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Abstract: Piperine is a bioactive alkaloid compound which provides a unique spicy flavor derived
from plants of the Piper nigrum L. Black pepper (n = 160) collected from Vietnam was studied using
non-destructive near infrared spectroscopy (NIRS). The spectral acquisition ranged from 1100 to
2500 nm, and a chemometrics analysis program was performed to quantify the piperine contents.
High performance liquid chromatography (HPLC) analysis was carried out to develop a chemometric
model based on reference values. The black pepper samples were divided into two groups used for
calibration (n = 120) and prediction (n = 40) sets. The optimum calibration model was developed
by pretreatment of the spectra. The analyses results based on the prediction samples included a
coefficient of determination (R2) of 0.914, a root mean square error of prediction (RMSEP) and a
standard error of prediction (SEP) of about 0.220 g/100 g, and a ratio performance to deviation
(RPD) value of 3.378 regarding the partial least square (PLS) regression model, and an R2 of 0.921,
an RMSEP and SEP of 0.210 g/100 g, and an RPD of 3.571, with respect to the principal components
(PC) regression model. These results indicate that NIRS can be applicable as a control, or as an
alternative rapid and effective method to quantify piperine in P. nigrum L.

Keywords: near infrared spectroscopy; piperine; Piper nigrum L.; eco-friendly analysis;
chemometric modeling

1. Introduction

Pepper (Piper nigrum L.) is a fruit of the family Piperaceae and native to southern India. As of
the year 2018, the production of pepper (Piper spp.) was 690,698 tons all over the world. Production
increased by 6.2% annually from 2012 to 2018. Vietnam is the largest producer, accounting for 34% of the
global production, followed by Brazil and Indonesia, accounting for 13.1% and 11.5%, respectively [1].
Pepper is a typical spice that has been used for cooking since ancient times, and has a unique spicy taste
that adds flavor and removes odor when cooking. Black pepper is the peppercorns dried and crushed
with the flesh, and white pepper is the seeds of the ripe peppercorns dried after peeling the skin [2].
Piperine is an important bioactive compound and a major alkaloid component of pepper. The effects of
piperine include immunomodulatory, anti-carcinogenic [3], antimicrobial [4], anti-inflammatory [5,6],
anti-cancer [7,8] and anti-ulcer activities [9].
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Traditionally, methods for analyzing the piperine content of pepper have included UV
spectrophotometry [10], TLC-UV densitometry [11], high-performance thin-layer chromatography
(HPTLC) [12], HPLC [13,14] and the electrochemical quantification method [15]. When analyzed using
HPLC and HPTLC, the piperine content of pepper was reported to be 3% to 6% [16]. Piperine analysis
using high performance liquid chromatography (HPLC) requires the pre-treatment of samples, such as
extraction, separation and purification. Depending on the proficiency of the tester, it involves processes
such as the error calculation of the result value generated in the analysis process, the handling of the
solvent used for pretreatment harmful to the human body, the treatment of waste organic solvent and
the manipulation of complex instruments. This analysis method is time-consuming, and the results are
confirmed through all these processes.

Near infrared spectroscopy (NIRS) is a representative environmentally friendly non-destructive
analysis method. When the wavelength of the near infrared region is irradiated to the sample,
absorption of the wavelength occurs due to the vibration of molecules in the sample. NIRS measures
the physical and chemical properties of a sample by recording changes in the absorbed wavelengths
(in nm). The generated spectrum can be correlated with data obtained for the desired component
through chemical experiments using chemometric analysis with statistical and mathematical processing.
The advantages of NIRS compared to conventional piperine analyses methods include the following:
(1) there is no need to extract piperine from the sample (non-destructive analysis), (2) no organic
solvent is used for the extraction (eco-friendly), (3) there is a reduced analysis cost due to the omission
of the pre-treatment process (cost-effective), (4) it gives highly reliable results due to minimized
errors among testers, and (5) it involves a short analysis time compared to HPLC. Due to these
advantages, NIR spectroscopy is widely used to analyze foods such as fruits and vegetables [17],
cereals [18], bakery [19] and dairy products [20]. In addition, it is applied in the pharmaceutical
industry, which requires higher accuracy for the quality control of end products and production
lines [21]. Recently, in order to maximize the advantages of NIRS, portable system have also been
applied in many fields, such as analyzing the quality of instant green tea [22], the internal quality of
citrus fruit [23] and the quality of dairy farm forage [24].

