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Abstract: The prices of walnuts vary according to their geographical origin and, therefore, offer a
financial incentive for adulteration. A reliable analysis method is required to quickly detect possible
misdeclarations and thus prevent food fraud. In this study, a method to distinguish between
seven geographical origins of walnuts using Fourier transform near-infrared (FT-NIR) spectroscopy
combined with chemometrics as a fast, versatile, and easy to handle analytical tool was developed.
NIR spectra of 212 ground and afterwards freeze-dried walnut samples, harvested in three consecutive
years (2017–2019), were collected. We optimized the data pre-processing by applying and evaluating
50,545 different pre-processing combinations, followed by linear discriminant analysis (LDA) which
was confirmed by nested cross-validation. The results show that in the scope of our research minimal
pre-processing led to the best results: By applying just multiplicative scatter correction (MSC)
and median centering, a classification accuracy of 77.00% ± 1.60% was achieved. Consequently,
this complex model can be used to answer economically relevant questions e.g., to distinguish between
European and Chinese walnuts. Furthermore, the great influence of the applied pre-processing
methods, e.g., the selected wavenumber range, on the achieved classification accuracy is shown
which underlines the importance of optimization of the pre-processing strategy.
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1. Introduction

With over 2.5 million tons produced per year, Juglans regia L., the English or Persian walnut, is one
of the most economically important nut crops [1]. Walnuts are widely consumed as a raw, toasted,
or pickled snack, used as an ingredient in pastries, ice cream, muesli, and for the production of liquor
or oil. Their broad acceptance occurs not only due to their special organoleptic characteristics, but also
because of their high nutrition value that is associated with health benefits, such as the improvement
of serum lipid profiles and a reduction of the risk for coronary heart disease [2–4]. Walnut trees
grow in a mild climate without night frost during late spring or early fall [5–7]. Hence, the main
producers are China, the USA, Iran, and Turkey. In 2018, China and California contributed, combined,
about 60% of the worldwide walnut production [1]. Some walnuts from smaller harvesting areas such
as France are, nevertheless, economically significant because of their particular sensory characteristics,
which are closely linked to their geographical origin and are subject to special protection by labels
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such as “Protected Designation of Origin” (PDO) [8]. The different quality characteristics lead to
significant price differences which can cause illegal mislabeling of the geographical origin of the
product [9]. The misdeclaration of shelled Chinese walnuts as French would have, for example, in 2018
increased the profit by 30% [1,10]. In order to ensure the origin determination, the development
of objective analytical methods is required. Currently, to the best of our knowledge, no effective,
simple, and routinely applicable method for the origin determination of walnuts has been developed.
While scientific studies have been made on the geographical discrimination through the fatty acid
profile [11], tocopherol concentrations [12], and fingerprinting approaches with 1H-nuclear magnetic
resonance (NMR) spectroscopy in combination with carbon-isotope ratio [13,14], none of these findings
allow for an easily feasible and applicable analytical procedure. Gu et al. showed in a recent study the
potential of near-infrared (NIR) spectroscopy to identify the geographical origin of walnuts within the
region Xinjiang (China) [15].

NIR spectroscopy is a powerful tool to estimate quality attributes of various commodities and even
of walnuts [16,17]. It features some main advantages: it is fast, easy to use, reliable, non-destructive,
environmentally friendly since no hazardous chemicals are required, and hence suitable for on-line
detection [18]. Due to its versatility, it is already established in industrial routine laboratories for
many different food-related analyses, e.g., the analysis of oil processing parameters [19,20]. However,
the accuracy of the analysis depends considerably on the applied chemometric treatment [21–23].
Many different spectra pre-processing strategies as well as a variety of classification methods have been
used, depending on the matrices and research questions. Therefore, we evaluated the chemometric
analysis in terms of the suitability for geographical origin determination of walnuts. Specifically,
we conducted a “trial-and-error”—in combination with the “visual inspection”—approach according
to Engel et al. [22], in which a variety of pre-processing combinations were applied followed by
classification via linear discriminant analysis (LDA).

