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Abstract: Spinach and other leafy green vegetables have been linked to foodborne disease
outbreaks of Escherichia coli O157:H7 and Salmonella enterica around the globe. In this study,
the antimicrobial activities of surfactant micelles formed from the anionic surfactant sodium dodecyl
sulfate (SDS), SDS micelle-loaded eugenol (1.0% eugenol), 1.0% free eugenol, 200 ppm free chlorine,
and sterile water were tested against the human pathogens E. coli O157:H7 and Salmonella Saintpaul,
and naturally occurring microorganisms, on spinach leaf surfaces during storage at 5 ◦C over 10 days.
Spinach samples were immersed in antimicrobial treatment solution for 2.0 min at 25 ◦C, after which
treatment solutions were drained off and samples were either subjected to analysis or prepared
for refrigerated storage. Whereas empty SDS micelles produced moderate reductions in counts of
both pathogens (2.1–3.2 log10 CFU/cm2), free and micelle-entrapped eugenol treatments reduced
pathogens by >5.0 log10 CFU/cm2 to below the limit of detection (<0.5 log10 CFU/cm2). Micelle-loaded
eugenol produced the greatest numerical reductions in naturally contaminating aerobic bacteria,
Enterobacteriaceae, and fungi, though these reductions did not differ statistically from reductions
achieved by un-encapsulated eugenol and 200 ppm chlorine. Micelles-loaded eugenol could be used
as a novel antimicrobial technology to decontaminate fresh spinach from microbial pathogens.
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1. Introduction

The U.S. Centers for Disease Control and Prevention (CDC) has estimated that 47.8 million cases
of foodborne illnesses occur annually in the U.S. due to known and unspecified foodborne disease
agents [1]. Of these pathogens, Escherichia coli O157:H7 and non-typhoidal Salmonella enterica serotypes
were deemed responsible for approximately 63,153 cases [2] and 1,027,561 cases of domestically
acquired foodborne illnesses, respectively [3]. From 2006 to 2017 in the U.S., the numbers of foodborne
disease cases associated with the shiga toxin-producing E. coli (STEC), and the various serovars of the
non-typhoidal salmonellae, associated with fresh fruits and vegetables, has increased [4,5]. This increase
could be partly due to improved surveillance for human pathogens [6], increased consumption of raw
or minimally processed produce items, as well as other contributing factors (e.g., use of nontreated
biological soil amendments or pathogen-contaminated irrigation water, and other practices which
could increase pathogen transmission risks). Among many commodities, spinach and other leafy
greens have been associated with multiple E. coli O157:H7 human disease outbreaks [7–9]. While less
frequently associated with leafy greens in the U.S., multiple outbreaks of leafy green disease outbreaks
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involving multiple Salmonella spp. have been reported across many industrialized nations, summarized
recently by Chaves et al. [10]. Foodborne disease outbreaks can cause substantial economic losses
including medical expenses, lost wages, damage control costs for product recall and disposal of affected
products, and production time loss [11].

Essential oils and their components (EOCs) are volatile, hydrophobic substances that can
be extracted from various parts (e.g., flowers, leaves, rhizome, seeds, fruits, wood, and bark)
of aromatic plants) [12]. Essential oils contain bioactive components that are derivatives of
alcohols, ketones, aldehydes, esters, and phenols [12]. It has been reported that EOCs possess
insecticidal, antioxidant, anti-inflammatory, anti-allergenic, anticancer, and antimicrobial properties,
thereby potentially beneficial in medical, pharmaceutical, and food industries [13]. In foodstuffs,
however, high concentrations of EOCs are often required to inactivate microorganisms due to the
hydrophobic nature of some EOCs [14,15]. For example, eugenol is water-soluble up to only 4.93 g/L,
though it is miscible in alcohols such as ethyl alcohol [16]. The requirement for use of elevated
concentrations of EOCs can render EOCs impractical as food additives or sanitizers, as they may be
excessively costly at usage concentrations and/or impart undesirable flavor and/or aroma to the food
product [17,18]. Encapsulation has, therefore, been recommended for improving upon these negative
characteristics of plant-derived antimicrobial agents, by increasing water-dispersibility, reduce the
required dosage needed for foodborne pathogen inhibition, and provide protection to the antimicrobial
agent from rapid volatilization [19–21]. Weiss et al. [14], in their review of nanoencapsulation strategies
for food antimicrobials delivery to foods, recommended that encapsulating materials be inexpensively
procured to offset the cost of additional processing needed to form the encapsulated structure. In this
case, sodium dodecyl sulfate (SDS) can be purchased relatively inexpensively, and manufacture of
micelles does not require highly costly equipment. In addition, consumer use of produce rinsing
in the home prior to consumption would reduce the potential for undesirable flavor or mouthfeel
consequences on micelle-treated produce surfaces. Thus, delivery methods for EOCs can be utilized
to improve antimicrobial activities of EOCs in food systems so as to reduce the content of EOC
required for antimicrobial functionality without significant compromise to sensory acceptability of
treated commodities.