This study aims to verify whether piperine, a representative active ingredient of pepper, can be
analyzed using NIRS as a quality control tool combined with chemometric modeling.

2. Materials and Methods

2.1. Chemicals and Materials

The black pepper samples (n = 160) were imported from Vietnam during 2016–2018 by OTTOGI
Sesame Co. (Umseoung, Korea). The samples were placed in a dark space at 22–26 ◦C prior to analysis,
and the collected samples were subjected to quarterly piperine analysis. Samples were powdered with
a blender (HR 2860, Philips, Shanghai, China) and transferred with 60 mesh sieves for obtaining a
ground powder. An analytical grade reference standard of piperine (purity 98.5%) and citric acid as
the mobile phase for HPLC were purchased from Sigma (St. Louis, MO, USA). The methanol and
acetonitrile of HPLC grade were supplied by Fisher Scientific (Pittsburgh, PA, USA). Deionized water
(18.2 MΩ) was purified using an ultra-pure water system (OmniaTap6, Stakpure, Niederahr, Germany).

2.2. Reference HPLC Method for Analyzing Piperine

The piperine profiling was performed as described below [25,26]. For quantitative analysis,
approximately 0.1 g of homogenized sample was placed into a 50 mL conical tube to which
50 mL of methanol was added. The mixture was ultrasonically extracted at 50 ◦C for 20 min,
cooled to 25 ◦C, and filtered through a 0.45 µm regenerated cellulose membrane syringe filter
(Sartorius, Göttingen, Germany). HPLC analyses were carried out using an Agilent 1100 HPLC system
(Agilent, Santa Clara, CA, USA) with a diode array detector (DAD, 340 nm). An Eclipse C18 plus
column (4.6 × 150 mm, 5 µm, Agilent, Santa Clara, CA, USA) was utilized at 25 ◦C for piperine
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quantification. The mobile phase was acetonitrile/1% citric acid (45:55, isocratic). The sample injection
volume was 10 µL, and the flow rate was 1 mL per minute with a run time of 20 min. ChemStation
software Rev.A.10.02, (Agilent, Santa Clara, CA, USA) was applied for all analytical conditions and
the chromatographic data processing. Sample qualification and quantification were conducted using
the DAD spectra comparing the peak area of chromatograms analyzed with the external calibration
curve from the standard solution (20–500 mg/100 g). The piperine content was represented as g/100 g
of ground black pepper sample, and the contents determined by HPLC (as a reference data) were
compared to the NIRS measurements (as experimental data). Before performing NIRS analysis,
the piperine content in ground black pepper was analyzed using HPLC to obtain the reference data.

2.3. NIRS Measurement

The same black pepper sample used for HPLC was used for the NIRS analysis. The NIR equipment
was optimized in the reflection mode using a ceramic standard before analysis, and the ground black
pepper sample was analyzed in diffuse reflectance mode (model 5000 monochromator, FOSS NIRS
Systems Inc., Silver Spring, MD, USA). A small ring cup with a diameter of 50 mm was employed
for the sample, and about 3 g of ground black pepper was used for the measurement. The analysis
wavelengths ranged between 1100 and 2500 nm, and data were collected from a total of 700 wavelengths
at 2 nm intervals. To reduce the noise of each spectrum, 25 scans were averaged with a 2-min
measuring time. The laboratory temperature and relative humidity were kept at 22–26 ◦C and 45–60%,
respectively. The NIRS data was collected using WinSIS II software (Foss and Infrasoft International LLC,
State College, PA, USA).

2.3.1. Data-Pretreatment

The NIRS spectra data were analyzed by multivariate statistical analysis using the Unscrambler®

X, v10.5 (CAMO Software AS, Oslo, Norway). Prior to creating and verifying the chemometrics model,
data pretreatment was performed on the obtained NIRS spectrum. Standard normal variate (SNV) is a
method that corrects the scattering and dispersion of light in the spectrum and stabilizes the baseline
of the spectrum [27]. De-trending (DT) adjusts the change in curvature of the baseline of the SNV that
corrects the data by moving the data along the y-axis [28]. Using the Savitzky and Golay smoothing
filter, the derivation and smoothing points were adjusted to increase the signal-to-noise ratio, reducing
the interference between the medium that disperses light and other materials that absorb light [29].

