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Figure S1. Geographical map of the three Argentinian provinces included in the study. 

 

 

Figure S2. Scheme of the adopted validation strategy. 
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Figure S3. Recorded raw spectra of FT-MIR (a), FT-Raman (b) and NIR (c). Grey bands show spectral 

regions excluded from the data analysis. 

 

 

  

Figure S4. Line plots of PC1 and PC2 loadings obtained from FT-MIR (a), FT-Raman (b) and NIR (c) 

data. 
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Band assignment 

Investigation of the main peaks/bands relevant for the samples segregation was carried out with 

the aid of Variable Importance in Projection (VIP) extracted from a PLS model. VIP scores summarize 

the influence that the original descriptors have had on the PLS model generation. In addition, these 

scores are scaled in a way that variables exhibiting VIP values greater than 1 can be considered 

statistically-relevant in a given model. In order to obtain such importance estimates, PLS2-DA models 

were generated considering all the geographical regions at once (i.e. BA vs Cat vs Mis) on the data 

coming from the different instrumental techniques. A 5-fold cross validation (venetian blinds) was 

adopted. Illustration of the VIP scores for the three classification models are reported in S. Fig 5. 

 

Figure S5. Line plots of the VIP scores extracted from the PLS2-DA (i.e. BA vs Cat vs Mis) model 

generated on FT-MIR (a), FT-Raman (b) and NIR (c) data. The red dashed line represents the threshold 

value for significant contribution (VIP=1). Wavenumber/wavelength corresponding to the maximum 

band absorbance are highlighted. 

Concerning the FT-MIR data, as can be seen, Region 1 contains the highest VIP scores, with peaks 

at 956, 983 and 1006, 1024, 1040, 1061, 1086 and 1104 cm−1. According to the literature, Region 1 (1120–

940 cm−1) corresponds to the C–O and C–C stretching of the three major carbohydrates of honey: fructose, 

glucose and sucrose 1. Indeed, the peak at 1040 cm−1 has been assigned to the C–O stretch in the C–OH 

group in the carbohydrate structure 2,3. Furthermore, the small peak at 1104 cm−1 corresponds to the 

C–O stretching band of the C–O–C linkage (the C–O–C is present in sucrose as a glycoside bond) 2. 

High VIP values can be also observed in Region 2 (920–750 cm−1) with peaks at 767, 784, 806, 824, 854 

872, 889 and 912 cm−1. This is the anomeric region, characteristic of the saccharide configuration 1,2. In 

particular, the peak at 912 cm−1 is due to the C–H bending of the carbohydrate. No statistically 

relevant bands were highlighted in the 1540–1175 cm−1 range, which has been assigned by Gok and 

co-workers to the O–H stretching/bending, C=O stretching of ketones and the C–O & C–H stretching 

of carbohydrates 4. 

With regard to FT-Raman data, the two peaks at 2936 and 2902 cm-1 are related to the asymmetric 

stretching of CH2 and C-H stretching vibrations, respectively. In addition, several peaks characteristic 
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of different chemical groups can be observed in the fingerprint region (200-1500 cm-1). Most of these 

signals are consistent with the literature and thorough band assignment can be found in our previous 

work 5. 

Finally, VIP extracted from NIR data highlighted two statistically-relevant bands, 1400-1490 nm 

and 1870-1930 nm, both corresponding to O–H, C–H, and C–H2 deformations 6. Besides, the spectral 

range between 2000 and 2100 nm corresponds to the C–H combinations 6,7, the minor peak at 2332 

nm has been related to the C–H bonds 8 and the 2430-2490 nm band is characteristic of the O–H, N–

H, and C–H deformation 6. Furthermore, signals at 1470 and 1960 nm have been associated with the 

O-H stretch (first and second overtone, respectively) 9. 

Table S1. Sample set overview. 

Year Buenos Aires Catamarca Misiones 

2014 78 25 31 

2015 93 11 28 

2016 107 15 25 

2017 45 17 28 

Table S2. PLS-DA prediction results expressed as correct classification rates (FT-Raman data). 

Predicted harvest 
Correct classification rate (%) 

 BA vs Cat BA. vs Mis Cat vs Mis 

2015 80.7 95.8 79.4 

2016 81.9 96.2 80.0 

2017 82.3 97.2 84.4 

Table 3. PLS-DA prediction results expressed as correct classification rates (NIR data). 

Predicted harvest 
Correct classification rate (%) 

 BA vs Cat BA. vs Mis Cat vs Mis 

2015 70.1 96.6 76.5 

2016 80.3 87.1 65.0 

2017 88.7 94.5 82.2 
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