To enhance delivery of EOCs to microorganisms in foodstuffs, surfactants can be utilized to
encapsulate EOCs [18,22,23]. Surfactants are surface-active, amphiphilic molecules that contain both
hydrophilic and hydrophobic components; they can be classified as anionic, cationic, zwitterionic,
or nonionic [24]. At low concentrations, surfactants adsorb to the aqueous phase of a lipid/water
interface, lowering the surface tension [25]. When present at or above the critical micelle concentration
(CMC), surfactant molecules will aggregate to form thermodynamically favored structures known as
micelles. In micelle structures, hydrophobic molecules such as EOCs can be encapsulated inside the
hydrophobic core, while hydrophilic headgroups of surfactants face outwardly contacting the aqueous
phase [24,26].

In several studies, efficient pathogen inactivation using EOCs-encapsulated surfactant
micelles/emulsion in foodstuffs has been reported [18,22,23,27]. Nonetheless, limited studies have
been conducted to evaluate the antimicrobial activities of EOCs-containing micelles on the surfaces of
fresh produce for the purpose of pathogen decontamination. Thus, the main objective of this study
was to determine the efficacy of eugenol-loaded surfactant micelles, compared to other antimicrobial
treatments, specifically non-encapsulated eugenol and 200 ppm free chlorine, to reduce numbers of
inoculated E. coli O157:H7 and S. Saintpaul on surfaces of spinach leaves stored refrigerated. The second
objective was to evaluate the efficacy of eugenol-containing micelles to reduce numbers of microbial
hygiene indicator on leaf surfaces during refrigerated storage.
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2. Materials and Methods

2.1. Preparation of Antimicrobial Micelles and Other Treatments

Eugenol-loaded micelles and other treatments (free eugenol, empty micelles, 200 ppm free
chlorine, sterile distilled water) were prepared in identical manner to methods reported previously
by our group [28]. Briefly, eugenol stock solution (70% w/v) was prepared by dissolution of eugenol
(Sigma-Aldrich Co., St. Louis, MO, USA) in 95% ethyl alcohol (Koptec, King of Prussia, PA, USA),
and stored at 5 ◦C until ready for use. Sodium dodecyl sulfate (SDS) micelles (1.0% w/v) were produced
containing eugenol at 1.0% EOC according to previous methods [29]. After stirring until optical density
at 632 nm stabilized, micelles were filter-sterilized by filtering through a 0.45 µm cellulose acetate filter.
Micelles were then stored at 5 ◦C for no more than 36 h prior to use.

2.2. Revival of Bacterial Pathogens and Preliminary Assessment of Consistent Overnight Pathogen Growth for
Pathogen Cocktail Preparation