2.3.2. Chemometrics Development and Evaluating the Prediction Model

The 160 NIRS profiles obtained from the whole samples set were divided into two groups. Group 1
(n = 120) was used for calibration and cross-validation, while group 2 (n = 40) was used for the
prediction to be applied to an optimized chemometrics model. To construct the NIRS prediction
calibration model, partial least squares (PLS) and principal component (PC) were applied as regression
methods. Cross validation to verify the calibration curves was performed on 20 segments (6 samples
per each segment) randomly extracted from the calibration set. The numbers of factors were adapted
in an optimization process between over-fitting and under-fitting. The performance of the models
was evaluated using the coefficient of determination (R2), the root mean square error of performance
(RMSE), the standard error of calibration (SEC), the standard error of cross-validation (SECV) and the
standard error of prediction (SEP), as well as the ratio performance to deviation (RPD) [30].

3. Results and Discussion

3.1. HPLC Reference Analysis of Piperine in Ground Black Pepper

The ground black pepper (n = 160) used in the experiment was randomly divided into two sets:
a calibration set (n = 120, 75%) and a prediction set (n = 40, 25%). The HPLC analysis showed that
the piperine content ranged between 3.128 and 6.494 g/100 g (calibration set: 3.289 to 6.169 g/100 g,
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prediction set: 3.128 to 6.494 g/100 g), and the mean and the standard deviation were 4.689 and
0.599 g/100 g (calibration set) and 4.693 and 0.750 g/100 g (prediction set), respectively. Table 1 is a
summary of statistical parameters from the analysis of piperine in ground black pepper. The chemical
structure of piperine contains functional groups that are absorbed by the NIR spectroscopy. In addition,
the piperine contents, mean and standard deviation were similar between the calibration and prediction
sets, as shown in the result of HPLC reference analysis. HPLC analysis results were used as reference
data in the chemometric model development using NIRS.

Table 1. Statistics for piperine in ground black pepper for the calibration and prediction set of the
reference method.

Compound Parameters Total Set
(g/100 g)

Calibration Set
(g/100 g)

Prediction Set
(g/100 g)

Piperine

Number of Samples 160 120 40
Min 3.128 3.289 3.128
Max 6.494 6.169 6.494

Mean 4.690 4.689 4.693
S.D. 0.640 0.599 0.750

Figure 1 shows a histogram with respect to the distribution of piperine contents in the calibration
and prediction sets. Since the purpose of this study is to develop an analysis method for the piperine
content of ground black pepper using NIRS, the HPLC method was not further considered.
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3.2. NIR Spectral Characteristics of P. nigrum and Spectra Pre-Treatment

Figure 2a shows the raw NIR spectra in the 1100 to 2500 nm wavelength range of the ground
black pepper (n = 120) used for calibration modeling. The shapes of all 120 spectra were very
similar, and about four wavelengths with strong absorption were observed. It was observed that
strong absorption occurs near 1450 nm (O-H stretch, first overtone) and 1950 nm (C=O stretch,
second overtone). Strong absorption was also determined between 2100 nm and 2300 nm, but it was
difficult to establish the exact absorption wavelength as a combination band region over 2100 nm,
therefore it was not possible to identify a specific functional group. The spectrum was pre-treated
using de-trending (DT), SNV and derivation to obtain a sharper peak shape by minimizing interference
from surrounding wavelengths. Figure 2b shows the spectra processed with the DT treatment + SNV
+ Savitzky–Golay second derivation (polynomial order 2, smoothing point 11) of the raw spectra. As a
result of correcting the scattering and dispersion of light in each spectrum, and adjusting the baseline
and derivation, the peak shape became sharper than that of the raw spectra, and significant absorption
occurred at eight wavelengths, including 1695 nm (C-H stretch, first overtone), 2060 nm (N-H bend,
second overtone or N-H bend/N-H stretch, combination), 2280 nm (C-H stretch/CH2, deformation),
2300 nm (C-H bend, second overtone), 2352 nm (CH2 bend, second overtone) and 2470 nm (C-H bend,
combination) [31]. These raw NIR spectra of the ground black pepper samples contain O-H bonds,
C-H bonds and N-H bonds, but it was difficult to perform quantitative analysis with respect to the
molecular structure of piperine due to the overtone and combination of the NIRS spectra.
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Therefore, a chemometrics model was designed to predict the exact piperine content of ground
black pepper using the information of the NIR spectra after mathematical elaboration.

