M2 64.84 ± 1.87 a 8.76 ± 1.27 a 25.04 ± 1.46 a 3.19 ± 0.08 b 862.85 ± 119.84 a 67.49 ± 0.63 b 2.47 ± 0.60 a

M3 65.96 ± 1.83 a 7.30 ± 1.55 a 23.22 ± 2.51 a 4.33 ± 0.06 c 856.68 ± 139.26 a 67.06 ± 0.42 b 3.7 ± 0.90 a

All values are mean ± standard deviation for triplicate experiments. Different letters indicate significant differences
(α = 0.05).

The millet flour-enriched wafers were characterized by higher water and oil absorption capacities
than wafers without this additive (control sample). According to the data presented in Table 1,
the addition of 1% millet flour had no statistical influence on WAC, whose value was 644.92% vs.
631.08% in the control. The highest WAC was determined for M3 (803.91%). However, only M3 was
characterized by a statistically significant difference in OAC (42.79%) compared with the control sample.

According to the data shown in Table 2, the addition of the millet flour had no significant difference
on the color parameter of the products. However, ∆TC of the color increased with the amount of the
millet flour added to the wafers. The highest value was noted for M3 (4.33).

Table 2. Influence of millet flour on color characteristics and rheological properties of wafers.

Sample Bioactive Compound Content Functional Properties

Protein
(mg mL−1)

Polyphenols
(mg mL−1)

Flavonoids
(mg mL−1)

Phenolic
Acids

(µg mL−1)

Reducing
Sugars

(mg mL−1)
WAC (%) OAC (%)

CW 0.69 ± 0.017 a 0.015 ± 0.002 a 0.85 ± 0.07 a 0.13 ± 0.004 a 0.59 ± 0.004 a 631.08 ± 14.54 a 38.43 ± 1.44 a

M1 0.75 ± 0.008 b 0.019 ± 0.003 b 1.88 ± 0.012 b 0.14 ± 0.002 b 0.61 ± 0.003 b 644.92 ± 18.36 a 39.12 ± 1.48 a b

M2 0.99 ± 0.008 c 0.020 ± 0.002 c 1.96 ± 0.013 c 0.16 ± 0.003 c 0.62 ± 0.002 b c 714.77 ± 20.38 b 41.34 ± 1.24 a b

M3 1.03 ± 0.012 d 0.021 ± 0.003 d 2.26 ± 0.010 d 0.17 ± 0.004 d 0.63 ± 0.008 c 803.91 ± 28.71 c 42.79 ± 1.86 b

All values are mean ± standard deviation for triplicate experiments; Different letters indicate significant differences
(α=0.05). WAC, water absorption capacity; OAC, oil absorption capacity.

We also investigated hardness, fracturability, and puncture strength as the main rheological
parameters of the wafers (Table 2). The wafers millet flour-enriched were characterized by lower
hardness than the CW sample, and the lowest value was determined for M3 (856.68 g). In turn,
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the addition of the millet flour exerted no influence on the fracturability of the wafers. All samples had
lower values than CW but these values were not statistically significant.

The wafers were in vitro hydrolyzed in gastrointestinal conditions. Figure 2 shows changes in
the peptide content after each step of the hydrolysis process. After α-amylase hydrolysis, the content
of peptides was not statistically different and was below 0.1 mg mL−1 for all samples. Next, pepsin
hydrolysis increased the peptide content in all hydrolysates. Nevertheless, no statistically significant
changes were noted in any samples. After the last step of hydrolysis, the highest peptide content was
determined for M3; it was 0.68 mg mL−1, which was significantly higher than in CW (0.59 mg mL−1).

1 
 

 

Figure 2. Peptide content in each step of hydrolysis. Different letters indicate significant differences.