Rifampicin-resistant (RifR; 100.0 µg/mL) E. coli O157:H7 (Strain K3999) from the pathogen isolate
recovered from a 2006 U.S. spinach-borne disease outbreak and S. enterica serovar Saintpaul (Strain
FDA/CFSAN 476398) from the 2008 U.S. peppers-transmitted disease outbreak were selected for spinach
sample inoculation and decontamination. Pathogens were revived from cryo-storage (−80 ◦C) in the
culture collection of the Food Microbiology Laboratory (Department of Animal Science, Texas A&M
University, College Station, TX, USA) individually inoculating each isolate into a sterile 10.0 mL
volume of Tryptic Soy Broth (TSB; Becton, Dickinson and Co., Franklin Lakes, NJ, USA) and incubating
for 24 h at 35 ◦C without shaking. After incubation, a sterile loop was used to collect 10.0 µL of
each culture; each was then aseptically passed into a new sterile 10.0 mL volume of TSB. These were
subsequently incubated for 24 h at 35 ◦C. Following the second passage of cultures to complete revival
and activation, equal volumes of microorganisms were blended into a cocktail for spinach surface
inoculation, targeting an inoculation of approximately 6.0 log10 CFU/cm2. Preliminary tests were
completed prior to experimental startup to verify researchers’ ability to consistently produce predictable
numbers of pathogen isolates following 24 h incubation in TSB at 35 ◦C, in order to reliably produce
an inoculum. Following incubation of microorganisms, TSB volumes of each pathogen were serially
diluted in 0.1% (w/v) peptone (Thermo-Fisher Scientific, Waltham, MA, USA) diluent and enumerated
on Tryptic Soy Agar (TSA; Becton, Dickinson and Co.). Following 24 h incubation of inoculated TSA
Petri plates at 35 ◦C, plates were counted and counts were log10-transformed. The experiment was
replicated in identical manner three times (n = 3) and numbers of each organism compared to one
another to confirm that one pathogen would not contribute significantly more cells to the cocktail than
the other. A cocktail of RifR E. coli O157:H7 and S. Saintpaul was subsequently prepared for spinach
inoculation according to the method of Cálix-Lara et al. [30] without modification.

2.3. Antimicrobial Activity Testing for Antimicrobial Treatments on Pathogens-Inoculated and Noninoculated
Spinach Leaf Samples Held under Refrigeration

Unwashed, freshly harvested spinach was purchased from a local fruit and vegetable distributor
and transported immediately in insulated coolers containing cooling pouches to the Food Microbiology
Laboratory (Department of Animal Science, Texas A&M University, College Station, TX, USA). For each
sample, three pieces, each 10 cm2, of spinach were aseptically excised using sterile scalpel and borer,
placed in an empty sterile Petri dish, and spot-inoculated with approximately 7.0 log10 CFU/mL
cocktailed RifR E. coli O157:H7 and S. Saintpaul. Pathogen cocktail was spotted onto samples (ten
spots at 10.0 µL), after which pathogen-inoculated samples were air-dried at ambient temperature
(25 ± 1 ◦C) for 1.0 h to allow pathogen attachment to spinach leaf surfaces.

To test the sanitizing/growth inhibition efficacy of each treatment on pathogens or naturally
occurring hygiene microorganisms, encapsulated eugenol (1.0% SDS + 1.0% eugenol-loaded micelles),
free eugenol (1.0% eugenol), empty micelles (1.0% SDS), 200 ppm chlorine (adjusted to pH 7.0 with
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0.1 N HCl), and sterile distilled water were individually applied to inoculated spinach samples in Petri
dishes by immersing in 20 mL of treatment solution. Positive controls (pathogen inoculated without
any treatment or non-inoculated spinach samples used for testing antimicrobial/sanitizing treatments
against background microbiota) and negative controls (uninoculated sample without treatment) were
included to determine pathogen attachment to spinach surfaces and confirm no naturally occurring
100.0 µg/mL RifR microbes, respectively. For day 0 samples, encapsulated eugenol, free eugenol,
empty micelles, chlorine, and sterile distilled water were individually applied to Petri dishes via 2 min
immersion with 20 mL of treatment solution, after which the solution was drained off and spinach
samples immediately transferred to a sterile stomacher bag and mixed with 99 mL 0.1% (w/v) peptone
diluent by pummeling in a stomacher (230 rpm) for 1 min.

For all non-day 0 samples, treatments were applied to spinach leaf samples in identical manner
as for day 0-assigned samples, drained of treatment solution, and then transferred to new sterile
Petri dishes, where they were stored at 5 ± 1 ◦C covered in saran film to afford oxygen transmission
under dark conditions. Samples were withdrawn after 3, 5, 7, or 10 days of refrigerated storage for
subsequent enumeration of inoculated pathogens or naturally occurring microbial organisms. As with
day 0 samples, to enumerate pathogens, samples were placed in stomacher bags and pummeled with
99 mL of 0.1% peptone diluent for 1 min. Pummeled samples were serially diluted in 9 mL of 0.1%
peptone diluent and dilutions were spread on surfaces of Lactose-Sulfite-Phenol Red-Rifampicin (LSPR)
agar supplemented with 100.0 µg/mL rifampicin, in order to differentially enumerate E. coli O157:H7
colonies (cream-white with halo of fermented lactose) from S. Saintpaul colonies (black-centered
colonies with no halo of lactose fermentation) [31]. Following 24 h incubation at 35 ◦C, colonies of RifR