3.3. Development of Chemometrics Models

De-trending (DT) and standard normal variate (SNV) transformation of the mathematical
treatments were applied for a better correlation and prediction. The mathematical elaborations
were performed with first and second order derivatives, and smoothing points 11 (left 5, center, right 5)
and 21 (left 10, center, right 10), applying a Savitzky–Golay smoothing filter.

The results of the partial least squares (PLS) regression modeling were the following: the R2 of the
calibration set was in the range of 0.867 to 0.900, the root mean square error of calibration (RMSEC) was
in the range from 0.190 to 0.218 g/100 g, and the standard error of calibration (SEC) was between 0.191
and 0.219 g/100 g. The R2 of the cross validation set was in the range of 0.848 to 0.869, the root mean
square error of cross-validation (RMSECV) was between 0.218 and 0.236 g/100 g, and the standard
error of cross-validation (SECV) ranged from 0.219 to 0.237 g/100 g. In modeling using PLS regression,
the optimal conditions were a factor of 5, second derivative order and smoothing point 11. The results
of the principal components (PC) regression chemometric modeling, R2, of the calibration set were
confirmed to be in the range of 0.745–0.885, RMSEC was between 0.203 and 0.302 g/100 g, and SEC was
in the range from 0.204 to 0.304 g/100 g. The R2 of the cross validation set was confirmed to be in the
range of 0.733 to 0.868, RMSECV was between 0.219 and 0.312 g/100 g, and SECV ranged from 0.220 to
0.313 g/100 g. In the modeling using PC regression, the optimal conditions (conditions indicating high
R2 and low RMSEC, SEC, RMSECV and SECV) were identified as factor 7, second derivative order and
smoothing point 21 (Table 2).

Table 2. Optimum calibration parameters according to partial least squares (PLS) and principal
components (PC) regression analyses.

Regression Factors

Math Elaboration Calibration Set Cross Validation Set

Derivative
Order

Smoothing
Point R2 a RMSEC b

(g/100 g)
SEC c

(g/100 g) R2 RMSECV d

(g/100 g)
SECV e

(g/100 g)

PLS

4 1st 11 0.871 0.215 0.216 0.857 0.228 0.229
4 1st 21 0.867 0.218 0.219 0.848 0.236 0.237
5 2nd 11 0.900 0.190 0.191 0.869 0.218 0.219
4 2nd 21 0.878 0.209 0.210 0.859 0.227 0.228

PC

3 1st 11 0.745 0.302 0.304 0.733 0.312 0.313
7 1st 21 0.872 0.214 0.215 0.852 0.232 0.233
7 2nd 11 0.878 0.210 0.210 0.863 0.224 0.225
7 2nd 21 0.885 0.203 0.204 0.868 0.219 0.220

Figures in bold print represent optimum results; a R2: coefficient of multiple correlations in calibration; b RMSEC:
root mean square of standard error of calibration; c SEC: standard error of calibration; d RMSECV: root mean square
of standard error of cross-validation; e SECV: standard error of cross-validation (g/100 g).

Figure 3 shows a correlation plot of the calibration and cross-validation sets for NIRS measurements
of the reference values ((a) PLS, (b) PC). Comparing the PLS and PC values in the same mathematical
treatment, the group modeled with PLS showed a better set of values (Table 2) and could be described as
a calibration model without underfitting and overfitting with fever latent variables. However, there was
no significant difference in the results at optimal conditions, and the prediction model was verified
using both models.
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3.4. Evaluation Parameters for Comparison between Cross-Validation and Prediction Set

After applying the prediction set to the optimized PLS and PC models, we evaluated the prediction
against the cross-validation set. Figure 4 shows a correlation plot of reference values and prediction
values ((a) PLS, (b) PC).
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In the PLS model, the prediction set had higher R2, RMSEP and SEP values compared to the R2,
RMSECV and SECV of the cross-validation set. The prediction set had, compared to the cross-validation
set, a good R2 value, and the RMSE and standard error values were also slightly higher. The RPD value
was higher than that of the cross-validation set. It was confirmed that the standard deviation of the
piperine content of the prediction set was larger than that of the calibration set, thereby improving the
RPD value, which is the standard deviation divided by the standard error value. In the PC model,
the prediction set had higher R2, RMSEP and SEP vales compared to the R2, RMSECV and SECV of the
cross-validation set. The prediction set had excellent R2, RMSE and standard error values, and the RPD
value was also higher than that of the cross-validation set (Table 3). The method accuracy of developed
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regression was evaluated with the box plot. As a result of the box plot of HPLC value and prediction
value, the lower and upper quartiles and whiskers of similar ranges were identified (Figure 4c).

