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Abstract: The present study investigated the effects of jasmonic acid (JA), chitosan, and salicylic
acid (SA) on the accumulation of phenolic compounds in germinated buckwheat. A total of six
phenolics were detected in the buckwheat treated with different concentrations of SA (50, 100, and
150 mg/L), JA (50, 100, and 150 µM), and chitosan (0.01, 0.1, and 0.5%) using high-performance
liquid chromatography (HPLC). The treatment with 0.1% chitosan resulted in an accumulation of the
highest levels of phenolic compounds as compared with the control and the 0.01 and 0.5% chitosan
treatments. The treatment with 150 µM JA enhanced the levels of phenolics in buckwheat sprouts as
compared with those observed in the control and the 50 and 100 µM JA-treated sprouts. However,
the SA treatment did not affect the production of phenolic compounds. After optimizing the treatment
concentrations of elicitors (chitosan and JA), a time-course analysis of the phenolic compounds
detected in the germinated buckwheat treated with 0.1% chitosan and 150 µM JA was performed.
Buckwheat treated with 0.1% chitosan for 72 h showed higher levels of phenolic compounds than
all control samples. Similarly, the germinated buckwheat treated with JA for 48 and 72 h produced
higher amounts of phenolic compounds than all control samples. This study elucidates the influence
of SA, JA, and chitosan on the production of phenolic compounds and suggests that the treatment
with optimal concentrations of chitosan and JA for an optimal time period improved the production
of phenolic compounds in germinated buckwheat.
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1. Introduction

Fagopyrum esculentum Moench (common buckwheat), belonging to the Polygonaceae family, is an
important pseudocereal cultivated and consumed in East Asian countries. It has high agricultural and
medicinal values [1]. It contains various minerals (magnesium, copper, zinc, and manganese), fiber,
and a large quantity of rutin [2], which exhibits anti-allergic [3], cytoprotective [4], anti-thrombotic [5],
and anti-carcinogenic activities [6]. Furthermore, rutin and its related flavonoids in buckwheat have

Foods 2019, 8, 153; doi:10.3390/foods8050153 www.mdpi.com/journal/foods

http://www.mdpi.com/journal/foods
http://www.mdpi.com
http://dx.doi.org/10.3390/foods8050153
http://www.mdpi.com/journal/foods
https://www.mdpi.com/2304-8158/8/5/153?type=check_update&version=2


Foods 2019, 8, 153 2 of 10

various health effects. For example, it functions as an inhibitor of cardiovascular problems, such as
arteriosclerosis disease, high blood pressure, and capillary fragility [2].

Dietary fibers and phenolics are plant food constituents that play a beneficial role in human health,
and use of these constituents as functional ingredients has gradually increased [7]. These constituents
are usually studied separately due to differences in their metabolic pathways, physicochemical and
biological properties, and chemical structures [8]. Recent studies, however, have reported that phenolics,
as fiber copassengers, are bound to the fiber fraction and can be released along the gastrointestinal (GI)
tract [9,10]. In particular, cereal dietary fibers with phenolics may play a role in antioxidant protection
at the intestinal environmental level. In the GI tract, free phenolics are generally released from soluble
dietary fibers by the activities of microbial and intestinal enzymes, such as esterases, and then absorbed
through the intestine. Such a continuous absorption of phenolics can explain that the high consumption
of whole grain can reduce the risk for developing diabetes, cancer, and cardiovascular diseases [9–11].

Flavonoids are well-known polyphenolic compounds consisting of a benzo-γ-pyrone structure
and are commonly found in plant species. They are derived from the phenylpropanoid pathway [12].
These phenolic compounds are usually distributed in plant parts, including roots, stems, leafs, flowers,
and fruits, herbs, vegetables, and nuts. These secondary metabolites are well-known components
of food sources used in the daily human diet [13]. They exhibit various health benefits such as
anti-inflammatory [14], antitumor, anti-human immunodeficiency virus [15], anti-tuberculosis [16],
and anti-diabetic activities [17].