E. coli O157:H7 and S. Saintpaul were counted and recorded.
For enumeration of naturally occurring microbiota (aerobic bacteria, Enterobacteriaceae, and yeasts

and molds) from non-inoculated, antimicrobial-treated spinach surface samples, resulting samples
were serially diluted in 99 mL sterile 0.1% peptone diluent and 1.0 mL volumes were spread on 3MTM

PetrifilmTM Aerobic Count Plates, 3MTM PetrifilmTM Enterobacteriaceae Count Plates, and 3MTM

PetrifilmTM Yeast and Mold Count Plates. Aerobic Count Plate and Enterobacteriaceae Count Plate
petrifilms were each incubated at 35 ◦C for 48 h, while Yeast and Mold Count Plate petrifilms were
incubated at 25 ◦C for 5 days, all according to manufacturer instructions. Colonies were counted
after incubation.

2.4. Statistical Analysis of Data

For preliminary data gathered for pathogen cocktail preparation (Section 2.2), mean counts of
each pathogen (n = 3) were compared to one another by unpaired t-test (2-tailed, p = 0.05). All spinach
decontamination experiments (Section 2.3) were replicated thrice identically; two independent samples
were completed for each sample/treatment combination within a replicate (n = 6). The experiment was
designed and completed as a full factorial, with α = 0.05; spinach samples were randomly assigned to
antimicrobial treatment and storage period conditions at experiment outset. All microbiological plate
count data were log10-transformed prior to statistical analysis. The limit of detection for plating assays
was 0.5 log10 CFU/cm2. In cases where microbial numbers were below the limit of detection, the value
of 0.4 log10 CFU/cm2 was inserted for purposes of comparison of mean microbial counts by treatment
and storage period. Log10-transformed counts of each pathogen, or microbial hygiene indicator group,
were compared for the main effects of antimicrobial treatment, storage period, and their interaction by a
two-way analysis of variance (ANOVA). Statistically differing mean microorganism counts (pathogens,
hygiene indicator grouping) were separated by Tukey’s Honestly Significant Differences test at p = 0.05.
Statistical analysis was completed on JMP Pro v.14 for Macintosh (SAS Institute, Inc., Cary, NC, USA).
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3. Results

3.1. Consistency of Overnight Growth of Salmonella Saintpaul and E. coli O157:H7 Organisms for Cocktail
Preparation

Mean populations of E.coli O157:H7 and Salmonella Saintpaul isolates following 24 h incubation at
35 ◦C during preliminary trials (Section 2.2) were 7.4 ± 0.2 and 7.6 ± 0.1 log10 CFU/mL, respectively.
Mean plate counts of the pathogens following growth were not different from one another by t-test
(p = 0.156), and were thus assessed to not provide non-differing counts of each pathogen to cocktail
preparations for subsequent experiments on spinach leaves.

3.2. Inhibition of Salmonella Saintpaul on Spinach Surfaces by Antimicrobial Treatments over 10 Days of
Refrigerated Storage

Table 1 presents the least-squares means of Salmonella Saintpaul populations on spinach leaf
surfaces following treatment with SDS micelle-encapsulated eugenol, free eugenol, empty SDS micelles,
200 ppm chlorine, or sterile distilled water. For Salmonella reduction on spinach surfaces, overall, the
trend of antimicrobial effects from greatest to least was Encap = Free-Eug ≥ 200 HOCl > SDS-Mic ≥
DW. Encapsulated eugenol, free eugenol, and chlorine exerted efficient residual effects in reducing
pathogen populations to below or just over detectable levels after day 0 of storage. Only the free and
micelle-encapsulated eugenol treatments reduced pathogens to below the limit of detection by plating
(0.5 log10 CFU/cm2). The population on the positive control (inoculated, nontreated) on day 0 of storage
was 6.0 log10 CFU/cm2. On day 0, populations of S. Saintpaul after treatment with encapsulated
eugenol, free eugenol, empty micelles, chlorine, and sterile water were varied, ranging from 1.8 to 5.6
log10 CFU/cm2. Early in the experiment, free eugenol was equally effective as chlorine at reducing
the pathogen on spinach, and produced a greater numerical reduction than did encapsulated eugenol
in reducing S. Saintpaul (though counts of surviving pathogen between treatments did not differ).
Conversely, neither empty SDS micelles nor sterile water reduced populations of S. Saintpaul (p ≥ 0.05)
on day 0 (Table 1). From days 3 until 10, all treatments resulted in S. Saintpaul declining in a treatment
and time-specific manner, ultimately ranging at day 10 of storage from 0.4 to 4.7 log10 CFU/cm2