The aim of this study was to optimize the pre-processing strategy in order to develop a reliable
near-infrared-based analytical approach for determining the geographical origin of walnuts suitable
for routine use.

2. Materials and Methods

2.1. Walnut Sample Acquisition

A total of 212 walnut samples were acquired from seven different countries (Switzerland (CH),
China (CN), France (FR), Italy (IT), Germany (DE), Hungary (HU), United States of America (USA)).
For each sample, at least 100 g of dried walnuts (referring to shelled nuts, corresponding to about
250 g of dried walnuts in the shell) were purchased directly from producers or exporters to ensure
the samples’ authenticity. Since walnut varieties can be distinguished by NIR spectroscopy [17],
41 different varieties were analyzed. This broad spectrum of varieties minimizes the correlation of
varieties and geographical origin. The harvest year also has an impact on the NIR analysis [24–26].
Therefore, samples of three successive years (2017–2019) were acquired from each of the seven countries.
The sample distribution can be found in Table 1. In addition, the detailed specification of all walnut
samples including the varieties is given in Table S1.

2.2. Sample Preparation

The dried walnuts were cracked using a manual cracking machine (Wal Man Small,
Feucht Obsttechnik GmbH, Erbstetten, Germany), if necessary. Subsequently, the shelled nuts
were shock frozen in liquid nitrogen for at least 5 min to prevent alterations of the metabolome.
Afterwards, the nuts were stored at −20 ◦C until further processing.

In a previous comparison of different sample preparation techniques, which were applied to
almonds prior to NIR measurement, grounding combined with freeze-drying achieved the highest
classification accuracies [27]. Due to the similarity of the matrices, the analyzed walnuts were ground
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and lyophilized for further analysis. Therefore, around 100 g of shelled walnuts were ground using a
knife mill (Grindomix GM 300, Retsch, Haan, Germany). In order to prevent friction heat, the grounding
was applied using dry ice in a ratio of 2/1 (w/w dry ice/walnuts). The ground walnut material was
subsequently lyophilized for 48 h (Beta 1–8 LSCplus, Martin Christin Freeze Dryers GmbH, Osterode,
Germany). After half of the lyophilization time (24 h), the sample material was manually stirred to
ensure uniform freeze-drying.

Table 1. Samples distribution of all 212 walnut samples analyzed. A detailed listing of all samples is
shown in Table S1.

Country of Origin Samples Major Varieties

Switzerland 31 Various
China 13 Chandler, Tulare
France 63 Fernor, Franquette, Lara
Italy 33 Chandler, Lara, Tulare

Germany 49 Various
Hungary 11 Various

USA 12 Various

2.3. Fourier Transform Near-Infrared (FT-NIR) Analysis

In order to represent the samples’ basic population, three technical replicates were measured.
For this purpose, (1.25 ± 0.05) g frozen and lyophilized walnut ground material (in the following
referred to as only ground material) were weighed three times in glass vials ((52.0 × 22.0 × 1.2) mm,
Nipro Diagnostics Germany GmbH, Ratingen, Germany). The vials were then closed and stored for
0.5–3 h at room temperature (22 ◦C ± 2 ◦C) to thaw the ground material.

Each replicate was analyzed five times using a Fourier transform near-infrared (FT-NIR)
spectrometer with an integration sphere (TANGO including the software OPUS 7.5 for data acquisition,
Bruker Optics, Bremen, Germany). Between each data collection, the glass vial was shaken thoroughly.
Before measurement, it was visually ensured that the filling level of the ground material was uniform.
In result, this operation procedure lead to 15 spectra per sample. The spectra were acquired in a
wavenumber range of 11,550–3950 cm−1 with 50 scans per spectrum and a resolution of 2 cm−1.

