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Abstract: We study a previously introduced mathematical model of amensalistic control of the
foodborne pathogen Listeria monocytogenes by the generally regarded as safe lactic acid bacteria
Lactococcus lactis in a chemostat setting under nutrient rich growth conditions. The control agent
produces lactic acids and thus affects pH in the environment such that it becomes detrimental to
the pathogen while it is much more tolerant to these self-inflicted environmental changes itself.
The mathematical model consists of five nonlinear ordinary differential equations for both bacterial
species, the concentration of lactic acids, the pH and malate. The model is algebraically too involved
to allow a comprehensive, rigorous qualitative analysis. Therefore, we conduct a computational
study. Our results imply that depending on the growth characteristics of the medium in which the
bacteria are cultured, the pathogen can survive in an intermediate flow regime but will be eradicated
for slower flow rates and washed out for higher flow rates.
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1. Introduction

Safe food is a major contributing factor to human health. The control of foodborne pathogenic
bacteria plays an important role in food safety, for example by preservation of foods. Among the
traditional methods of food preservation are fermentation, temperature treatment (heat/cold/freezing),
or the addition of chemical adjuncts to foods, including spices [1]. A newer concept of food preservation
or microbial food safety control could be described as “ecological control”, in which the microbial
ecology of the food is augmented by bacteria that are generally regarded as safe (GRAS), with the
goal to either out-compete the pathogen, or to change the local environmental conditions such that
they become detrimental for the pathogen. Examples for this concept can be found in [1–4] and
the references that they cite. Since this approach is based on the abilities of living microorganisms,
it belongs to the so-called biopreservation techniques, in which in particular lactic acid bacteria play an
important role [1]. Other biopreservation techniques include control based on microbially produced
bacteriocins, such as natural antimicrobials, or so called “hidden fermentation”.

We study here a mathematical model of biopreservation, or biocontrol, of the pathogenic
Listeria monocytogenes by the lactic acid bacteria Lactococus lactis, based on earlier work in [2]. The use
of such an ecological control mechanism has been proposed for minimally processed refrigerated
vegetable products [1,3].
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L. monocytogenes is a pathogenic bacteria, which can cause the sometimes fatal disease listeriosis.
While individuals with normal health may not develop symptoms, it can be deadly for fetuses,
newborns, infants, the elderly, pregnant women, and immuno-compromised people [5]. An outbreak
of listeriosis in Canada in 2008 that was traced back to a meat processing facility caused several
deaths [6]. L. monocytogenes can be found in uncooked meat, milk, egg, seafoods, and fish as well as
certain minimally refrigerated vegetables, but also heat-processed foods such as pasteurized milk
and dairy products and ready-to-eat meat [5]. In January through May 2016, the Canadian Food
Inspection Agency reported at least 20 food recalls and/or alerts because of this pathogen, the majority
of which classified as Class I (or high risk) [7]. Due to its importance from a food safety perspecitve,
mathematical modeling to characterize the growth L. monocytogenes has been a very active field of
research for more than 20 years. Most studies focus on mono-culture settings, where a wide range
of modeling tools is used, from data-driven descriptive fitting, to agent based models, to dynamic
differential equations; some such examples are [8–17], but this list is by no means complete. Fewer
models have been proposed to study the dynamics of interaction of L. monocytogenes in co-culture with
other species [2,18–20], which is the setting that is relevant for the ecological control aspect that we
focus on.

The control agent L. lactis is a lactic acid bacteria that is associated with certain dairy products [1].
While it plays an important role in food microbiology because of its fermentation abilities [5],
we are here interested in the changes that it inflicts to the microbial ecology by production of lactic
acids and subsequent changes of pH. Simply described, the underlying control mechanism is the
following amensalistic principle: the control agent produces lactic acids which decrease the pH in
the system. Both, decreasing pH and increasing lactic acid concentration are detrimental to the
pathogen, while the control agent itself is much more tolerant to these self-inflicted environmental
changes. In the mathematical formulation, this is described by a nonlinear system of five ordinary
differential equations [2] for the dependent variables population sizes of pathogen and control agent,
concentration of lactic acids, concentration of hydrogen ions (as a measure of pH), and malate.
Unlike [2], where the model was studied quantitatively with relatively few computer simulations for a
batch culture, we investigate it in a continuous chemostat setup aiming at a qualitative description
of the longterm dynamics and how it depends on environmental conditions. The mathematical
theory for the chemostat, in which several species compete for a limited number of resources, such as
nutrients, is well understood, culminating in a mathematically rigorous formulation of the principle
of competitive exclusion [21]. However, if additional effects of interaction between species are at
play that can give one competitor an additional growth advantage over the other one, this result
cannot be readily applied, because it makes heavy use of a certain functional relationship between
microbial growth and substrate depletion that no longer holds. Such systems need to be studied
individually, cf. [20,22–24]. This is also the situation for the amensalistic control system at hand.
Moreover, while the principle of competitive exclusion implies that only one of two competitors for a
shared resource in a competition based chemostat can survive, it is known from a variety of examples
that pH values and dilution rate can determine the fate of co-cultures in chemostats, and that indeed
both competitors can survive, cf. [25] for an experimental study. In our specific example, the pH
is actually modified by the species themselves. In our model we implicitly assume that nutrient
availability is not limiting bacterial growth. This assumption is made, because the set of reaction
parameters that we use in our study was determined in [2,14] from experiments in vegetable broth,
where nutrients are plenty. Including nutrient limitation effects and competition for nutrients in
the model would be straightforward, but at the expense of introducing additional unknown model
parameters and dependent variables, thus increasing the model complexity, and potentially shifting
the focus away from amensalistic effects.