The accumulation of secondary metabolites is activated by abiotic stresses, signal molecules,
or elicitors in various plants [18]. In particular, the production of secondary metabolites can be promoted
by the elicitations by chitosan, salicylic acid, and jasmonic acid and by the ultraviolet-A/B radiation [19].
Chitosan elicitation leads to an increase in the production of phenylpropanoids. In chitosan-elicitated
cells of Cocos nucifera (coconut), the production of phenolic compounds was enhanced in the cell
suspension cultures [20]. Likewise, salicylic acid (2-hydroxybenzoic acid) from intact grape berries
and jasmonic acid from the cells of Hypericum perforatum L. (St. John’s wort) led to an increase in the
total phenolic content. In particular, a rapid increase in the concentration of phenolic compounds
was observed in JA-elicited cells compared to the control cells after 4 days of jasmonic acid (JA)
elicitation [21]. An irradiation treatment with ultraviolet-A (UV-A) activated phenylalanine ammonia
lyase (PAL), a key enzyme in the phenylpropanoid biosynthetic pathway, in tomato seedlings in
addition to anthocyanin production in hypocotyls and fruit [22]. Furthermore, increase in hypericin and
hyperforin accumulation was observed in H. perforatum exposed to ultraviolet-B (UV-B) radiation [23].

To our knowledge, no previous reports have documented the influence of chitosan, salicylic acid,
and jasmonic acid on the accumulation of flavonoids in germinated buckwheat. Thus, the current
study aimed to elucidate the effect of chitosan, salicylic acid, and jasmonic acid on the production of
phenolic compounds in germinated buckwheat.

2. Materials and Methods

2.1. Plant Materials

Seeds of common buckwheat were obtained from Jeju Buckwheat Farmers Association Corp.
(Je-ju do, Korea). Two hundred seeds (approximately 4 g) were placed on filter paper (Whatman,
150-mm diameter) in a Petri dish (AccuResearch Korea, Seoul, South Korea, 150 mm diameter) and
then treated with 200 mL of salicylic acid at concentrations of 50, 100, and 150 mg/L, jasmonic acid at
concentrations of 50, 100, and 150 µM, and chitosan at concentrations of 0.01, 0.1, and 0.5% (Figure 1).
After incubation under a dark condition at 25 ◦C for 72 h, the germinated buckwheat seeds were
harvested and frozen in liquid nitrogen (−196 ◦C). Individual samples were lyophilized and finely
ground for further analysis. All samples were prepared in triplicate.
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Figure 1. Buckwheat germinated for 72 h. (a) Control; (b) germinated buckwheat treated with 150 μM 
jasmonic acid; (c) germinated buckwheat treated with 0.1% chitosan. 

2.2. Extraction and High-Performance Liquid Chromatography Analysis of Phenolics 

The extraction and high-performance liquid chromatography (HPLC) analysis of phenolics in 
germinated buckwheat were performed according to the slightly modified method described by Park 
et al. [1]. For the extraction of phenolic compounds, 0.2 g of individual sample was soaked in 2 mL of 
aqueous methanol (80% v/v) and vortexed for 30 s. After sonication in a water bath at 37 °C for 60 
min, the sample was centrifuged at 16,000× g for 15 min, and the first supernatant was obtained. 
Additionally, the entire procedure was carried out twice. The collected supernatants were evaporated 
and then resuspended in 2 mL of methanol. The extracts were passed thorough a 0.45 μm syringe 
filter into an HPLC vial. The analytical equipment and conditions for the HPLC analysis were 
performed as described by Park et al. [1]. The phenolic compounds were identified based on the 
retention time and spike test, followed by a calculation using respective calibration curves. The linear 
equations were y = 7.5252x − 37.3870 (R² = 0.9997, recovery value = 102.81 ± 5.32%) for benzoic acid, y 
= 39.9829x − 65.7075 (R² = 0.9999, recovery value = 102.14 ± 3.67%) for caffeic acid, y = 7.8897x − 40.2424 
(R² = 0.9999, recovery value = 104.09 ± 11.25%) for catechin, y = 8.5989x − 8.3356 (R² = 0.9999, recovery 
value = 100.28 ± 0.80%) for epi-catechin, y = 32.8959x − 26.1737 (R² = 0.9999, recovery value = 96.57 ± 
2.51%) for gallic acid, and y = 8.0971x − 105.5466 (R² = 0.9995, recovery value = 104.61 ± 11.17%) for 
rutin. The chemical structures of the compounds are shown in Figure S1. The external standards were 
purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). The results were presented as 
microgram per milligram dry weight (μg/mg (dw)) with means ± standard deviation of triplicate 
experiments.  