2.4. Spectra Pre-Processing

In order to optimize the pre-processing strategy for our analytical aim, the so called “Trial and
error”—in combination with the “visual inspection”—approach according to Engel et al. [22] was
performed. In the scope of this approach, various established pre-processing methods were applied.
The processed data were then classified according to the geographical origin of these walnut samples
(see Section 2.4.). Figure 1 shows the flowchart of all pre-processing steps. Following this scheme
50,545 different pre-processing combinations were obtained. These pre-processing combinations
include every possibility and are not based on a manual selection. Therefore, it is reasonable that
not every mathematical combination is suitable for our analytical aim. Hence, the verification of the
plausibility of the strategies that achieved the highest classification accuracies is an important part
of the optimization of the data pre-processing. The scheme (Figure 1) is based on seven different
pre-processing methods:

1. Wavenumber reduction: In order to reduce e.g., noise, the wavenumber range used can be
restricted. In addition, areas with unusable or result distorting signals—particularly water—are
excludable and could affect the NIR screening results. Even if the samples are freeze-dried,
small differences in water absorbance (bands at about 6900 cm−1 and 5155 cm−1 [28–30]) could
have a major impact on the classification. The exclusion of the aforementioned wavenumber
range was included in the shown optimization only based of the potentially negative influence of
the water bands. Thus, the selection does not correspond to a classical variable selection approach.
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If more than one wavenumber range was used (e.g., 11,550–5500 cm−1 and 5000–3950 cm−1) the
following pre-processing steps were applied separately for each wavenumber section to avoid
artifacts. These individual sections were assembled together for classification after they had been
fully processed [27,31,32].

2. Smoothing: Smoothing by a Savitzky–Golay filter can improve the signal-to-noise ratio (S/N ratio)
and can be applied after the wavenumber reduction or later. If smoothing was applied at the
second position of the pre-processing flow, an additional smoothing was omitted. In general,
a second-order smoothing was performed with a frame size of three.

3. Multiplicative scatter correction: Multiplicative scatter correction (MSC) is a helpful and in many
cases necessary pre-processing strategy to reduce additive and multiplicative effects caused e.g.,
by different particle sizes. If the data were corrected by MSC [33], the mean spectrum of all
samples was used as a reference. Since all wavenumbers have an effect on the mean spectrum,
MSC should be performed after wavenumber reduction.

4. Detrending: This (polynomial order = 2) was performed to reduce potential baseline shifts.
5. Derivative: Another pre-processing strategy for minoring baseline effects is the use of derivatives.

The first derivative can reduce offsets and other additive effects, whereas baseline slopes and
multiplicative effects can be diminished calculating the second derivative. In the scope of our
research, we used gap-segment derivative with a window size of 11 and a filter length of 11.

6. Binning: This is an effective tool to reduce the computing time and noise. Since adjacent
wavelengths are usually highly correlated in spectroscopic data, it is possible to average them
depending on the window size without loss of information. As part of the optimization,
binning windows from 1–20 (1, 5, 7, 10, 15, 20) were evaluated (see Figure 1).

7. Averaging: This procedure is an indispensable basis for classification. Only in this way reliable
classification accuracies can be achieved. In addition to the arithmetic mean, the median can also
be applied. The latter is more robust against outliers. An alternative, commonly used in NMR
spectroscopy [34], is the selection of a median spectrum.

8. Centering: Various methods were applied: mean centering (mean = 0), median centering
(median = 0) or none.
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Figure 1. Flowchart showing all different combinations of pre-processing methods applied in the
optimization. In total, all combinations lead to 50,545 different pre-processing strategies. Smoothing was
performed either in second or sixth place, double smoothing in one pre-processing combination has
not been performed; MSC—multiplicative scatter correction.

All pre-processing strategies and the resulting combinations were performed using Matlab 2019b
(The MathWorks Inc., Natick, MA, USA).