The algebraic expressions arising from our model are too involved to allow for a complete and
rigorous analytical treatment. Therefore, we study the system with a mix of computational methods
and analytical techniques, the latter restricted to relative simple special questions, such as stability
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of trivial equilibria, or to derive estimates on critical flow rates. In our model, the reaction terms
contain in total 18 parameters. A complete set of values for these are given in [2]. With growth
kinetics fixed, we will focus on the influence of the reactor operating conditions. These are the flow
rate and the properties of the growth medium. In our case these are expressed in terms of the bulk
concentrations of lactic acids and hydrogen ions. Thus, we explore the behavior of the system with
respect to three parameters.

We end this brief introduction with two remarks. First, lactic acid bacteria play also a major role
in fermentation. Fermentation is an important, by some accounts the most important, mechanism for
food preservation. This is not addressed by our study, which solely focuses on the control of pathogens;
Secondly, the biocontrol mechanism that we study is based on a simple ecological (amensalistic)
principle: a (possibly invasive) species alters the environmental conditions such that they become
less favorable and detrimental for a competitor, while the control agent itself is more tolerant toward
these self-inflicted changes. This gives a natural growth advantage. Lactic acid bacteria are often also
used as probiotics, which are defined to be live food ingredients which confer health benefits to the
host if administered in sufficient quantities [26]. The same amensalistic control mechanism that we
study here in the context of food preservations can also play a role as a probiotic control mechanism.
Although the parameter values likely will be different, the model itself might apply to this situation
as well.

2. Governing Equations

In [2] a mathematical model for the control of Listeria monocytogenes by Lactococus lactis was
formulated for the case of batch cultures. We will study this system in the chemostat setting. It is
formulated for the five dependent variables

N1: population size of L. monocytogenes,
N2: population size of L. lactis,
C: concentration of lactic acids,
P: concentration of hydrogen ions,
M: malate concentration.

The hydrogen ion concentration is equivalent to the pH value in the sense that

pH = − log10 P,

if P is measured in moles.
In the chemostat setup, the dissolved substrates malate, lactic acids and hydrogen ions are

added to the reactor at a constant reactor flow rate q, at bulk concentration levels C0, P0 and M0.
The bacterial populations, and the dissolved growth limiting substrates are completely mixed and
subject to convective transport into and out of the reactor. Thus the reactor is continuously replenished
with fresh medium.

The bacterial populations grow if C and P are small; they decay if one of these concentrations
becomes large. Growth and decay phases are separated by extended neutral phases.

Both bacterial species produce lactic acids until a saturation level is reached. Similarly, lactic acids
increase the concentration of hydrogen ions (i.e., decrease the pH) until a saturation level is reached.
Moreover, hydrogen ions are diminished by L. lactis, during which process also malate decays.
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This is modeled by the nonlinear system of five ordinary differential equations

dN1

dt
= µ1g1(C, P)N1 − qN1, (1)

dN2

dt
= µ2g2(C, P)N2 − qN2, (2)

dC
dt

= γN1

(
1− C

k1

)
+ δN2

(
1− C

k2

)
+ q (C0 − C) , (3)

dP
dt

= ρC
(

1− P
k11

)
− κθN2M + q(P0 − P), (4)

dM
dt

= −θN2M + q (M0 −M) . (5)

In (1) and (2) the constants µ1 > 0, µ2 > 0 are the maximum specific growth rates of
L. monocytogenes and L. lactis. In (3), the constants k1 > 0 and k2 > 0 are the saturation levels
for lactic acid production and γ > 0 and δ > 0 the production rates. Similarly in (4), parameter k11 > 0
is the saturation level for production of P and ρ > 0 the production rate. Constant θ > 0 is the rate at
which malate is decayed by L. lactis, while the rate of decay of P in this process is given by κθ > 0.

The growth functions g1(C, P) of L. monocytogenes and g2(C, P) of L. lactis are defined by minimal
inhibitory concentrations (MIC) for growth and metabolism. In [2], based on the earlier work [14],
the following piecewise linear functions are suggested for non-negative arguments

g1(C, P) = min
{

1− C
H1(C)

, 1− P
H2(P)

}

and

g2(C, P) = min
{

1− C
H3(C)

, 1− P
H4(P)

}
.

The coefficient functions Hi are the piecewise linear functions

H1(C) = k7 ∗ H(k7 − C) + C ∗ H(C− k7) ∗ H(k8 − C) + k8 ∗ H(C− k8)

H2(P) = k9 ∗ H(k9 − P) + P ∗ H(P− k9) ∗ H(k10 − P) + k10 ∗ H(P− k10)

H3(C) = k3 ∗ H(k3 − C) + C ∗ H(C− k3) ∗ H(k4 − C) + k4 ∗ H(C− k4)

H4(P) = k5 ∗ H(k5 − P) + P ∗ H(P− k5) ∗ H(k6 − P) + k6 ∗ H(P− k6),

where
0 < k3 < k4, 0 < k5 < k6, 0 < k7 < k8, 0 < k9 < k10.

Here the function H is defined by

H(x) =





1, if x > 0,
1
2 if x = 0,
0, if x < 0.

These growth functions are sketched in Figure 1. Since L. lactis is more tolerant to high values of
C and P than L. monytogenes, we may assume that g1(C, P) ≤ g2(C, P). Furthermore we may assume
that the saturation levels for production of C and P are in the decay range,

k1 > k8, k2 > k4, k11 > max{k6, k10} (6)

The piecewise definition of the reaction kinetics is unusual in the context of Mathematical
Biology in general and microbial growth modeling in particular, where normally sufficiently smooth
response functions are the assumed. However, because these functional descriptions, along with
quantitative parameters were identified from experiments [2,14], we chose to use them as reported in
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the experimental literature, rather than mollifying them for mathematical convenience, even if this
comes at the expense of increased algebraic complexity.

Version August 24, 2016 submitted to Foods 6 of 25

 0
 2 4 6

 8 10 12  0  0.02  0.04  0.06  0.08  0.1

-0.5

 0

 0.5

 1
g1(C,P)
g2(C,P

C

P

Figure 1. Piecewise linear, continuous net growth rate gi(C, P ): The population grows,
g > 0, for small values of C and P and decays, g < 0, if either C or P becomes large; the
region in between marks the neutral, stationary phase.
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Figure 1. Piecewise linear, continuous net growth rate gi(C, P): The population grows, g > 0, for small
values of C and P and decays, g < 0, if either C or P becomes large; the region in between marks the
neutral, stationary phase.