2.3. Statistical Analysis 

Analysis of variance (ANOVA) test evaluates the statistical data and Duncan’s multiple range 
test (DMRT) at p < 0.05 were carried out using the SAS software (version 9.4, 2013; SAS Institute, Inc., 
Cary, NC, USA). 

3. Results 

3.1. Effects of Elicitor Treatments on Germinated Buckwheat 

Table 1 shows the effect of elicitors used during germination on the accumulation of phenolic 
compounds in buckwheat sprouts. Six phenolic compounds (caffeic acid, catechine, chlorogenic acid, 
(−)-epicatechine, gallic acid, and rutin) and one organic acid (benzoic acid) were detected in 
germinated buckwheat. Even though benzoic acid does not belong to phenolic compound, the total 
phenolic compound of all samples were described, including benzoic acid. The treatment with 0.1% 
chitosan increased the total phenolic content compared with the control and the 0.01 and 0.5% 
chitosan treatments (p < 0.05). In particular, the total phenolics of the germinated buckwheat treated 
with 0.1% chitosan were approximately 1.23 times higher than the control buckwheat samples (Table 
1). In addition, the concentration of gallic acid, catechin, chlorogenic acid, and (−)-epicatechin in the 

Figure 1. Buckwheat germinated for 72 h. (a) Control; (b) germinated buckwheat treated with 150 µM
jasmonic acid; (c) germinated buckwheat treated with 0.1% chitosan.

2.2. Extraction and High-Performance Liquid Chromatography Analysis of Phenolics

The extraction and high-performance liquid chromatography (HPLC) analysis of phenolics in
germinated buckwheat were performed according to the slightly modified method described by
Park et al. [1]. For the extraction of phenolic compounds, 0.2 g of individual sample was soaked
in 2 mL of aqueous methanol (80% v/v) and vortexed for 30 s. After sonication in a water bath at
37 ◦C for 60 min, the sample was centrifuged at 16,000× g for 15 min, and the first supernatant was
obtained. Additionally, the entire procedure was carried out twice. The collected supernatants were
evaporated and then resuspended in 2 mL of methanol. The extracts were passed thorough a 0.45 µm
syringe filter into an HPLC vial. The analytical equipment and conditions for the HPLC analysis were
performed as described by Park et al. [1]. The phenolic compounds were identified based on the
retention time and spike test, followed by a calculation using respective calibration curves. The linear
equations were y = 7.5252x − 37.3870 (R2 = 0.9997, recovery value = 102.81 ± 5.32%) for benzoic acid,
y = 39.9829x − 65.7075 (R2 = 0.9999, recovery value = 102.14 ± 3.67%) for caffeic acid, y = 7.8897x −
40.2424 (R2 = 0.9999, recovery value = 104.09 ± 11.25%) for catechin, y = 8.5989x − 8.3356 (R2 = 0.9999,
recovery value = 100.28 ± 0.80%) for epi-catechin, y = 32.8959x − 26.1737 (R2 = 0.9999, recovery value
= 96.57 ± 2.51%) for gallic acid, and y = 8.0971x − 105.5466 (R2 = 0.9995, recovery value = 104.61 ±
11.17%) for rutin. The chemical structures of the compounds are shown in Figure S1. The external
standards were purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). The results were
presented as microgram per milligram dry weight (µg/mg (dw)) with means ± standard deviation of
triplicate experiments.

2.3. Statistical Analysis

Analysis of variance (ANOVA) test evaluates the statistical data and Duncan’s multiple range test
(DMRT) at p < 0.05 were carried out using the SAS software (version 9.4, 2013; SAS Institute, Inc., Cary,
NC, USA).