Foods 2020, 9, 1860 5 of 15

2.5. Multivariate Data Analysis

LDA was applied to classify the walnut samples in regard to their geographical origin. LDA was
selected to maximize inter-class variances while minimizing intra-class variances [35,36]. In order to
obtain a robust model, nested cross-validation (cv) was performed [37,38]. Therefore, the data were
split in five equal parts using stratified random sampling. Four parts formed the training set, and one
part formed the test set. All subsets were mapped using a 5-fold outer cv. Additionally, the model
parameters were optimized in a 10-fold inner cv. In the scope of LDA classification, the number
of principal components (PCs) that the model is based on has to be optimized in the inner cv-loop.
Since the sample splits have a major impact on the classification, the stratified random sampling has
to be repeated. For identifying the less and the most suitable pre-processing combinations, a 5-fold
repetition was performed (see Appendix A). In order to finally optimize the pre-processing strategy,
the 100 combinations with the highest classification accuracies in 5-fold repetition were classified in a
20-fold repetition (see Appendix B).

For visualization and investigation purposed principal component analysis (PCA) based on the
non-linear iterative partial least squares (NIPALS) algorithm was conducted as well [39,40]. The PCA
was calculated based on the optimized pre-processing combination H7 (see Table 2). Strategy H7
includes MSC, smoothing at position 2, median centering and considers a wavenumber range of
8000–3950 cm−1. All mentioned multivariate data analyses were performed using Matlab 2019b
(The MathWorks Inc., Natick, MA, USA).

Table 2. Pre-processing strategies based on combination H7—showing the impact of changing
one parameter at a time (highlighted as bold) on the classification accuracy. The aforementioned
classification accuracies are based on LDA of all 212 walnut samples in a 20-fold repetition of the
nested cv.

H7 H7-1 H7-2 H7-3 H7-4

Wavenumber range [cm−1] 8000–3950 11,000–3950 8000–3950 8000–3950 8000–3950
Smoothing no no no no no

MSC yes yes yes yes yes
Detrending no no no no no
Derivative none none first second none

Binning 1 1 1 1 1
Averaging mean mean mean mean median
Centering median median median median median

Classification Accuracy [%] 77.00 72.70 61.60 49.10 61.00
Standard Deviation [%] 1.60 1.70 2.00 2.90 2.34

cv: cross-validation, LDA: linear discriminant analysis, H7: combination with the seventh highest classification
accuracy of the 50,454 strategies.

3. Results

3.1. Spectra Interpretation

Figure 2 shows the median spectra of seven economically important walnut provenances (a)
before and (b) after MSC in a wavenumber range of 11,550–3950 cm−1. It can be observed that in the
wavenumber range from 11,550–9000 cm−1 only a few prominent bands appear, while the wavenumbers
from 9000–3950 cm−1 contain a higher information density. Due to overlapping peaks caused by the
complex matrix, a precise assignment of the peaks to specific metabolites or proteins is not possible.
However, correlations between the bands and macronutrients can be assessed. As illustrated in
Figure 2b, differences in peak intensity between the MSC-corrected mean spectra of the seven analyzed
walnut origins are visible. By correlation of the bands which show absorbance differences to substance
classes, predictions on potential substance classes for geographical origin determination can be made.
For example, the band at 4900–4600 cm−1 is attributed to the N-H stretching and thereby linked to the
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protein content of the walnuts [28,41]. This wavenumber range has already been identified as relevant
for the differentiation of the geographical origin of walnuts via NIR screening in another study [15].

The bands at approximately 5800 cm−1 and 4200 cm−1 exhibit intensity discrepancies. These bands
are most likely caused by the first overtone of the C–H stretching of methylene and the C–H
combination, respectively [28,41]. Hence, these bands can be associated with the lipid content of the
examined material. Additionally, the band at around 4700 cm−1 is attributed to the C=C deformation
and stretching of unsaturated lipids [28,41,42]. Therefore, lipids can be identified as a potential
characteristic substance class for the determination of the geographical origin. Lipids are regulated
by stress which is mainly caused by local exogenous factors [43,44]. Stress as a whole, therefore,
represents a marker for geographical origin. The potential of lipids as biomarkers for the geographical
origin of walnuts has been shown by Esteki et al., who used gas chromatographic fatty acid fingerprint
analysis to classify walnuts from different geographical regions in Iran [11]. However, the fatty acid
profile is also strongly dependent on the genotype of the walnuts, as has been shown by several
groups [15,45–47]. In order to prevent bias by the variety on the geographical origin determination,
41 varieties of walnuts were included in the sample population.