The right hand side of our model (1)–(5) is continuous but not everywhere differentiable, due to
the piecewise definition of g1(C, P) and g2(C, P). However, the one-sided derivatives of g1(C, P)
and g2(C, P) exist and are bounded from below by negative numbers that depend on ki, i = 3, ..., 10
(note that g1,2(C, P) are monotonously decreasing functions). In particular we have, because of
g1(C, P) ≤ g2(C, P), that

max
∣∣∣∣
∂g1(C, P)

∂C

∣∣∣∣ = max
{

1
k7

,
1
k8

}
=

1
k7

,

max
∣∣∣∣
∂g1(C, P)

∂P

∣∣∣∣ = max
{

1
k10

,
1
k9

}
=

1
k9

,

max
∣∣∣∣
∂g2(C, P)

∂C

∣∣∣∣ = max
{

1
k3

,
1
k4

}
=

1
k3

,

max
∣∣∣∣
∂g2(C, P)

∂P

∣∣∣∣ = max
{

1
k5

,
1
k6

}
=

1
k5

.

Thus a Lipschitz constant can be found such that (1)–(5) satisfies a Lipschitz condition,
which guarantees unique solutions to the initial value problem. These solutions are continuous
and at least once differentiable.

Proposition 1. The solutions to (1)–(5) with non-negative initial data are bounded from above and C, N1, N2, M
remain non-negative.

Proof. First we remark, by comparison with the trivial solution N(t) ≡ 0 of (1) and (2), that the
bacterial population sizes N1(t) and N2(t) are non-negative.

From (5) it follows max{M(0), M0} ≥ M(t) ≥ 0 by comparison, because N2 ≥ 0.
Let C̄ := max{k1, k2, C0}. Then it follows from (3), because of N1 ≥ 0, N2 ≥ 0, and again by

comparison that C(t) ≤ C0. Similarly, let Ĉ := min{k1, k2, C0, C(0)} to obtain C(t) ≥ Ĉ; moreover,
min{k1, k2, C0} ≤ C(t) ≤ max{k1, k2, C0} for all sufficiently large t.

From (4) it follows by comparison with P̄ := max{k11, P0} that P̄ ≥ P(t).
Thus we have established that g1(C, P) ≥ g1(C̄, P̄) and g2(C, P) ≥ g2(C̄, P̄). This allows us

to improve our lower estimates on the population sizes N1(t) ≥ N1(0)e(µ1g1(C̄,P̄)−q)t and N2(t) ≥
N2(0)e(µ1g1(C̄,P̄)−q)t. More important, however, is that due to (6) we have g1(C̄, P̄) < 0 and g2(C̄, P̄) < 0,
which implies that N1 and N2 are bounded form above. To see this, we assume that this statement
does not hold for one of them, say we assume that N1 → ∞ (the same line of argumentation applies
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to N2). Then due to (3), C → k1. Due to (6), this would imply that N1 is eventually declining,
which is a contradiction to our assumption. Because of continuity this means that N1 has a maximum,
i.e., is bounded.

Remark 1. The non-negativity of P cannot be established with standard arguments without additional
restrictions on parameters. Indeed, one can construct non-negative initial data such that P becomes negative.
This situation obviously marks a breakdown of the model. Recall, however, that P → 0 means pH → ∞,
wherefore for practical purposes this break down is not relevant. In none of the numerous simulations that we
ran for our study did this breakdown situation occur or did solutions come close to this breakdown situation.

The mathematical theory of competition in the chemostat and related laboratory devices, such as
gradostats, is well understood [21]. However, the underlying mathematical machinery makes heavy
use of certain close relationships between bacterial growth rates and rates of substrate consumptions,
which do not hold for the biocontrol model (1)–(5). Therefore, the mathematical results from traditional
chemostat analysis cannot be carried over in a straightforward manner.

The model (1)–(5) is a five-dimensional nonlinear autonomous system of differential equations.
For all practical purposes models of this type are typically difficult to study with the qualitative
methods of dynamics systems theory if they do not have certain useful properties, such as
quasi-monotonicity etc. Moreover, our model has 21 parameters, which could be somewhat reduced
by 4 after non-dimensionalization. Furthermore, because of the piecewise definition of g1(C, P),
g2(C, P), the Jacobian is only piecewise defined and only for C 6= k3,4,7,8 and P 6= k5,6,9,10. A rigorous
mathematical analysis would require us to distinguish between a multitude of cases, depending on
parameters. The resulting algebraic expressions will be too complex to lend themselves to biologically
insightful results. Instead, we will embark on studying the model behavior with a mix of analytical
arguments and computational techniques.

In [2] a complete set of reaction parameters is given, that was derived from laboratory experiments
and model simulations of the competitive growth of L. monocytogenes and L. lactis in vegetable broth.
We will use these data in all our simulations. They are summarized in Table 1. Note that the less
tolerant pathogen grows faster than the control agent, µ2 > µ1. This leaves us with four unknown
parameters that were introduced by the chemostat description, flow rate q and the bulk concentrations
C0, P0, M0. In our studies we pick the latter to be M0 = 4mM, and explore the system behavior with
respect to the remaining parameters q, C0, P0.

We assume for our simulations that the reactor is initially filled with the same liquid that is used
as bulk liquid. This fixes the initial data

C(0) = C0, P(0) = P0, M(0) = M0. (7)

Table 1. Reaction parameters used in this study, from [2].