3. Results

3.1. Effects of Elicitor Treatments on Germinated Buckwheat

Table 1 shows the effect of elicitors used during germination on the accumulation of phenolic
compounds in buckwheat sprouts. Six phenolic compounds (caffeic acid, catechine, chlorogenic
acid, (−)-epicatechine, gallic acid, and rutin) and one organic acid (benzoic acid) were detected in
germinated buckwheat. Even though benzoic acid does not belong to phenolic compound, the total
phenolic compound of all samples were described, including benzoic acid. The treatment with 0.1%
chitosan increased the total phenolic content compared with the control and the 0.01 and 0.5% chitosan
treatments (p < 0.05). In particular, the total phenolics of the germinated buckwheat treated with
0.1% chitosan were approximately 1.23 times higher than the control buckwheat samples (Table 1).
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In addition, the concentration of gallic acid, catechin, chlorogenic acid, and (−)-epicatechin in the
germinated buckwheat treated with 0.1% chitosan were approximately 15.86, 1.72, 1.64, and 2.17 times
higher than those of the control.

The six phenolic compounds were also detected by HPLC in buckwheat treated by JA.
The germinated buckwheat treated with JA at the specific concentrations of 50, 100, and 150 µM
increased the accumulation of total phenolic compounds. The germinated buckwheat grown in 150 µM
of JA showed the highest amount of total phenolics which was approximately 2.47 times higher
than that of control. Particularly, the accumulation of gallic acid, rutin, catechin, chlorogenic acid,
and (−)-epicatechin were approximately 2.00, 2.38, 1.76, 2.81, and 7.95 times higher in JA-treated
buckwheat than in the control buckwheat samples (Table 1). However, SA treatment did not influence
the production of phenolic compounds.

3.2. Time-Course Effects of 0.1% Chitosan Treatment on Phenolic Compounds of Germinated Buckwheat

Owing to the highest accumulation of total phenolics after 0.1% chitosan treatment,
the accumulation of phenolic compounds in 0.1% chitosan-treated buckwheat was studied throughout
the germination process (6, 12, 24, 48, and 72 h). As a result, the concentration of total phenolic
compounds increased after 72 h, and it was the highest accumulation of phenolics compared with all
the control groups (6, 12, 24, 48, and 72 h). In particular, at 72 h, the amounts of gallic acid, chlorogenic
acid, (−)-epicatechin, and rutin were higher in the chitosan-treated buckwheat than in the buckwheat
under control (Table 2). However, the fresh and dry weight (g) of germinated buckwheats after 72 h
were not significantly different compared with those of the control (Table S1).

3.3. Time-Course Effects of 150 µM Jasmonic Acid Treatment on Phenolic Compounds of
Germinated Buckwheat

The time course experiments at 6, 12, 24, 48, and 72 h were also conducted in buckwheat
germinated in the presence of 150 µM jasmonic acid. As a result, the accumulation of total phenolic
compounds increased after 72 h. Particularly, the germinated buckwheat treated with 150 µM jasmonic
acid for 72 h showed the highest concentration of total phenolics compared with the control buckwheat
samples. Likewise, gallic acid, chlorogenic acid, (−)-epicatechin, and rutin showed the highest levels
in the jasmonic acid-treated germinated buckwheat as compared with the control and other treatments
(Table 2). However, the fresh and dry weight (g) of germinated buckwheats after 72 h were not
significantly different compared with those of the control (Table S1).
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Table 1. The effect of elicitors (chitosan, jasmonic acid (JA), salicylic acid (SA)) on the accumulation of phenolic compounds (µg/g (dw)).

Benzoic Acid Caffeic Acid Catechin Chlorogenic Acid (−)-Epicatechin Gallic Acid Rutin Total

Control 74.48 ± 5.27 abc,1 77.99 ± 1.54 cd 56.18 ± 2.37 c 58.92 ± 1.52 d 44.44 ± 8.55 d 6.09 ± 0.19 c 424.42 ± 0.96 cde 736.43 ± 11.35 e

Chitosan 0.01% 71.34 ± 4.48 bc 82.52 ± 8.84 cd 64.32 ± 6.63 c 81.62 ± 11.69 bc 48.79 ± 27.38 d 6.27 ± 0.44 c 399.7 ± 53.28 def 754.55 ± 105.14 e

Chitosan 0.1% 58.17 ± 4.38 d 81.25 ± 4.12 cd 96.59 ± 8.06 b 99.66 ± 2.91 b 98.51 ± 17.90 c 9.19 ± 1.91 b 465.76 ± 50.35 cd 909.12 ± 76.28 d