After the hydrolysis process, antioxidant, ACE inhibitory, and antimicrobial properties of
hydrolysates and fractions with <3.0 kDa molecular mass were determined. As shown in Table 3,
the addition of the millet flour to the wafer formulation had an influence on all properties.
All hydrolysates were characterized by lower antioxidant activity against ABTS·+ compared with CW,
whereas higher antioxidant activity against DPPH was determined for hydrolysates obtained from the
millet flour-enriched wafers. The lowest IC50 value for antioxidant activity against DPPH was noted
for M3 = 191.04 µg mL−1. The lowest Fe2+ chelating activity was determined for M3 hydrolysates
as well (0.46 mg mL−1), but this value did not show a statistically significant difference compared
with the M2 hydrolysates (0.49 mg mL−1). Moreover, there was no relationship between the amount
of the millet flour and the ACE inhibitory activity of the hydrolysates. The M1 hydrolysates were
characterized by a higher IC50 value (205.76 µg mL−1) than that in the case of the CW hydrolysates
(163.93 µg mL−1). In the case of M2 and M3, IC50 was lower than in CW (155.76 and 157.73 µg mL−1,
respectively), but the difference between these values had no statistical significance.

Table 3 also shows antioxidant, ACE inhibitory, and antimicrobial properties of fractions with
<3.0 kDa molecules. The fraction obtained from the CW hydrolysates was characterized by the highest
antioxidant activity against ABTS·+ with the IC50 value of 26.67 µg mL−1. In turn, the fraction obtained
from M3 exhibited the highest anti-DPPH·, Fe2+ chelating, and ACE inhibitory activities, with the IC50

values determined at 3.46 µg mL−1, 0.26 mg mL−1, and 16.27 µg mL−1, respectively.
Antibacterial properties of the hydrolysates and the peptide fractions of the wafers were tested

against the following bacteria: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29737, Listeria
monocytogenes ATCC BBA-2660, Bacillus cereus ATCC 14579, Salmonella enteritidis ATCC 4931 and yeast
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Candida albicans ATCC 90028. The results showed that the hydrolysates and the peptide fractions had
certain antimicrobial activity only against L. monocytogenes ATCC BBA-2660 (Table 3). The MIC values
for the tested bacterial strain in the presence of hydrolysates and peptide fractions were in the range
of 0.25–0.50 mg/mL and 75–150 µg/mL, respectively (Table 3). Among the tested hydrolysates and
fractions, the CW and the M2 samples were the most effective inhibitors of L. monocytogenes ATCC
BBA-2660 growth. This was also confirmed by the resazurin assay, which showed that the growth of L.
monocytogenes ATCC 25922 treated with hydrolysates and peptide fractions was inhibited. In the case
of the hydrolysates, the growth inhibition of the tested bacteria ranged from 10% to 68% and depended
on the hydrolysate concentrations. Samples were classified as having an antimicrobial effect when they
resulted in bacterial growth reduction of ≥40% in the resazurin reduction assay. The highest growth
inhibition of L. monocytogenes ATCC 25922 was noted for the CW and the M2 samples (Figure 3A).
In the case of the peptide fractions, the highest bacterial growth inhibition was noted for the CW and
the M2 samples (Figure 3B).Foods 2020, 9, x FOR PEER REVIEW 9 of 14 
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Figure 3. Viability (in %) of L. monocytogenes ATCC BBA-2660 against hydrolysates (A) and peptide
fractions (B); control—growth of bacteria without hydrolysates or peptide fractions, CW—wheat
wafers, M1, M2, and M3—wheat wafers enriched with 1%, 2%, or 3% (w/w) of millet flour, respectively.
Different letters indicate significant differences.
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Table 3. Antioxidant, angiotensin converting enzyme (ACE) inhibitory, and antibacterial properties of
hydrolysates and fractions with <3.0 kDa molecules.

Sample
Properties (IC50 ug mL−1)

Antibacterial Activity
(L. monocytogenes ATCC BBA-2660)

ABTS·+ DPPH· Fe2+ Chelation ACE MIC

Hyrolysates

CW 67.22 ± 1.78 a 404.26 ± 3.18 a 0.58 ± 0.03 a 163.93 ± 1.25 a 0.25 *
M 1 80.08 ± 1.99 b 287.23 ± 2.41 b 0.62 ± 0.01 a 205.76 ± 1.57 b 0.50 *
M 2 101.54 ± 2.15 c 198.09 ± 1.18 c 0.49 ± 0.01 b 155.76 ± 2.08 c 0.50 *
M 3 113.34 ± 1.06 d 191.04 ± 2.83 d 0.46 ± 0.02 b 157.73 ± 1.69 c 0.50 *