Parameter Symbol Unit L. lactis L. monocytogenes

Specific growth rate µ2, µ1 h−1 0.1049 0.1471
Protonated acid production rate δ, γ Milimoles CFU−1·h−1 1.7 * 10−10 2.95 * 10−10

MIC acid (growth) k3, k7 Milimolar 5.2 4.058
MIC acid (metabolism) k4, k8 Milimolar 8.907 8.908
Maximum acid concentration k1, k2 Milimolar 11.5 11.65
MIC proton ion (growth) k5, k9 Milimolar 10−1.405 10−1.892

MIC proton ion (metabolism) k6, k10 Milimolar 10−1.147 10−1.151

Maximum proton ion concentration k11 Milimolar 10−1.12 10−1.132

Malate decay rate θ Milimole CFU−1·h−1 1.69 * 10−10 0
Malate utilization rate κ Milimole−1 10−5.33 10−5.33

proton concentration change rate ρ Moles CFU−1·h−1 10−5.472 10−5.472
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3. Analysis of the Single Species Pathogen Sub-Model

Before we study the complete dual-species model, in order to gain a better insight into self-limiting
growth behavior, we study a simpler single species model, namely system (1)–(5) for N2(0) = 0. This is
the model for the uncontrolled pathogen. It is easy to verify that then N2(t) ≡ 0 for all t > 0 and the
model reduces to

dN1

dt
= µ1g1(C, P)N1 − qN1, (8)

dC
dt

= γN1

(
1− C

k1

)
+ q(C0 − C), (9)

dP
dt

= ρC
(

1− P
k11

)
+ q(P0 − P). (10)

In order to investigate whether species N1 persists or dies out, we investigate the stability of
the equilibrium

N1
∗ = 0, C∗ = C0, P∗ =

ρC0 + qP0
ρC0
k11

+ q
. (11)

The Jacobian in this point is obtained as the triangular matrix

J∗ =




µ1g1(C0, P∗)− q 0 0

γ
(

1− C∗
k1

)
−q 0

0 q(k11−P0)
ρC0+qk11

−
(

ρC0
k11

+ q
)


 .

The last two eigenvalues λ2 = −q and λ3 = −
(

ρC0
k11

+ q
)

are always negative. The sign of the
first eigenvalue λ1 = µ1g1(C∗, P∗) − q depends on the model parameters. We note that for large
enough flow rates q the steady state value P∗ converges to the bulk concentration P0, while for small
q it converges to the saturation concentration k11. For realistic parameters we have g(C0, k11) < 0,
i.e., we expect for small enough q that λ1 < 0, i.e., the population dies out due to self inhibition at high
P values. On the other hand, the concentrations C0 and P0 in the growth medium are usually small
enough that g(C0, P0) > 0. Thus for high enough flow rates the population dies out due to washout.

This can be formulated more precisely by substituting P∗ into λ1, which leads to the following
quadratic inequality for the persistence of species N1

k11

(
q
µ

)2
+

q
µ

(
ρC0

µ
− k11 +

k11

k9
P0

)
+

ρC0

µ

(
k11

k9
− 1
)
< 0.

From this we find that λ1 is positive if

q1 :=
ρC0

µk11

(
k11

k9
− 1
)
< q < µg1(C0, P0) =: q2, (12)

and negative if one of the inequalities is reversed.
In Figure 2 we show simulations of (8)–(10), using the parameters from Table 1. The bulk

concentration P0 = 10−5 and C0 = 0.1 were chosen small enough to permit growth of the bacteria
under ideal conditions. The initial conditions for C and P were chosen as the bulk concentration
values, for N1(0) we chose 107 CFU/mL. The simulations were conducted for various flow rates q,
ranging from q = 0.00014 to q = 0.15. For the highest of these values q > q2, whence (12) predicts
washout, for the smallest value q < q1, whence (12) predicts extinction due to self-inhibition.

This is confirmed in the top panel of Figure 2. For the largest flow rate, the flow dominates growth
and the population size N1(t) decreases monotonically. On the other hand, for the smallest flow rate,
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the population initially grows, reaches a plateau and then eventually dies out. This is explained by
the bottom panel of Figure 2. For the highest flow rate, C, P remain in the growth region throughout,
but growth is dominated by washout. For the smallest flow rate, however, we notice that initially both
C and P increase as a consequence of bacterial activity. They first reach and pass through the neutral
range and then, as C continues to be produced, reach the decay range. Eventually, when N1 is small
enough, the second term in (9) dominates over the first one and C declines. After some time also P
starts to decline and the system converges to the equilibrium (11) with g1(C0, P∗) = 0.
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Figure 2. Simulation of the single species model (8)–(10) for various flow rates q. Top panel:
population size N1(t); Bottom panel: lactic acid concentration C(t) and hydrogen ion concentration
P(t) in the C-P-plane. The vertical and horizontal lines at C = k7 and C = k8 and P = k9 and P = k10

mark the transition from growth to neutral to decay regimes.
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The behaviour for intermittent values of the flow rate q1 < q < q2 can vary. In all tested
cases, the population establishes itself, often after passing through a brief oscillatory phase which
occurs when C, P reach the decay range first and then return to growth range as a consequence of
a declining bacterial population. The longterm behavior in these simulations is independent of the
initial concentration for N1, although the transients might change.

The case q = 0.0002 requires some additional explanation. The criterion (12) predicts that the
population will eventually establish itself. This is also confirmed in Figure 2. The population increases
first, reaches a plateau, decreases, then increases again and starts oscillating, due to C and P oscillating
between the growth and decay stage. For all practical purposes, however, we point out that at around
t = 1000 the population drops down to 10 CFU/mL, i.e., to a level where the description of the
bacterial population by a continuous variable breaks down. Thus, while the numerical simulation
confirms the theoretical analysis, the model is not valid anymore, and does not allow a conclusion
whether the theoretical result is rigorous from a practical point of view.

4. Numerical Experiments for the Complete Dual Species Biocontrol Model

4.1. Batch Cultures

We start with a simple simulation experiment of batch cultures, i.e., the special case q = 0 of
our model (1)–(5). This is the case that was originally studied in [2]. We will investigate in a simple
simulation experiment how adding the control agent L. lactis to the batch culture initially will affect
the eradication of the pathogen L. monocytogenes.