Chitosan 0.5% 68.56 ± 9.03 bcd 70.27 ± 5.52 d 66.34 ± 9.52 c 66.56 ± 3.16 cd 24.96 ± 18.03 d 5.61 ± 0.45 c 341.12 ± 35.09 f 643.43 ± 26.63 e

JA 50 µM 59.49 ± 2.84 d 96.61 ± 7.19 bc 104.71 ± 10.35 b 150.7 ± 23.68 a 297.41 ± 53.66 b 10.8 ± 2.00 ab 494.99 ± 65.45 c 1214.71 ± 153.05 c

JA 100 µM 58.06 ± 6.47 d 104.76 ± 17.15 ab 136.12 ± 32.75 a 155.34 ± 8.87 a 299.5 ± 25.82 b 10.5 ± 1.68 ab 764.39 ± 39.19 b 1528.66 ± 108.41 b

JA 150 µM 68.17 ± 3.74 cd 115.63 ± 11.79 a 98.8 ± 23.94 b 165.33 ± 22.43 a 353.28 ± 13.17 a 12.17 ± 0.85 a 1011.3 ± 3.11 a 1824.69 ± 72.80 a

SA 50 mg/L 79.48 ± 10.83 ab 65.19 ± 19.09 d 61.94 ± 4.92 c 56.08 ± 5.78 d 31.55 ± 7.38 d 6.83 ± 0.28 c 375.63 ± 72.65 ef 676.7 ± 111.09 e

SA 100 mg/L 76.12 ± 2.94 abc 73.11 ± 6.12 d 58.92 ± 1.2 c 58.98 ± 1.86 d 37.62 ± 4.64 d 6.24 ± 1.14 c 420.9 ± 32.14 cdef 731.89 ± 42.04 e

SA 150 mg/L 84.75 ± 1.76 a 78.63 ± 0.51 cd 59.4 ± 1.17 c 62.21 ± 1.71 cd 44.93 ± 2.32 d 7.24 ± 0.13 c 456.62 ± 6.31 cde 793.79 ± 7.02 de

1 Means with different letters in the same column differ significantly (p < 0.05, Duncan multiple range test (DMRT)).

Table 2. High-performance liquid chromatography (HPLC) analysis of total phenolic compounds in the germinated buckwheat under 150 µM jasmonic acid and 0.1%
chitosan time-course treatment (µg/g (dw)).

Benzoic Acid Caffeic Acid Catechin Chlorogenic Acid (−)-Epicatechin Gallic Acid Rutin Total

Control 6 h 81.96 ± 4.91 abc,1 74.93 ± 2.37 def 57.21 ± 2.11 c 55.72 ± 2.24 c 43.13 ± 5.89 de 6.78 ± 0.86 defgh 371.84 ± 81.94 d 691.57 ± 97.47 de

Control 12 h 83.82 ± 3.10 ab 74.29 ± 2.57 def 66.30 ± 3.85 c 59.91 ± 3.24 c 39.60 ± 1.00 de 8.03 ± 0.45 cd 428.66 ± 6.33 cd 760.60 ± 6.96 de

Control 24 h 83.27 ± 1.96 ab 76.44 ± 3.48 cdef 65.97 ± 2.04 c 61.52 ± 0.97 c 34.10 ± 1.41 de 6.98 ± 0.36 defgh 418.00 ± 16.50 cd 746.28 ± 23.56 de

Control 48 h 71.64 ± 9.63 de 84.56 ± 8.24 bc 99.05 ± 15.37 b 105.81 ± 32.67 b 135.74 ± 95.97 c 7.91 ± 1.56 cde 291.20 ± 100.31 e 795.91 ± 95.38 cd

Control 72 h 74.48 ± 5.27 cde 77.99 ± 1.54 cde 56.18 ± 2.37 c 58.92 ± 1.52 c 44.44 ± 8.55 de 6.09 ± 0.19 h 424.42 ± 0.96 cd 736.43 ± 11.35 de

Chitosan 6 h 80.78 ± 2.42 abc 69.16 ± 1.78 ef 52.53 ± 0.87 c 57.24 ± 1.58 c 23.58 ± 2.47 e 7.83 ± 0.63 cde 346.41 ± 12.92 de 637.53 ± 14.44 e