Fractions <3.0 kDa

CW 26.67 ± 0.73 a 31.71 ± 0.98 a 0.32 ± 0.01 ab 21.11 ± 0.77 a 75 **
M 1 62.58 ± 1.13 b 129.45 ± 1.01 b 0.33 ± 0.02 ab 24.17 ± 0.51 b -
M 2 39.42 ± 1.08 c 227.01 ± 1.58 c 0.31 ± 0.02 a 15.67 ± 1.03 c 75 **
M 3 41.50 ± 2.014 d 3.46 ± 0.14 d 0.26 ± 0.01 c 16.27 ± 0.89 c 150 **

MIC, minimum inhibitory concentration; * mg mL−1, ** µg mL−1; All values are mean ± standard deviation for
triplicate experiments. Different letters indicate significant differences (α = 0.05).

4. Discussion

Millet grains as a source of bioactive compounds were investigated by our research team
previously [24]. Since millet grain proteins are rich in bioactive peptides that may be involved in
inhibition of development of diseases, the aim of this study was to determine their influence on
antioxidant and anti-ACE activity as well as the antimicrobial properties of wafers enriched with millet
flour. The results indicated that the addition of the millet flour had a significant effect on the content
of bioactive compounds. The wafers with the millet flour were characterized by higher content of
the tested compounds, except reducing sugars (Table 1). This may suggest that these products are a
good source of bioactive compounds with health benefits especially useful for prevention of oxidative
stress-related diseases [25]. Bakery products are the most common snacks due to their low cost,
good taste, variety, and texture. In addition, their composition can be modified to obtain functional
food recommended to patients suffering from cardiovascular diseases, celiac disease, or obesity [26].
The most important components that may increase health-promoting properties are polyphenols [27],
anthocyanins [28,29], or peptides [30]. In addition to changing the properties and the taste, they can
alter the rheological properties of final products. The enhanced ability of bakery products to absorb
water and oil may help to improve the structure, improve mouth feel, enhance flavor retention, improve
binding of additives such as whole grains or pieces of fruit, and reduce moisture and fat losses of
food products [31]. The level of WAC of food protein is affected by size, shape, and composition of
proteins, especially the hydrophilic–hydrophobic balance of amino acids in the molecules as well as the
presence of lipids and hydrophilic carbohydrates [32]. In our study, the millet flour-enriched wafers
were characterized by higher water and oil absorption capacities compared to wafers without the
millet flour, and the values increased with the amount of the added flour. It should be noted that the
AOC parameters were not increased significantly, which may indicate a larger share of hydrophilic
amino acids in proteins.

Enrichment of food products with various types of additives may also affect the consumer
quality of the finished product. Color is one of the product features influencing consumer choice and
acceptability. In this study, the addition of the millet flour to the wafer formulation had no influence on
their color (Table 2). This means that CW had the same L* (lightness), a* (redness), and b* (yellowness)
values as M1, M2, and M3 samples. Moreover, the total color change increased with the increasing level
of millet flour addition. These results correspond well with those reported by Baumgartner et al. [33],
where the total color change increased with an increasing level of untreated or dephytinized oat brans.
This parameter was also increased in cookies obtained with refined wheat flour and raw/roasted
flaxseed flour blends [34].

The millet flour-enriched wafers were characterized by lower hardness and fracturability, although
no statistically significant differences were determined in the latter parameter. These results correspond
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well with those reported by Ghaboos et al. [35], where texture profile analysis of the hardness of
sponge cakes showed that the product became harder with the levels of added pumpkin powder
increasing from 0 to 20%. This feature may be associated with the protein content in the final product.
The interaction between protein and starch as the main ingredients in the wafers decreased the number
of amylopectin chains during the process of baking, which in turn inhibited water vapor release and
increased hardness [36]. This process may also have exerted the main effect on the puncture strength
of the wafers.