A typical simulation is shown in Figure 3 for initial values

N1(0) = N2(0) = 107 CFU/mL,

C(0) = C0 = 0.1 mM, P(0) = P0 = 0.0001 mM, M(0) = 4 mM.

The bacterial growth curves show the typical three stages, a growth phase initially, followed
by a stationary phase, and then the decay phase [5]. Since in these simulations q = 0, malate is not
replenished. Therefore, M is continuously decreasing and eventually vanishes. On the other hand, the
concentrations of lactic acids C and of hydrogen ions P increase continuously due to production, and in
the absence of washout. Production of lactic acids slows down as the populations vanish and C reaches
a plateau at saturation concentration level. Similarly, pH (i.e., P) reaches a stationary value eventually.

In a simple numerical experiment we investigate how the initial bacterial count of the control
agent L. lactis affects the decay of the pathogen L. monocytogenes. To this end, we keep the initial data
for N1, C, P, M the same as in the previous simulations,

N1(0) = 107 CFU/mL, C(0) = C0 = 0.1 mM,

P(0) = P0 = 0.0001 mM, M(0) = 4 mM,

but vary N2(0) to be
N2(0) = kN1(0) = k · 107

for different values k = 0, 1, 2, 4, 8, 16, 32. We measure in our simulations the decay time td for N1,
which we define as the first time at which the population size N1 falls below one percent of its initial
value, i.e.,

td = min
{

t > 0 : N1(t) ≤ 0.01N1(0)
}

.

In Figure 4 we plot the population size N1(t) of the pathogen for different amounts of control
agent, as well as td as a function of the initial population size of the biocontrol agent. While we see
the growth, stationary and decay phase in all simulations, it is of particular interest that the duration
of the stationary phase seems to be not simply correlated with the initial amount of control agent.
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For example, for both k = 0 and k = 2 we observe slightly longer stationary phases than for k = 1.
The onset of the stationary phase, however, happens slightly earlier for higher initial populations of
control agents, and the population level of the stationary phase clearly decreases as the initial number
of control agents increases. Thus in order to keep the pathogen cell count below a certain value above
initial conditions, a sufficiently high number of control agents can be added. The latter two results
confirm what one might expect intuitively.Version August 24, 2016 submitted to Foods 11 of 25
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Figure 3. Simulation of (1)-(5) with q = 0 and N1(0) = N2(0) = 107 CFU/ml, C(0) =

C0 = 0.1mM , P (0) = P0 = 0.0001mM and M(0) = 4mM .
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(k = 0, 1, 2, 4). In the right figure the decay time td for L. monocytogenes is plotted for
different initial population sizes of L. lactis (k = 1, 2, 4, 8, 16, 32).

Characteristic for the chemostat setup is that the bacterial populations wash out if the flow rate q

exceeds the growth rates, independent of the initial bacterial concentration. This is expressed by the
asymptotic stability of the trivial steady state, which for our system is obtained as
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with
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ρC0 + qP0

ρC0

k11
+ q

, M∗ = M0,

where again for small enough q we find P ∗ ≈ k11 and for large q we have P ∗ ≈ P0. For complete
washout to occur, we require in extension of the single species model above that

q > µ1g1(C
∗, P ∗) and q > µ2g2(C

∗, P ∗).

Indeed, the sign pattern of the Jacobian in this equilibrium point is then

J(E0) =
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,

which implies asymptotic stability of E0. Note that this is in particular true for q > q∞ := max{µ1, µ2},
due to the monotonicity of g1(C, P ) and g2(C, P ). Therefore, we can restrict ourselves to

0 ≤ q ≤ q∞. (14)

The results of three simulations of (1)-(5) with C0 = 0.1mM,P0 = 0.00001mM and different values246

for the flow rate q are shown in Figures 5, 6 and 7.247

Figure 4. Simulation of model (1)–(5) with q = 0, for initial data N1(0) = 107 CFU/mL,
N2(0) = k ∗ 107 CFU/mL, C(0) = 0.1 mM, P(0) = 0.0001 mM, M(0) = 4 mM. The initial amount of
control agent is varied by picking different values for k. The left plot shows the population size of
L. monocytogenes for different initial population sizes of L. lactis (k = 0, 1, 2, 4). In the right figure
the decay time td for L. monocytogenes is plotted for different initial population sizes of L. lactis
(k = 1, 2, 4, 8, 16, 32).

Similarly, increasing the number of control agents initially accelerates eradication of the pathogen,
as expected. However, the stopping time does not decrease proportionally with the increase in the
initial count of control agents. In fact doubling the number of control agents leads to a decrease
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in stopping time of less than 10%. Different choices of initial data for N1 lead to qualitatively
similar results.

4.2. Longterm Behavior of the Full Chemostat Model

As previously discussed, with the parameters in Table 1 and the assumptions on initial
conditions (7), along with

N1(0) = N2(0) = 107 CFU/mL

and M0 = 4 mM, we are left with three free parameters that can determine the behavior of the solutions
of model (1)–(5), namely C0, P0, q. Since our focus will be on survival and persistence of bacterial
populations in the chemostat, we can restrict the ranges of C0 and P0 to the range where both species
can grow, in order to avoid a trivial outcome. Thus

0 ≤ C0 ≤ k3, 0 ≤ P ≤ k5. (13)

Characteristic for the chemostat setup is that the bacterial populations wash out if the flow rate q
exceeds the growth rates, independent of the initial bacterial concentration. This is expressed by the
asymptotic stability of the trivial steady state, which for our system is obtained as

E0 = (0, 0, C∗, P∗, M∗)

with
C∗ = C0, P∗ =

ρC0 + qP0
ρC0
k11

+ q
, M∗ = M0,

where again for small enough q we find P∗ ≈ k11 and for large q we have P∗ ≈ P0. For complete
washout to occur, we require in extension of the single species model above that

q > µ1g1(C∗, P∗) and q > µ2g2(C∗, P∗).