Figure 3 depicts the mean NIR spectrum of uncrushed walnuts (shelled) in comparison to those of
ground and freeze-dried walnuts in a wavenumber range from 11,550–3950 cm−1. As shown, the three
sample preparation techniques lead to significant differences in the spectra obtained. The unpeeled
(with testa) whole walnuts’ spectrum overall features lower absorbance values, caused by a greater
amount of light being reflected which may indicate specular surface reflection [48]. The mean
spectrum of the peeled walnut (with manually removed testa) has more similar absorption values
compared to the mean spectrum of lyophilized walnuts and could, therefore, be estimated to be
a suitable sample preparation. However, walnuts are predominantly exported in shell or shelled
(with testa) [10] and the removal of the testa is difficult depending on the variety and ripeness [49].
Furthermore, ground blanched almonds achieved lower classification accuracies than unpeeled ground
almonds, indicating that the chemical composition of the almonds testa obviously correlates with the
geographical origin [50]. This statement is presumably, due to the mostly analogous, high polyphenolic,
chemical composition of almonds’ and walnuts’ testa [51,52] also applicable for walnuts. Additionally,
the spectra of whole walnuts (with or without testa) exhibit broad absorption bands at approximately
7050–6600 cm−1 and 5300–5000 cm−1. These bands correspond with the water content and are caused
by the first overtone O–H stretching and the O–H combination, respectively [28–30]. The water
content depends mainly on the storage, the variety and post-harvest conditions and less on the
geographical origin [32]. Furthermore, it cannot be ensured that the drying-conditions of the walnuts
are absolutely identical before sampling. Moreover, the water-associated bands overlap especially
with the carbohydrate-correlated bands, which are also caused by the aforementioned O–H stretching
and combination [28,41]. Therefore, cutting of the water-associated bands—as has been carried out
within some of the pre-processing strategies and which would be necessary for analysis of whole
walnuts—results in information loss. The discrimination of the geographical origin is a very complex
research question, and as such, the loss of information can significantly reduce the classification
accuracy. We showed in a previous study that—in comparison to whole, bisected, and ground
almonds—lyophilized almonds (after grinding) achieved the highest classification accuracy for
geographical origin determination [27]. The differences in the walnut sample spectra of the three
sample preparation techniques (see Figure 3) are strikingly similar to the differences obtained from
the almond sample spectra of the mentioned study. Additionally, the trade of ground walnuts is
accomplished as well, whole walnuts are not always available. Hence, the walnuts have been ground
and the water content of the walnuts has afterwards been reduced and leveled out by freeze drying.
Nonetheless, differences in the remaining water content may have an influence on the spectra [27].
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3.2. Principal Component Analysis

In order to visualize the differences of the spectra, a PCA was conducted according to Section 2.4.
Figure 4 shows the score plots of the seven analyzed walnut origins. In total, PC 1 and PC 2 represent
92.7% of the variance. However, as is observable in the plot depicted in Figure 4a, cluster trends of the
geographical origins are not very pronounced along the first two principal components. For example,
the Swiss walnuts are mainly spread at the upper left while the Hungarian walnuts are distributed on
the right side of the PC 1 vs. PC 2 score plot. By adding PC 3, the variance explained is increased by
3.4 percentage points. A visual differentiation of the walnuts’ origin is not possible overall, although,
based on Figure 4b,c, cluster trends are more predominant. For instance, the third principal component
enhances the differentiation of German walnuts, which are spread at the top of the plots. Since the first
three PCs do not cover the entire variance, Figure S1 shows the PCA score plots including PC 4. It is
noticeable that even PC 1–PC 4 together are not sufficient for the differentiation of the geographical
origin. Presumably, further variance which is caused by the geographical origin is represented by
higher PCs. Therefore, we optimized the number of PCs in the inner cv-loop for the classification
via LDA.Foods 2020, 9, x FOR PEER REVIEW 9 of 17 
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3.3. Optimization of Data Pre-Processing