Food proteins provide organisms with not only amino acids but also bioactive peptides that
may have a beneficial effect on the function of the organism [37]. Peptides are released from proteins
during hydrolysis in the gastrointestinal tract. In our study, we determined the content of peptides
also after α-amylase hydrolysis. It should be noted that our previous study demonstrated that the
peptide content increased after this step of hydrolysis, which indicated some sugar linkages in the
proteins [38]. The highest peptide content was noted after the pancreatic hydrolysis of M3. The 3%
addition of the millet flour improved the potential bioaccessibility of peptides released from proteins.
Polyphenols are another important group of bioactive food compounds. There are many studies of
food enriched with polyphenol-rich ingredients [10]. Polyphenols are nonpolymeric phytochemical
compounds containing phenolic hydroxyl groups in their structures and exhibiting various properties
such as antioxidant, anti-inflammatory, and anticancer activities or inhibiting the development of
metabolic diseases, e.g., diabetes, obesity, or hypertension [39,40]. In our study, the highest total
phenolic content was noted for M3; it corresponded well with the antioxidant and the anti-ACE activity
(Table 3). A similar increase in the antioxidant activity and the total phenolic content compared to
the control were observed in flaxseed flour-supplemented cookies [41]. Free radicals, e.g., superoxide
anion (·O2−), hydroxyl radical (·OH), and hydrogen peroxide (H2O2), are natural metabolic products.
Under homeostasis, reactive oxygen radicals released in cell-safe amounts play a role as mediators
and regulators of many cellular processes [42]. Production of excessive amounts of free radicals
by cells and weakening of the natural antioxidant systems are correlated directly with molecular
markers of many disease conditions, including diabetes, atherosclerosis, neurodegenerative diseases,
inflammation, and cancer [43]. Oxidative stress with other inflammatory factors may initiate changes
in cardiovascular function and structure such as endothelial dysfunction, cardiac dysfunction, cardiac
fibrosis, and vascular remodeling [44]. The present results indicate that all samples (hydrolysates and
fractions with <3.0 kDa molecular mass) contained some bioactive compounds that were electron
donors and could react with free radicals to convert them to more stable products and terminate
the radical chain reaction. There was no correlation between the hydrolysates and the three kDa
fractions and the DPPH assay. This may be due to the difference between the compositions of the
hydrolysates and the fractions. As reported by other authors, food ingredients have an influence
on protein digestibility and hydrolysate compounds. Moreover, we expected that the anti-DPPH
activity would be increased proportionally in the bioactive compounds in the samples. It should be
noted that the quantity and the activity of fractions depend on the food matrix [45–47]. Recent studies
on the antioxidant activity of food are complemented with the analysis of ACE inhibitory activity,
since oxidative stress and hypertension have become the most serious health problems affecting
society [48].

Consumption of antioxidants from food sources is potentially effective in promotion of human
health, as antioxidation is known to mitigate the adverse effects of free radicals. However, there have
also been numerous reports suggesting that the effects of dietary antioxidants depend on many
factors such as body condition, dose, duration of administration, source of bioactive compounds,
and other dietary factors [43,49]. Compared with traditional drugs commonly used for treatment of
cardiovascular disease and inflammation, exogenous molecular antioxidants, especially peptides, are
usually reported to exhibit reduced negative side effects and low toxicity [50].

Previous studies indicated antibacterial activity of plant protein hydrolysates and fractions [51,52].
However, the antimicrobial activity of protein hydrolysates or peptides extracted from rich sources
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of protein is less well known, particularly the activity against pathogenic bacteria causing harmful
food-borne human diseases. In turn, there have been increasing and uncontrolled outbreaks or incidents
of food-borne diseases associated with pathogens. Our results are in agreement with a previous study
describing inhibition of L. monocytogenes growth upon treatment with protein hydrolysates and peptide
fractions [53]. It should be emphasized that foods supplemented with protein hydrolysates or peptide
fractions are not only functional foods with health benefits but also a source of substances that inhibit
the growth of pathogenic bacteria responsible for food poisoning.

5. Conclusions

Bakery snacks are very often chosen by consumers because of their taste, price, and variety.
Their composition can be modified to increase their health benefits and technological properties.
In the present study, different hydrolysates and fractions with <3.0 kDa were extracted from millet
flour-enriched wheat wafers. Since oxidative stress and hypertension are the most common health
problems for populations of developing countries, the study was focused on determination of
antioxidant and anti-ACE activities in the product. This research confirmed the antimicrobial activity of
the protein hydrolysates and fractions against pathogenic bacteria causing harmful food-borne human
diseases. The overall data suggest that the wafers enriched with millet flour can be used as a potential
source of natural antioxidant, antimicrobial, and anti-ACE peptides in formulation of functional foods.
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