Indeed, the sign pattern of the Jacobian in this equilibrium point is then

J(E0) =




− 0 0 0 0
0 − 0 0 0
+ + − 0 0
0 − + − 0
0 − 0 0 −




,

which implies asymptotic stability of E0. Note that this is in particular true for q > q∞ := max{µ1, µ2},
due to the monotonicity of g1(C, P) and g2(C, P). Therefore, we can restrict ourselves to

0 ≤ q ≤ q∞. (14)

The results of three simulations of (1)–(5) with C0 = 0.1 mM, P0 = 0.00001 mM and different
values for the flow rate q are shown in Figures 5–7.

In Figure 5, the flow rate q is smaller than q∞ but bigger than the growth rates at equilibrium
concentrations, µ1g1(C∗, P∗) and µ2g2(C∗, P∗). Thus, q is big enough to induce washout of both
species. N1(t) and N2(t) are strictly decreasing functions and equilibrium E0 is attained. The malate
concentration decreases first, while sufficient N2 is in the system for degradation but then goes back to
M0 due to replenishment. Both P and C first increase due to production by the bacteria and then drop
to their equilibrium values when the bacterial populations vanish.
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Initially growth conditions are favorable for both species, which leads to growth of N1 and N2, implying
an increase of C and P , as well as a drop in M . While L. lactis is more tolerant than L. monocytogenes,
it also has a smaller maximum growth rate, µ2 < µ1. Thus, eventually, the actual growth rate µ2g(C, P )

of the control agent, while still positive, drops below the dilution rate q due to growth in C and P and
N2 dies out. After the extinction of N2, the malate concentration goes back to its bulk value. The system
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E1 = (N∗
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C∗ =

qC0 + δN∗
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δN∗
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Figure 5. Simulation of model (1)–(5), with C0 = 0.1mM, P0 = 0.00001mM and q = 0.13. Note that
q < q∞ but q > µ1,2g1,2(C∗, P∗).

In Figure 6, the flow rate is decreased to q = 0.08, i.e., it is smaller than both maximum growth
rates. Initially growth conditions are favorable for both species, which leads to growth of N1 and
N2, implying an increase of C and P, as well as a drop in M. While L. lactis is more tolerant than
L. monocytogenes, it also has a smaller maximum growth rate, µ2 < µ1. Thus, eventually, the actual
growth rate µ2g(C, P) of the control agent, while still positive, drops below the dilution rate q due to
growth in C and P and N2 dies out. After the extinction of N2, the malate concentration goes back to
its bulk value. The system eventually attains a steady state of type

E1 = (N∗1 , 0, C∗, P∗, M0),

with

C∗ =
qC0 + δN∗1

δN∗1
k2

+ q
, P∗ =

ρC∗ + qP0
ρC∗
k11

+ q
.

Thus, the less tolerant but faster growing pathogen survives. In Figure 7 the flow rate is further
decreased to q = 0.04. Again, initially both populations begin to grow. Compared to the previous case
in Figure 6, the population sizes reach higher level and accordingly also C and P grow faster. Hence,
the growth conditions become more unfavorable and lead to the extinction of the less tolerant pathogen
L. monocytogenes, while the more tolerant control agent L. lactis has the opportunity to establish itself,
despite its lower growth rate but due to the also lower flow rate. With N2 taking a plateau, the malate
concentration declines. Eventually the system reaches an equilibrium of the form

E2 = (0, N∗2 , C∗, P∗, M∗),

with
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C∗ =
qC0 + γN∗2

γN∗2
k1

+ q
, P∗ =

−κθN∗2 M∗ + ρC∗ + qP0
ρC∗
k11

+ q
, M∗ =

qM0

θN∗2 + q
.

Thus, the control agent inhibits the establishment of the pathogen.
Version August 24, 2016 submitted to Foods 15 of 25
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Figure 6. Simulation of model (1)-(5), with C0 = 0.1mM,P0 = 0.00001mM and q = 0.08.

In Figure 7 the flow rate is further decreased to q = 0.04. Again, initially both populations begin to
grow. Compared to the previous case in Figure 6, the population sizes reach higher level and accordingly
also C and P grow faster. Hence, the growth conditions become more unfavorable and lead to the
extinction of the less tolerant pathogen L. monocytogenes, while the more tolerant control agent L.
lactis has the opportunity to establish itself, despite its lower growth rate but due to the also lower
flow rate. With N2 taking a plateau, the malate concentration declines. Eventually the system reaches an
equilibrium of the form

E2 = (0, N∗
2 , C

∗, P ∗,M∗),

with
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solution. Since L. lactis is more tolerant than L. monocytogenes, it does not exist if µ1 > µ2. I.e. it exists

Figure 6. Simulation of model (1)–(5), with C0 = 0.1mM, P0 = 0.00001mM and q = 0.08.
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A fourth type of steady state that is admitted by model (1)–(5) is the co-existence equilibrium in
which N∗1 > 0, and N∗2 > 0,

E3 = (N∗1 , N∗2 , C∗, P∗, M∗).

In this case
µ1g1(C∗, P∗) = µ2g2(C∗, P∗) = q. (15)

Note that this condition of two equations for two unknowns C∗, P∗ and given q does not have
a unique solution. Since L. lactis is more tolerant than L. monocytogenes, it does not exist if µ1 > µ2.
i.e., it exists at most if the less tolerant pathogen has a higher maximum growth rate than the more
tolerant control agent, µ2 > µ1 > q. If C∗, P∗ exist that satisfy (15), then there are infinitely many such
pairs, thus the calculation of C∗, P∗ can not be decoupled from the rest of the system when calculating
the equilibrium points. One obtains

C∗ =
qC0 + δN∗1 + γN∗2

δN?
1 +γN?