(Table 1). Micelle-encapsulated eugenol, free eugenol, and 200 ppm chlorine were similarly effective in
reducing S. Saintpaul populations and were more effective than empty SDS micelles and sterile water
at days 3 through 10. Encapsulated eugenol and free eugenol initially reduced the pathogen compared
to the control, and inhibited pathogen growth to undetectable numbers continuously from days 3 to
10. Compared to the control, water treatment increased the population of S. Saintpaul to 4.7 log10

CFU/cm2 on day 10. Compared to the level of S. Saintpaul on day 0, the levels of S. Saintpaul on the
positive control decreased from day 5 to 10 of storage (p < 0.05), likely the result of cold temperature
storage in combination with potential for pathogen cells to be exposed to spinach-derived compounds
with antimicrobial activity (e.g., organic acids, phytoaxelins, phenolic compounds).

Table 1. Least-squares means of surviving Salmonella Saintpaul (log10 CFU/cm2) on spinach surfaces as
a function of the interaction of antimicrobial treatment and days of aerobic storage at 5 ◦C.

Storage Period (Days) Encap 1 Free-Eug SDS-Mic 200 HOCl DW Control

0 2.8GH 2 1.8HI 5.4ABCD 2.0HI 5.6ABC 6.0A
3 0.4K 0.4K 4.7CDEF 0.7JK 5.2ABCD 5.8AB
5 0.4K 0.4K 4.5DEF 1.6IJ 4.8BCDEF 4.5CDEF
7 0.4K 0.5JK 4.0EF 0.9IJK 4.8BCDE 4.3DEF

10 0.4K 0.4K 3.6FG 0.5JK 4.7BCDEF 3.8EFG
p ≤ 0.0001 Pooled Standard Error = 0.2

1 Antimicrobial treatments were: 1.0% sodium dodecyl sulfate (SDS) micelles loaded with 1.0% eugenol (Encap);
1.0% un-encapsulated eugenol (Free-Eug); 1.0% SDS micelles unloaded (SDS-Mic); 200 ppm pH 7.0 free chlorine (200
HOCl); sterile distilled water (DW); inoculated, nontreated (Control). 2 Values depict least-squares means calculated
from three identically completed replicates, each containing duplicate identically processed independent samples (n
= 6). Means read across columns and rows that do not share capitalized letters (A, B, C, . . . ) differ by two-way
analysis of variance and Tukey’s Honestly Significant Differences Means Separation Test at p = 0.05.
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3.3. Inhibition of E. coli O157:H7 on Spinach Surfaces by Antimicrobial Treatments over 10 Days of
Refrigerated Storage

Similar trends were observed for E. coli O157:H7-inoculated spinach treated with antimicrobials
(free, encapsulated) as those reported for Salmonella-inoculated spinach (Section 3.2). Table 2 depicts
populations of E. coli O157:H7 on spinach samples after antimicrobial sanitizing treatment, over 10
days of refrigerated (5 ± 1◦C) storage. The initial population of E. coli O157:H7 on the positive control
on day 0 was 6.0 log10 CFU/cm2. On day 0, antimicrobial treatments, except sterile water, reduced
populations of E. coli O157:H7 to numbers ranging from 2.3 to 5.0 log10 CFU/cm2. As was the case
with Salmonella Saintpaul testing, initially free eugenol treatment produced the greatest numerical
reduction in pathogen counts. Moreover, similar to Salmonella testing, encapsulated eugenol-treated
E. coli O157:H7 counts did not differ from those of the free eugenol-treated E. coli O157:H7 count,
though numerical counts of E. coli O157:H7 were higher than like counts of Salmonella at day 0 for free
and micelle-loaded eugenol treatments. From days 3 to 10, E. coli O157:H7 populations treated with
either micelle-encapsulated or free eugenol bore non-detectable pathogen counts (0.4 log10 CFU/cm2).
Conversely, other treatments (sterile water, empty SDS micelles, and 2 00 ppm chlorine) produced
smaller reductions in pathogen counts following their application. Encapsulated eugenol, free eugenol,
and chlorine reduced pathogen counts to non-detection or near non-detection values within 7 days of
refrigerated storage (p ≥ 0.05); all were more effective than empty micelles or water (p < 0.05) on day 3.
From days 5 to 10, all treatments but sterile water reduced populations of E. coli O157:H7 to lower
levels than positive controls (p < 0.05). The levels of E. coli O157:H7 on untreated spinach samples
decreased from 6.0 to 4.0 log10 CFU/cm2 from day 0 to 10, a similar but less substantial decline as that
observed for S. Saintpaul (Tables 1 and 2).