Table 3. Statistics of cross-validation and prediction set for piperine by PLS and PC regression.

Regression
Cross-Validation Set Prediction Set

R2 RMSECV SECV RPDCV
a R2 RMSEP b SEP c RPDp

d

PLS 0.869 0.218 0.219 2.735 0.914 0.220 0.222 3.378
PC 0.868 0.219 0.220 2.723 0.921 0.210 0.210 3.571

a RPDCV: the ratio of cross-validation to deviation (=SDcal/SECV); b RMSEP: root mean square of standard error of
prediction; c SEP: standard error of prediction (g/100 g); d RPDp: the ratio of prediction to deviation (=SDpre/SEP).

Compared to the previous result of the piperine quantification in peppercorn studied
by Schulz et al., the optimization of the calibration model was developed through various
data-pretreatments in this study, and the statistical values of R2 and SEP were found to be superior to
the existing research [32]. Furthermore, we compared these with NIR quantitative analysis results
for other bioactive compounds using agricultural products. The results of quantifying the vitamin C
content in apples were 0.80, 4.9 mg/100 g and 2.0 for R2, SEP and RPD, respectively [33], and those of
quantifying the lycopene content in watermelons were 0.805, 16.19 mg/kg and 2.1 for R2, RMSEP and
RPD, respectively [34]. When the total curcumin in turmeric was analyzed, R2 was 0.901, SEP was
0.067 g/100 g and RPD was 3.24 [35]. The R2 was > 0.8 and the RPD > 2.0, and the results of both the PLS
and PC models obtained in this study were similar to those of other studies. In general, a higher RPD
value indicates a better calibration model for an accurate prediction [36,37]. RPD values 1.5–2.0 show
that the model can discriminate low from high values for the response variable. Rough quantitative
predictions are possible when a value 2.0–2.5 is indicated, and a value in the range from 2.5 to 3 or
above corresponds to an acceptable, up to excellent, prediction accuracy, respectively [38]. Moreover,
Chang et al. (2001) defined an RPD < 1.4 as non-reliable, while a fair model is representative of
1.4 < RDP < 2.0, and an RPD > 2.0 is described as an excellent model [39]. Therefore, it was proven
that the RPD value of 2.7 or higher (3.5 or higher for the prediction model) obtained in this study was
sufficient reason to use NIRS instead of HPLC as a quantification tool for piperine.

4. Conclusions

This study confirmed that the piperine in ground black pepper can be analyzed using NIRS.
The NIRS analysis was conducted within 2 min per sample, compared to the HPLC analysis time
(20 min) (this is just simply a comparison of the run time of instrument). Considering the time
consumption of the pretreatment of the sample and the result interpretation of the HPLC method,
NIRS was confirmed to be the more efficient analysis method.

After the spectra treatment, this research identified that the shape of the peak became sharper,
and more absorption wavelengths occurred. The development of the PLS and PC regression
chemometrics models using NIR spectra was achieved. The mathematical elaborations greatly affected
the RMSE, RMSECV and SEP values of the developed chemometric models. In particular, the higher
the derivative order, the lower the RMSE, RMSECV and SEP values were, as identified in both the PLS
and PC models.

To obtain a better result, it was confirmed that optimization is required. As a result of
optimization, the performance parameters of the PLS and PC regressions, according to derivative order,
determined that the second derivative order is better than the first derivative order.

The developed model was verified using a prediction set, and high R2, low RMSEP and SEP and
excellent RPD values were observed. Comparing the PLS and PC methods in the optimal model, it was
shown that PC regression gives better results in the prediction set. However, it was suggested that
the PLS model can describe a model developed with fewer latent variables. It was further verified
that NIR is an economical and eco-friendly analysis method that has many advantages compared to
HPLC, such as a simple pre-treatment process, short analysis time and no use of organic solvents,
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while obtaining similar results. These results show that NIRS can be applicable as a promising quality
control tool to quantify piperine in P. nigrum L. (black pepper).
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