Chitosan 12 h 80.59 ± 3.57 abc 67.95 ± 1.60 f 54.11 ± 3.32 c 55.47 ± 0.79 c 20.00 ± 3.43 e 6.33 ± 0.22 fgh 346.22 ± 23.57 de 630.67 ± 34.24 e

Chitosan 24 h 80.64 ± 0.57 abc 67.89 ± 2.22 f 57.30 ± 0.63 c 55.36 ± 0.04 c 21.26 ± 1.66 e 6.45 ± 0.25 efgh 367.70 ± 26.01 de 656.61 ± 25.54 de

Chitosan 48 h 78.79 ± 0.43 abcd 73.47 ± 1.71 def 70.25 ± 9.12 c 72.28 ± 9.49 c 55.14 ± 28.34 de 6.14 ± 0.29 gh 408.89 ± 15.52 cd 764.96 ± 63.46 de

Chitosan 72 h 58.17 ± 4.38 f 81.25 ± 4.12 cd 96.59 ± 8.06 b 99.66 ± 2.91 b 98.51 ± 17.90 cd 9.19 ± 1.91 bc 465.76 ± 50.35 c 909.12 ± 76.28 c

Jasmonic acid 6 h 77.14 ± 2.18 abcd 76.42 ± 4.33 cdef 55.06 ± 0.83 c 60.78 ± 0.41 c 39.81 ± 6.70 de 7.58 ± 0.09 defg 408.23 ± 16.91 cd 725.03 ± 29.48 de

Jasmonic acid 12 h 76.13 ± 2.83 bcd 74.11 ± 1.01 def 56.20 ± 0.54 c 69.99 ± 1.64 c 40.19 ± 0.48 de 8.04 ± 0.26 cd 418.48 ± 18.94 cd 743.15 ± 20.99 de

Jasmonic acid 24 h 74.63 ± 2.15 cde 80.45 ± 2.57 cd 62.54 ± 2.92 c 70.34 ± 0.60 c 38.88 ± 6.56 de 7.69 ± 0.42 def 395.77 ± 18.89 cd 730.30 ± 22.81 de

Jasmonic acid 48 h 84.85 ± 3.43 a 91.14 ± 5.84 b 165.89 ± 51.97 a 109.62 ± 20.75 b 202.38 ± 89.88 b 9.79 ± 0.35 b 541.76 ± 68.57 b 1205.4 ± 240.79 b

Jasmonic acid 72 h 68.17 ± 3.74 e 115.63 ± 11.79 a 98.80 ± 23.94 b 165.33 ± 22.43 a 353.8 ± 13.17 a 12.17 ± 0.85 a 1011.30 ± 3.11 a 1824.6 ± 72.80 a

1 Means with different letters in the same column differ significantly (p < 0.05, Duncan multiple range test (DMRT)).
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4. Discussion

In this study, six phenolic compounds (gallic acid, catechin, chlorogenic acid, caffeic acid,
(−)-epicatachin, and rutin) and one organic acid (benzoic acid) were detected in germinated buckwheat.
These results are consistent with previous studies reporting the identification of gallic acid, chlorogenic
acid, catechin, caffeic acid, (−)-epicatechin, and rutin in common buckwheat sprouts [24] and flours [25].
Furthermore, the presence of caffeic and benzoic acids was recorded in buckwheat honeys and four
different phenolics, including catechin, chlorogenic acid, epicatechin, and rutin, were identified in
different parts, such as stem, leaf, flower, and root, of the Korean common buckwheat cultivars [26].

This time course analysis revealed that chitosan and JA gradually enhanced the production of
phenolic compounds in the germinated buckwheat. We carefully suggested that it might be due to
increased gene expression levels of phenylpropanoid-related genes by the chitosan and JA elicitation
since our previous studies reported that the methyl jasmonate increased gene expression levels of
phenlypropanoid-related genes and enhanced the accumulation of phenolic compounds in radish
sprouts [27] and in Agastache rugosa Kuntze [28], respectively. Furthermore, Chen et al. (2009) reported
the increased expression of phenylpropanoid and flavonoid biosynthesis genes and in soybean sprouts
treated with chitosan [29].