Table 2. Surviving Escherichia coli O157:H7 (log10 CFU/cm2) on spinach surfaces as a function of the
interaction of antimicrobial treatment and days of aerobic storage at 5 ◦C.

Storage Period (Days) Encap 1 Free-Eug SDS-Mic 200 HOCl DW Control

0 3.1DEFG 2 2.3GHI 5.0ABC 2.7FGH 5.3AB 6.0A
3 0.4K 0.4K 4.1CDE 0.7JK 4.7ABC 5.9A
5 0.4K 0.4K 3.8CDEF 1.5IJK 4.2BCD 4.6BC
7 0.4K 0.6JK 2.9EFGH 0.8JI 4.1CDE 4.4BC

10 0.4K 0.4K 1.7HIJ 0.6JK 3.9CDEF 4.0CDE
p > 0.0001 Pooled Standard Error = 0.3

1 Antimicrobial treatments were: 1.0% sodium dodecyl sulfate (SDS) micelles loaded with 1.0% eugenol (Encap);
1.0% unencapsulated eugenol (Free-Eug); 1.0% SDS micelles unloaded (SDS-Mic); 200 ppm pH 7.0 free chlorine (200
HOCl); sterile distilled water (DW); inoculated, nontreated (Control). 2 Values depict least-squares means calculated
from three identically completed replicates, each containing duplicate identically processed independent samples (n
= 6). Means read across columns and rows that do not share capitalized letters (A, B, C, . . . ) differ by two-way
analysis of variance and Tukey’s Honestly Significant Differences Means Separation Test at p = 0.05.

3.4. Inhibition of Naturally Occurring Microbial Hygiene Indicator Groups on Treated Spinach over 10 Days of
Refrigerated Storage

With respect to antimicrobial treatments and their impacts on naturally contaminating
hygiene-indicating microorganisms, for aerobic bacteria and Enterobacteriaceae, treatments followed the
trend from greatest to least antibacterial effects of Encap = Free-Eug ≥ 200 HOCl > DW > SDS-Mic
(Figure 1). The antifungal effect of treatments on surfaces of spinach samples followed the trend of
Encap = Free-Eug = 200 HOCl ≥ SDS-Mic > DW (Figure 1). In the case of spinach leaf samples that
were utilized for determining the efficacy of antimicrobial treatments against naturally contaminating
aerobic bacteria, Enterobacteriaceae, and fungi (yeasts/molds), microbial loads on spinach samples were
significantly influenced by antimicrobial treatment for all groups of tested microorganisms. In all cases,
encapsulated and free eugenol reduced organisms versus sterile water and the control, but surviving
counts of aerobic bacteria, Enterobacteriaceae and fungi did not differ for micelle-loaded eugenol versus
free eugenol (Figure 1). SDS micelles exerted some antimicrobial effect when compared with water
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or the control for all groups of microbes, though not to the extent observed for eugenol-including
treatments or the 200 ppm free chlorine treatment. Indeed, for Enterobacteriaceae, SDS micelles appeared
to produce a higher count of Enterobacteriaceae versus the control and water-treated samples, potentially
resulting from de-clumping of cells by the surfactant, or higher initial loads on SDS micelles-treated
spinach samples at the experiment initiation (Figure 1b). While no group of microorganisms was
reduced to non-detectable levels, eugenol treatments resulted in the fewest numbers of hygiene
indicator microbes on treated spinach, indicating potential for best outcomes related to protection of
spinach keeping quality.
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Figure 1. Means of naturally occurring microorganisms on spinach samples as function of antimicrobial
treatment: (a) aerobic bacteria, (b) Enterobacteriaceae, and (c) yeasts and molds (p < 0.0001).
Treatments were: 1.0% sodium dodecyl sulfate (SDS) micelles loaded with 1.0% eugenol (Encap);
1.0% unencapsulated eugenol (Free-Eug); 1.0% SDS micelles unloaded (SDS-Mic); 200 ppm pH 7.0 free
chlorine (200 HOCl); sterile distilled water (DW); no treatment, non-inoculated (Control). Bars depict
arithmetic means from three identical replications with duplicate independent samples per replicate
(n = 6); error bars depict one sample standard deviation from the mean. Columns not sharing capitalized
letters (A, B, C, D) differ at p = 0.05.
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4. Discussion