The 50,545 pre-processing combinations achieved different classification accuracies in a range
of 13.58–80.66% (5-fold repetition of nested cv, see Appendix A). First, this broad range of results
underlines the importance of optimizing the data pre-processing. Within the results with the lowest
classification accuracies (see Table 3), the influences can be quickly identified: higher binning windows
and second derivative tend to lead to lower classification accuracies. A binning window of 20 leads to
a significant reduction of information and is therefore not suitable for the pre-processing of our data.
This is confirmed by the literature in which binning windows of up to ten are common [25,27,53,54].
Even if the use of the median spectra in combination with other pre-processing strategies leads to lower
classification accuracies, this averaging method cannot be identified as the cause for low classification
accuracies in general. Using other parameters in combination, a classification accuracy of up to 71%
can be achieved using the median spectrum (see Appendix A). Furthermore, the averaging cannot be
selected without an extensive inspection of the data set: If the data acquisition and sample material is
sensitive to outliers, the median should always be used. In the scope of our research, for each sample
15 spectra were recorded to achieve a robust model. In addition, ground material was used ruling out
an influence of the morphological differences. Therefore, the arithmetic mean can be used in our case.
In order to provide a routine-applicable NIR screening, the number of multiple measurements can be
reduced by using the median as averaging method. However, it has to be considered that this change
may result in a lower classification accuracy (see Table 2).
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Table 3. Less suitable pre-processing strategies of all 50,545 combinations, based on linear discriminant
analysis (LDA) in a 5-fold repetition of the nested cross-validation (cv) including 212 walnut samples.

L1 L2 L3 L4 L5

Wavenumber range [cm−1] 11,550–3950 11,550–6500
Smoothing no no position 2 position 6 position 6

MSC yes yes yes no yes
Detrending no no no yes no
Derivative second second second none second

Binning 20 20 20 20 7
Averaging median spectrum median
Centering mean none median none mean

Classification Accuracy [%] 13.58 13.77 13.87 14.25 14.43
Standard Deviation [%] 2.34 2.93 2.55 1.61 2.13

cv: cross-validation, LDA: linear discriminant analysis, L1–L5: combinations with the lowest (L) classification
accuracies of the 50,454 strategies.

Looking only at the pre-processing combinations that lead to the highest classification accuracies
(classification accuracies based on LDA in a 20-fold repetition of the nested cv, see Appendix B,
the selection was based on Appendix A), clear trends can be observed. The pre-processing techniques
shown in Tables 4 and 5 are composed of considerably fewer individual steps, showing that a multitude
of data pre-processing is not always necessary to achieve reliable results. For example, combination H2
achieved a classification accuracy of 78.32% ± 2.19% without any pre-processing. These comparably
high classification accuracies in relation to the small number of pre-processing strategies emphasize
the low quantity of unwanted effects that need to be corrected. The fine grinding of the nuts ensured
a uniform particle size (diameter of 100–500 µm), so the physical properties do not vary widely
between the different groups. Nonetheless, considering Figure 2a, it has to be stated that additive
and multiplicative scattering effects are still apparent in the spectra. In particular, the mean spectrum
of the Chinese walnut samples is vertically shifted caused by a markedly different texture of the
samples. Therefore, the scattering effects should be reduced in the context of data pre-processing
to ensure comparability of the samples. As mentioned in Section 2.3., offsets can be minimized by
MSC, detrending or derivatives. Hence, the most effective pre-processing combination including an
offset-correction—here MSC—for determining the geographical origin of walnuts is combination H7
reaching a classification accuracy of 77.00% ± 1.60%. Thus, the most suitable data pre-processing
strategy cannot be selected solely on the basis of classification accuracies and an additional inspection
of the spectra as second step of optimization is indispensable.