2
k1

+ q
, P∗ =

−κθN?
2 M? + ρC? + qP0

ρC?

k11
+ q

, M∗ =
qM0

θN?
2 + q

,

which still depend on the yet undetermined N∗1 , N∗2 . In principle, these can be determined from
plugging C∗ and P∗ into the piecewise defined equations (15), however, the resulting expression are
too unwieldy to be of practical value. The same holds for the Jacobian and its eigenvalues. Its sign
pattern is

J(E3) =




0 0 − − 0
0 0 − − 0
+ + − 0 0
0 − + − −
0 − 0 0 −




.

To the best of our knowledge no sign pattern criterion similar to those proposed in [27–29]
exists that could be applied to this matrix to reach conclusions about stability or instability.
Numerical calculations for some choices of parameters C0, P0, q indicate a positive eigenvalue,
and thus, instability.

The results in Figures 5–7 show that the flow rate q can play a crucial role in (1)–(5),
which is a consequence of a delicate balance between (i) replenishment of the reactor with fresh,
growth permitting medium; (ii) bacterial population dynamics, and (iii) removal of bacteria from the
reactor. Of these three, the first and last clearly are primarily controlled by q in the sense that both
effects become stronger as q increases. These results on longterm behaviour are independent of initial
bacterial counts, which however could affect transients, i.e., how quickly the equilibrium solutions
are approached.

In order to illustrate the dependency of the long term behaviour on the flow rate, we solve (1)–(5)
for q varying over the interval 0 ≤ q ≤ qmax, where qmax is chosen large enough to include washout
steady states, qmax > q∞ = max{µ1, µ2}. In Figure 8 the population sizes N∗1 and N∗2 at steady state
are plotted in dependence of q. The case q = 0 is the case that was studied in the previous Section 4.1.
As discussed there, the populations grow and induce unfavorably high concentrations of C and P
which first lead to self-inhibition and eventually to decay. This is primarily a consequence of the growth
medium not being replenished but also of the fact that active cells are not removed, which increases
C and thus P. When increasing q to a critical value q∗ ≈ 0.065, the control agent L. lactis survives
while the pathogen L. monogytogenes dies out, i.e., an equilibrium of type E2 is reached. Initially the
steady state population size of the control agent N∗2 increases until q ≈ 0.04. This is primarily a
consequence of increasing the flow rate at which fresh medium is replenished, i.e., controlled by (i).
With the increasing population size also C and P increase; only if q becomes large enough to contribute
considerably to the washout of the L. lactis the steady state population size decreases again. Thus, for
q > 0.04 the longterm behavior is dominated by (iii). As q passes through q∗, the more tolerant but
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slower growing control agent is not viable anymore; the growth rate µ2g2(C∗, P∗) falls below q and the
control agent is washed out. This allows the less tolerant but faster growing pathogen N1 to establish
itself as long as µ1, g1(C∗, P∗) > q, i.e., an equilibrium of type E1 is attained. Note that also C∗ and
P∗ change with q. Hence, (iii) is stronger than (i). However, due to the dominance of (iii), increasing
q further leads to decreasing steady state populations N∗1 , until complete washout occurs and both
populations die out and an equilibrium of type E0 is reached. Equilibria of type E3 are never attained
in our simulations. For the transition case from E1 to E2 the eigenvalues of E3 were computed and it
was found that one of them is positive,i.e., E3 is unstable.Version August 24, 2016 submitted to Foods 18 of 25
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Figure 8. Population sizes N∗1 and N∗2 at steady state for model (1)–(5) for varying flow rate q and
C0 = 0.1mM, P0 = 0.00001mM.

So far all computations were carried out for more or less arbitrarily fixed small model parameters
C0 and P0. These bulk concentrations of the growth inhibitors were chosen small enough so that it
can be anticipated that bacterial communities can establish themselves. The calculations above show
that the steady state values explicitly depend on C0 and P0. Therefore, in order to investigate whether
the behavior seen in Figure 8 is generally observable, we repeat the simulations for various bulk
concentration values. To this end the region given by 0 ≤ C0 ≤ k3 and 0 ≤ P0 ≤ k5 is discretized by a
regular grid of dimension 39× 37 and for each point (C0, P0) on this grid the model was solved for
48 different values of q between 0 < q ≤ qmax. Thus in total, model (1)–(5) was solved 69,264 times for
different parameter combinations of C0, P0, q. In Figure 9 the steady state population sizes N∗1 and N∗2
that are reached in these simulations are visualized. The values N∗1 for the pathogen L. monocytogenes
are color coded using a yellow-green map, while the values N∗2 for the control agent L. lactis are color
coded in a blue-scale color map. The behavior that was seen in Figure 8 is only obtained for relatively
small values of C0 and P0: for small values of q the control agent survives while the pathogen cannot
establish itself. After q passes through a critical value q∗, which depends on C0 and P0, the control
agent is washed out and the pathogen can establish itself until q is finally large enough to wash it
out, too. Note that the washout value for q also depends on C0, and P0. If C0 and P0 are chosen larger,
the environmental conditions are too unwieldy for the pathogen to survive. For small flow rates
the more tolerant control agent can establish itself but it is washed out if q becomes large. The less
favorable the bulk conditions are, the smaller is the minimum flow rate that induces washout.
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Figure 9. Exploration of the three dimensional parameter space q (x-axis), C0 (y-axis), P0

(z-axis). Shown are the sizes of the microbial populations N1 and N2 at steady state (4
different views of the same simulation data set).

Figure 9. Exploration of the three dimensional parameter space q (x-axis), C0 (y-axis), P0 (z-axis).
Shown are the sizes of the microbial populations N1 and N2 at steady state (4 different views of the
same simulation data set).