Eugenol (4-allyl-2-methoxyphenol) is a naturally occurring phenolic EOC in clove oils and has been
reported to exhibit effective antimicrobial activities against a wide range of microorganisms [32–34].
Reported mechanisms of action of EOCs against microorganisms have included cellular membrane
disruption, alteration in membrane permeability, release of proteins and nucleic acids, and structural
and morphological changes [32]. In this study, SDS was utilized to encapsulate 1% eugenol for
inhibiting enteric bacterial pathogens and naturally occurring microorganisms on surfaces of spinach
samples. SDS, an anionic surfactant, is a derivative of lauric acid and a mixture of sodium alkyl
sulfates consisting of a 12-carbon tail attached to a sulfate head group, rendering it amphiphilic [35,36].
The possible functions of surfactant micelles in delivering an antimicrobial to pathogens may include:
(1) enhanced dispersion of EOC in aqueous phase; (2) transport of EOCs to microbial membranes,
and; (3) disruption of microbial membranes to enhance uptake of EOC [19,37–39]. Micelles themselves
are covered by polar headgroups, making them amphiphilic structures [40]. However, the surfactant
monomers of the micelles structures are amphiphilic and may thermodynamically bind to bacterial
membrane components [40]. In this research, the antimicrobial activities of free and encapsulated
eugenol did not significantly differ. Although eugenol is hydrophobic, it possesses slight water
solubility (0.64 g/L) [41] and thus may have resulted in partial dissolution and dispersion of eugenol in
wash water.

The rough surfaces of spinach [42], as well as cracks, pockets, crevices, and native openings (e.g.,
stomata), may favor microbial attachment and provide protection to microorganisms from antimicrobial
intervention [43,44]. On leaf surfaces, there is a boundary layer, a thin layer of air influenced by the
leaf surface [45]. The layer can vary in thickness and can influence the temperature, moisture, and
speed of water vapor leaving the stomata through the motionless layer [45]. When spinach samples
were treated with encapsulated or free eugenol, the antimicrobial EOC may have become trapped in
a boundary layer and crevices. During storage, eugenol may have vaporized and exerted residual
effect in inactivating microorganisms. The surface of spinach is covered with cuticle, a continuous
extracellular membrane of polymerized lipids with associated waxes [46]. The hydrophobic nature
of the waxy cuticle may have prevented chlorine, which is more hydrophilic, from inactivating
microorganisms on spinach surfaces.