Table 4. Pre-processing strategies with the highest classification accuracies of all 50,545 combinations—part 1.
The selection is based on LDA in a 5-fold repetition of the nested cv. The shown classification accuracies
are based on all 212 walnut samples and a 20-fold repetition of the cv.

H1 H2 H3 H4 H5

Wavenumber range [cm−1] 8000–3950
Smoothing position 2 no position 2 No position 2

MSC no no no No no
Detrending no no no No no
Derivative none none none None none

Binning 1 1 1 1 1
Averaging mean mean mean Mean mean
Centering median none none Median mean

Classification accuracy [%] 79.02 78.32 77.99 77.87 77.48
Standard deviation [%] 1.61 2.19 2.37 1.95 2.32

cv: cross-validation, LDA: linear discriminant analysis, H1–H5: combinations with the highest (H) classification
accuracies of the 50,454 strategies.
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Table 5. Pre-processing strategies with the highest classification accuracies of all 50,545 combinations—part 2.
The selection based on LDA in a 5-fold repetition of the nested cv. The classification accuracies shown are
based on all 212 walnut samples and a 20-fold repetition of the cv. The highlighted (bold) pre-processing
combination H7 has been chosen for further determination of the geographical origin of walnuts.

H6 H7 H8 H9 H10

Wavenumber range [cm−1] 8000–3950 8000–3950 9000–3950 8000–3950 8000–3950
Smoothing no no no no position 2

MSC no yes no yes no
Detrending no no no no no
Derivative none none none none none

Binning 1 1 1 1 1
Averaging mean mean mean mean mean
Centering mean median none mean median

Classification accuracy [%] 77.08 77.00 76.70 76.44 76.39
Standard deviation [%] 1.68 1.60 2.17 1.57 2.15

cv: cross-validation, LDA: linear discriminant analysis, H6–H10: combinations with the highest (H) classification
accuracies of the 50,454 strategies.

For following pre-processing optimizations, it is shown that the use of different centering methods
has less influence on the classification accuracy and thus plays a subordinate role. Since the data
pre-processing combinations shown in Tables 4 and 5 are based on reduced wavenumber ranges,
the selection of the wavelength range is even more important. In many studies, the whole analyzed
range (around 11,550–3950 cm−1) is used, because elimination of wavenumbers could lead to a loss of
information [21,55,56]. In the aforementioned spectra (see Figure 2), a lower information density is
apparent in the range >9000 cm−1, which rather deteriorates than improves the classification accuracy.
Therefore, including the entire wavenumber range leads to a remarkable reduction of the model’s
performance: Table 2 shows that the classification accuracy is reduced by about five percentage points
if only the wavenumber range in strategy H7 is changed.

It can be concluded that an optimization of the data pre-processing is essential but no transferability
to other matrices or research aims can be guaranteed. For example, other research groups, which are
also working on NIR-based methods for detecting the origin of nuts, use different pre-processing
strategies, although the matrix is in some cases very similar or identical [15,50,55,56]. For further,
even non-targeted, approaches more emphasis should be put to the selection of the wavenumber range
since this has a remarkable effect on the classification.

3.4. Classification of the Geographical Origin

Using LDA as classifier, the optimized data pre-processing (strategy H7, see Table 5) leads to an
overall classification accuracy a of 77.00% ± 1.60%. The corresponding confusion matrix is presented
in Figure 5. The “true class” of the samples is given by the columns, while the rows show the
predicted class affiliation by the multivariate classification model (here LDA). Hence, the diagonal
shows all correctly classified walnut samples (green fields). The numbers depict the sum of the
20-fold cross-validation of the sample classification (see Section 2.4.) and are given in counts and in
percentages. Furthermore, the resulting classification accuracies for the respective countries and the
overall accuracy (see lower right corner) are given. The aforementioned performance represents a
relatively high accuracy considering the model’s complexity. According to Segelke et al., the evaluation
of the performance of a classification model also has to include the number of different classes c [57].
First, the random distribution r is calculated according to Equation (1). This parameter represents
the probability to achieve a correct classification randomly and thus incorporate the number of
different classes. Considering the random distribution (see Equation (2)) of our seven-class model,
the accuracy-to-random ratio a/r would be 5.35 (see Equation (3)). An exemplary two-class model
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(r = 50%) with a classification accuracy of 90% would correspond to an accuracy-to-random ratio of 1.8
and hence to a less powerful model [57].