Among the detected phenolics in the germinated buckwheat at 72 h after the treatment of 150 µM
JA and 0.1% chitosan, the concentration of rutin, (−)-epicatechin, and chlorogenic acid significantly
increased. Rutin, the most abundant phenolic compound in the elicited germinated buckwheat, is used
as a health supplement and has applications in food industries due to its biological activities, including
anti-oxidant, anti-inflammatory, and anti-diabetic activities [30]. Similarly, (−)-epicatechin, the second
most abundant compound, has been introduced as a health supplement because it enhances fatigue
resistance and oxidative capacity [31,32]. Chlorogenic acid, the third most abundant compound,
has been mainly used in food processing and cosmetic industries since the compound possesses
anti-carcinogenic [33], anti-inflammatory [34], and anti-oxidant functions [35]. The other identified
compounds have been reported to have health-beneficial effect, such as anti-cancer and anti-oxidant
effects [36–38].

Elicitation is considered one of the best strategies to stimulate secondary metabolites.
The accumulation of secondary metabolites from either parts of parent or transformed plants is greatly
dependent on the sources of their origin; however, it might be influenced by the treatments as well as
environmental factors. Elicitors, when in contact with the cells of higher plants, trigger an increase in
the production of pigments, flavones, phytoalexins, and other defense-related compounds [39–42].
This study revealed that treatment with elicitors chitosan or jasmonic acid can enhance the production
of phenolic compounds in germinated buckwheat. This finding was consistent with previous studies
of Park et al. (2017) [1] and Kim et al. (2011) [43], who reported the enhancement of phenolics in
the sprouts of common buckwheat by treatment with indoleacetic acid and methyl jasmonic acid,
respectively. Li et al. (2015) [44] reported the positive effect of the exogenous application of sucrose on
the flavonoid contents of common buckwheat seedlings. Lim et al. (2012) [45] reported that the sodium
chloride (NaCl) treatment enhanced both phenylpropanoid and carotenoid production in buckwheat
sprouts. In addition, elicitors could stimulate the biosynthesis of phenylpropanoid compounds in
tartary buckwheat (F. tataricum (L.) Gaertn.). Zhao et al. (2015) [46] reported an increase in flavonoid
production in sprout cultures under treatment of polysaccharide elicitors. Sun et al. (2012) [47]
reported that the treatment with salicylic acid resulted in an increase in rutin production in tartary
buckwheat leaves. Li et al. (2017) [48] also described that exogenous ethephon application enhanced
phenylpropanoid biosynthesis. Furthermore, Park et al. (2016) [49] reported that treatment with auxins
improved anthocyanin production in the hairy root cultures of tartary buckwheat.

Chitosan and JA affect the phenlypropanoid biosynthesis in plants. Previous studies reported
that chitosan increases the activity of key enzymes (phenylalanine ammonia-lyase (PAL) and tyrosine
ammonia-lyase) of the phenylpropanoid pathway [50], and JA also increases PAL activity [51].
Furthermore, chitosan treatment enhanced the accumulation of free and bound phenolic acids in
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peanut seeds [52]. Mandal et al. (2016) [53] reported that chitosan increased the production of cell
wall–bound phenolic compounds in Solanum Melongena. Moreover, methyl jasmonic acid could increase
these phenolic compounds [53]. Additionally, Skrzypczak-Pietraszek et al. (2014) [54] reported that
the production of free and bound phenolic acids increased by adding methyl jasmonic acid in shoot
cultures of Exacum affine Balf. f. ex Regel. Therefore, we carefully suggest that JA and chitosan
treatment enhance the production of free and bound phenolic compounds in plants.

5. Conclusions

This study confirmed that JA and chitosan play an important role in the production of phenolic
compounds in germinated buckwheat. A total of six phenolics (gallic acid, catechin, chlorogenic
acid, caffeic acid, (−)-epicatechin, and rutin) and one organic acid (benzoic acid) were detected in
germinated buckwheat. JA and chitosan treatment enhanced the accumulation of phenolic compounds
in the germinated buckwheat. Particularly, treatments with 150 µM JA were the most effective on the
accumulation of phenolic compounds. According to the time-course analysis, a 72 h chitosan treatment
enhanced the production of phenolics. Similarly, the germinated buckwheat treated for 48 and 72 h
showed a higher accumulation of phenolic compounds than control buckwheat. Thus, these results
might help build sturdy strategies for enhancing the production of phenolics in germinated buckwheat
as a good nutritional source for human consumption.
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