Hypochlorous acid (HOCl) is the principal form of available chlorine in an aqueous solution that
exerts the greatest bactericidal activity against a wide range of microorganisms. To maintain available
HOCl, the pH of the solution must be maintained in the range of 6.0 to 7.5 [47]. In this study, the pH of a
chlorine solution was adjusted to 7.0 at the experiment’s outset, prior to its application onto inoculated
samples. Distilled water was used to prepare the chlorine solution, so the presence of organic matter
was reduced. Thus, chlorine showed potent antibacterial effect in reducing pathogens and microbiota
on fresh produce in the study. Indeed, chlorine treatment was as effective as eugenol-including
treatments in the cases of aerobic bacteria and yeasts/molds but not for Enterobacteriaceae, wherein
counts of microbes treated with 200 ppm chlorine did not statistically differ versus those treated either
with micelle-loaded or free eugenol. Effects of chlorine on microbial inactivation in leafy greens have
been reported throughout many refereed papers and expert reports. Zhang and Farber [48] reported
the maximum log10 reduction of L. monocytogenes at 4 and 22◦ C to be 1.3 and 1.7 log10 CFU/g for
lettuce and 0.9 and 1.2 log10 CFU/g for cabbage, respectively. In the current study, chlorine (200 ppm)
produced greater reductions for inoculated pathogens versus naturally occurring Enterobacteriaceae
(Tables 1 and 2; Figure 1), similar to results reported by other researchers testing 100–200 ppm HOCl on
spinach [49,50], potentially resulting from differences in differing attachment strengths from naturally
occurring versus inoculated pathogen cells, as well as potential for naturally occurring cells to locate
effectively into protected niches on the leaf surface [51]. Erkman [52] reported that 10 ppm HOCl (pH
7.0) applied via immersion with agitation for 5 min reduced E. coli on lettuce, parsley, and pepper by 1.2,
1.6, and 2.6 log10 CFU/mL, respectively. Nevertheless, in produce packing operations, accumulation of
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organic matter (e.g., field soil, debris, fruit, leaves) in a dump tank or flume water, as well as alkaline
pH of wash water, can decrease effectiveness of chlorine [47,53].

In this study, micelle-loaded eugenol produced the highest numerical reductions in naturally
contaminating aerobic bacteria, Enterobacteriaceae, and fungi, although with the exception of the
Enterobacteriaceae, these did not differ statistically from reductions achieved by un-encapsulated
eugenol and 200 ppm chlorine. It was reported that Enterobacteriaceae and pseudomonads are
predominant on surfaces of leafy greens [45]. Thus, increased populations of aerobic bacteria and
Enterobacteriaceae on spinach surfaces in this study could have been due to the ability of these bacteria
to metabolize or tolerate SDS [54–56]. Kramer et al. [55] reported that 200 strains of independent
isolates of Enterobacteriaceae members (e.g., E. coli, Shigella flexneri, Shigella sonnei, Salmonella Arizonae,
Klebsiella pneumoniae, etc.) were highly tolerant to SDS and were able to grow in the presence of ≥5%
SDS. In contrast, previous research has indicated that SDS demonstrated antimicrobial activity against
foodborne fungal microbes, inhibiting colony development and mycotoxin synthesis [57,58].

Utilization of EOC-encapsulating micelles or emulsions for inactivation of pathogens on fresh
produce surfaces has been reported. Park et al. [59] reported clove bud oil (0.02%) + benzothoium
chloride (0.002%) emulsion inactivated inoculated S. Typhimurium and Listeria monocytogenes on
fresh-cut pak choi by 1.9 to 2.0 log10 CFU/g, respectively. Kang et al. [22] showed that cinnamon
leaf essential oil in cetylpyridinium chloride produced 1.8 and 1.5 log10 CFU/g reductions against
L. monocytogenes and E. coli O157:H7, respectively; quality of kale leaves was not affected during
storage. In our previous study, eugenol (1% w/v) encapsulated in SDS (1% w/v) micelles were used for
inhibition of S. Saintpaul and E. coli O157:H7 as well as native microbiota on tomato skin surfaces during
refrigerated and abuse storage [28]. In that study, antimicrobial effects of free and encapsulated eugenol
did not differ from those of HOCl and empty SDS micelles during refrigerated storage. However,
reductions in pathogen counts to non-detectable levels were only observed with free and encapsulated
eugenol [28]. EOC-encapsulated micelles could be used as an alternative to the commonly used
sanitizers to reduce pathogens on fresh produce, potentially achieving greater pathogen reductions
versus those typically observed by washing in chlorinated water [60].

5. Conclusions

Overall, micelle-encapsulated and eugenol displayed similar efficacies for reducing the enteric
bacterial human pathogens E. coli O157:H7 and Salmonella, as well as for microbial hygiene-indicating
microorganisms, on surfaces of spinach leaf samples during a simulated washing and subsequent
refrigerated storage. Antimicrobial-loaded micelles may be used as an alternative to conventional
antimicrobial technologies for decontaminating surfaces of leafy green produce commodities
from microbial pathogens as a means to produce human food safety for consumers of these
agricultural commodities.
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