r =
100%

c
(1)

r (present model) =
100%

7
= 14.29% (2)

a
r
(present model) =

77.00%
14.29%

= 5.35 (3)
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With the multiclass model developed in this study, economically relevant questions can be
addressed comprehensively: (i) Chinese walnuts are currently traded at relatively low prices [1,10],
but can be distinguished from all other walnut origins with an accuracy of 95.7%. (ii) Likewise, the more
expensive French walnuts can be distinguished from Chinese, Hungarian and US-American nuts with
an accuracy of 99.13% (11 out of 1260 runs) [1,10]. Due to its geographical proximity, 7.5% (95 out of
1260 runs) of French walnuts are identified as German. To support the NIR screening, the morphology
can be consulted here, since the classic varieties from France differ slightly in shape from the walnuts
grown in Germany [58]. It must be explicitly stated that the walnuts’ morphology is also influenced
by other factors such as the position on the tree [59]. However, some varieties are also cultivated in
France and Germany, which makes a sensory analysis difficult.

4. Conclusions

In conclusion, the present study clearly shows that NIR spectroscopy is suitable for determining the
geographical origin of walnuts. In order to obtain the most suitable pre-processing strategy in the course
of this study, 50,545 pre-processing strategies were applied, such as MSC, detrending, derivations,
smoothing, and combinations in various ways. In the scope of our research, minimal pre-processing led
to the best results: using just MSC and median centering, a classification accuracy of 77.00% ± 1.60%
was achieved via LDA. In addition, the selection of the wavenumber range has a major impact in
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the optimization. More variables—and thus more information—does not necessarily lead to better
predictions i.e., the aforementioned accuracy can be achieved even with a reduced wavenumber range
of 8000–3950 cm−1.

The NIR screening method developed includes seven different geographical origins of walnuts.
Due to the simplicity of the data acquisition and the low cost, NIR screening can be easily transferred
to quality assurance laboratories of small or medium-sized companies. This approach can be used in
incoming goods inspection to verify the authenticity of a food’s raw material. In the context of this
application, downscaling to a portable NIR spectrometer may be useful, although the transferability to
such a device has yet to be tested.

In the long term, our model should be expanded to include other producing countries, such as
Chile—a country that also cultivates and exports large quantities of walnuts. The data set should also
be continuously supplemented with new harvest years to ensure the robustness and timeliness of the
screening. It is also feasible to extend the NIR data by data fusion in order to obtain a more detailed
fingerprint of the samples [60]. Therefore, it is crucial to use orthogonal methods e.g., mass spectrometry
(MS) in order to complement the acquired information in the best way possible [61].

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/12/1860/s1,
Table S1: Overview of all walnut samples with country of origin, harvest year and variety; Figure S1: PCA score
plots of the 212 walnut samples after pre-processing combination H7 (see Table 5): (a) PC 1 vs. PC 4; (b) PC 2 vs.
PC 4; (c) PC 3 vs. PC 4; Figure S2: First derivative of MSC-corrected mean spectra of the seven analyzed walnut
origins in a wavenumber range of 11,550–3950 cm−1.
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Appendix A

Classification accuracies of all 50,545 data pre-processing combination based on 212 walnuts
samples of seven countries. The values mentioned refer to a classification via linear discriminant
analysis in a 5-fold repetition of nested cross-validation.

Appendix B

Classification accuracies of the 100 data pre-processing combinations achieving the highest results
in 5-fold nested cross-validation (see Appendix A). The values mentioned refer to a classification via
linear discriminant analysis in a 20-fold repetition of nested cross-validation.
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