4.3. Continuously Adding Control Agents to Eradicate the Pathogens

The question arises naturally whether the addition of control agents to the system will enable a
quicker eradication of the pathogen. To study this question, the model (1)–(5) is slightly modified by
adding a supply term to (2). We obtain

dN1

dt
= µ1g1(C, P)N1 − qN1 (16)

dN2

dt
= µ2g2(C, P)N2 + q(N0

2 − N2) (17)

dC
dt

= γN1

(
1− C

k1

)
+ δN2

(
1− C

k2

)
+ q(C0 − C) (18)

dP
dt

= ρC
(

1− P
k11

)
− κθN2M + q(P0 − P) (19)

dM
dt

= −θN2M + q(M0 −M), (20)

where the new parameter N0
2 is the amount of control agents added continuously to the system.

The rigorous qualitative analysis of this model is as cumbersome and impractical as it was for the
original model (1)–(5). Therefore, we will restrict ourselves a priori to a computational study and
report here the results. The interesting question is how the dosage amount N0

2 affects eradication times
of N1.

Again we carry out the simulations for the case C0 = 0.1 mM, P0 = 0.00001 mM as above,
but vary q. First we note that the longterm behavior can depend on both q and N0

2 . For small q < q∗,
the pathogen could not establish itself even in the absence of control agents being added, and this is of
course what one expects and finds in the new simulations, cf. Figure 10a. For flow rates q > q∗ the
long term behavior depends on N0

2 and q∗. For small values of N0
2 coexistence of pathogen and control

agent can be observed, see Figure 10b. This corresponds to the previous case where the pathogen only
survived. If the value of N0

2 is sufficiently increased, the pathogen dies completely out, cf. Figure 10c,
i.e., it can be controlled.
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In Figure 10d finally we plot the eradication time td as a function of N0
2 for four different flow rates

q > q∗. We notice that continuously adding a constant amount of control agents becomes more effective
the higher the flow rate q, in the sense that for the lowest flow rate the eradication time reduces by
approximately 20% while for the highest flow velocity it decreases by approximately 47% if the dosage
is increased from the initial population N2(0) to twice its value 2N2(0). Moreover, the simulations
indicate that increasing the dosage more, to values greater than 2N2(0) will not lead to considerably
shorter eradication times. Eradication times will quantitatively be different for different initial values
of N1 but qualitatively these findings carry over. In applications one will try to balance the dosage
between as high as necessary to see the desired effect and to keep it as low as possible, for reasons
of process performance, economical cost and to avoid negative microbial side effects that might be
introduced by the control agent. The latter could be aspects of microbial food safety in the context of
food preservation or texture in the context of functional foods where such a control mechanism could
be used, e.g., as probiotics in dairy products.
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Figure 10. Population dynamics for the control model (16)-(20) with continuously added
control agents. For (a) small values of q < q∗, and values q > q∗ for (b) small and (c) larger
amount of control agents added. In (d) eradication time is plotted as a function of the dosage
value of the control agent N0

2 for various q > q∗.

Figure 10. Population dynamics for the control model (16)–(20) with continuously added control agents.
For (a) small values of q < q∗; and values q > q∗ for (b) small and (c) larger amount of control agents
added; In (d) eradication time is plotted as a function of the dosage value of the control agent N0

2 for
various q > q∗.

5. Conclusions

Compared to mathematical models of batch cultures, the chemostat setting has the advantage
that it allows a focus on the method of interaction between species, minimizing the effect of the initial
population sizes. The well established mathematical theory of the chemostat [21] applies in the first
place to systems of microbial competition for common but limited resources. While its qualitative
results are powerful and can be considered one of the greatest success stories in Mathematical
Biology, they are based on certain functional relationships between bacterial growth terms and
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substrate consumption terms. However, mathematical models of microbial co-culture systems that
are based on other ecological interactions than competition for foods may not have these properties.
Therefore, the general theory of the chemostat usually cannot be readily applied and each such
system must be studied individually, cf. [20,22–24,30]. This is also the case for the amensalistic
biopreservation model for the control of the foodborne pathogen L. monocytogenes by the lactic acid
bacteria L. lactis that is studied in this paper for nutrient rich environments where competition
between both species for nutrients is not growth limiting. Due to the algebraic complexity of the
five-dimensional system of ordinary differential equations with 21 parameters, it was necessary to
conduct the model study computationally.

Our simulations imply that the persistence of the pathogen depends on the characteristics of the
growth medium and on the dilution rate. In order for the pathogen to persist, the concentrations of the
detrimental substances must be low enough to allow for bacterial growth and the flow rate must be
small enough to not washout the cells before they can reproduce. Only in an intermediate range of the
flow rate the pathogen can survive. This is due to the more tolerant but slower growing control agent
being washed out of the system in this regime. At lower flow rates the pathogen is crowded out by
the control agent which is generally regarded as safe for humans. This amensalistic control effectively
enhances and accelerates the self-inhibition that we observe in the uncontrolled system. At higher
flow velocities, both species are washed out. In practical applications one might not have unhindered
control over flow rate and growth medium. In such a case eradication of the pathogen can be achieved
by adding control agents to the system. Our analysis of the uncontrolled pathogenic system implies,
however, that the overall longterm behavior as briefly described here is actually the result of the
intricate interplay of self-inhibition, amensalism, and reactor conditions. In situations where nutrients
become limited, these results might change because, depending on parameters, competition and
amensalism may affect the dynamics between both species in opposite direction.

To the best of our knowledge this is the first study of this pH based amensalistic biopreservation
mechanism. The model that we study here is somewhat idealized in the sense that it considers
a completely mixed culture in the chemostat. While this is achievable in laboratory experiments,
and while this is a reasonably good approximation of some bioreactors, many bacteria, including the
pathogen L. monocytogenes that we consider in our study, in fact grow as bacterial biofilms,
i.e., as spatially structured bacterial populations attached to a surface. While the biocontrol mechanism
can be formulated in the biofilm context [31–34], such biofilm models presently cannot be upscaled to
the reactor scale but only studied on the meso-scopic biofilm scale.

While out study was cast for L. monocytogenes and L. lactis and while we used functions of
interaction and model parameters from the literaure specific to these two species, the qualitative results
may apply to amensalistic systems more generally.
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