
Citation: Lorenzo, N.D.; da Rocha,

R.A.; Papaioannou, E.H.; Mutz, Y.S.;

Tessaro, L.L.G.; Nunes, C.A.

Feasibility of Using a Cheap Colour

Sensor to Detect Blends of Vegetable

Oils in Avocado Oil. Foods 2024, 13,

572. https://doi.org/10.3390/

foods13040572

Academic Editor: Charis R

Theocharis

Received: 28 December 2023

Revised: 9 February 2024

Accepted: 12 February 2024

Published: 14 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Feasibility of Using a Cheap Colour Sensor to Detect Blends
of Vegetable Oils in Avocado Oil
Natasha D. Lorenzo 1, Roney A. da Rocha 2, Emmanouil H. Papaioannou 3 , Yhan S. Mutz 2,
Leticia L. G. Tessaro 1 and Cleiton A. Nunes 2,*

1 Department of Chemistry, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, MG, Brazil;
natasha.lorenzo@estudante.ufla.br (N.D.L.); leletessaro@hotmail.com (L.L.G.T.)

2 Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, MG, Brazil;
roney.rocha@ufla.br (R.A.d.R.); yhan.mutz@gmail.com (Y.S.M.)

3 School of Engineering, Lancaster University, Lancaster LA1 4YW, UK; e.papaioannou@lancaster.ac.uk
* Correspondence: cleiton.nunes@ufla.br

Abstract: This proof-of-concept study explored the use of an RGB colour sensor to identify different
blends of vegetable oils in avocado oil. The main aim of this work was to distinguish avocado
oil from its blends with canola, sunflower, corn, olive, and soybean oils. The study involved RGB
measurements conducted using two different light sources: UV (395 nm) and white light. Classi-
fication methods, such as Linear Discriminant Analysis (LDA) and Least Squares Support Vector
Machine (LS-SVM), were employed for detecting the blends. The LS-SVM model exhibited superior
classification performance under white light, with an accuracy exceeding 90%, thus demonstrating a
robust prediction capability without evidence of random adjustments. A quantitative approach was
followed as well, employing Multiple Linear Regression (MLR) and LS-SVM, for the quantification of
each vegetable oil in the blends. The LS-SVM model consistently achieved good performance (R2

> 0.9) in all examined cases, both for internal and external validation. Additionally, under white
light, LS-SVM models yielded root mean square errors (RMSE) between 1.17–3.07%, indicating a high
accuracy in blend prediction. The method proved to be rapid and cost-effective, without the necessity
of any sample pretreatment. These findings highlight the feasibility of a cost-effective colour sensor
in identifying avocado oil blended with other oils, such as canola, sunflower, corn, olive, and soybean
oils, suggesting its potential as a low-cost and efficient alternative for on-site oil analysis.

Keywords: colour; classification; RGB; authentication; chemometrics

1. Introduction

The production of avocado oil has been steadily increasing due to its recognised health
benefits, attributed to a high concentration of unsaturated fatty acids, specifically, oleic acid.
Recent comparative studies have been conducted to provide qualitative and quantitative
evidence of the nutritional value of avocado oil in respect to olive oil [1]. Avocado oil has
been associated with the potential lower risk of chronic degenerative illnesses [2]. As a
result, both avocado and olive oils are esteemed as premium delicacies due to their health
benefits and are categorised as high-quality oils of considerable value. These benefits justify
their popularity in the culinary world.

Due to their premium pricing, extra virgin oils are susceptible to fraudulent practices.
Notably, avocado oils have been a central point of various studies investigating adulteration,
blend quantification, and geographical provenance [3–5]. On the other hand, mixing
different oils is acceptable if appropriately labelled, ensuring compliance with legislation
and facilitating inspection to validate the accuracy of the label information.

Despite the analytical performance of methods commonly used to assess oil quality,
especially chromatographic and spectroscopic methods [3], they are costly and necessitate
trained analysts and specialised equipment. These analyses are time intensive, involve
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many preparatory steps and the use of chemicals, generate chemical waste, and are energy
intensive [4]. Additionally, on-site analysis is often impeded due to the utilities required,
and the size and the stationary nature of equipment. Therefore, the agro-food industry
urges user-friendly, cost-effective, portable, non-destructive, powerful, rapid, and in-line-
applicable equipment to ensure food quality and safety.

The demand for cutting-edge analytical tools has propelled the use of portable in-
struments of vibrational spectroscopy, including infrared spectroscopy, to the forefront
of on-site quality evaluation, food authentication, and safety assurance [5,6]. The devel-
opment of portable devices has facilitated the on-site analyses without requiring costly
equipment. Similarly, alternative portable devices have been investigated for food analysis,
such as mobile cameras [4,5,7–9] and optical sensors [6,10].

Optical or colourimetric sensors have been employed to assess the quality of edible oils
and fats through the application of chemometric or machine-learning approaches. Sanjaya
et al. (2018) used a device comprising various light-emitting diodes and a light sensor
to distinguish palm oil, olive oil, sesame oil, soybean oil, and lard [11]. Furthermore, a
low-cost fluorescence sensor discriminated between olive oils of different quality levels,
namely, extra virgin olive oil, virgin olive oil, and lampante olive oil [12]. In another study,
a hyphenated photonics sensor detected fraud in extra virgin olive oil with refined and
virgin olive oils, olive-pomace olive oils, and other common edible oils [13]. Similarly, a
method based on a colourimetric sensor array was used to identify extra virgin olive oil
mixed with soybean oil and corn oil [14].

The advancements in technology, specifically in miniaturization and cost reduction,
can be leveraged to explore alternatives with potential to be scaled up for quality assurance.
In this context, a rapid and inexpensive analytical tool could be useful for assessing the
quality of avocado oils, especially for detecting mixtures with cheap oils, even in a screening
approach. Therefore, the main objective of this proof-of-concept study was to explore the
feasibility of using a low-cost colour sensor to detect the presence of soybean, canola,
corn, sunflower, and olive oils in avocado oil. This study focused on evaluating the
responsiveness of the sensor output to the presence of blends in avocado oil and its
potential to predict their proportion in the blend. Furthermore, the study explored the
more suitable modelling approach (linear or nonlinear) and the type of illuminant (white
or UV light).

2. Materials and Methods
2.1. Samples Preparation

Soybean, canola, corn, and sunflower refined oils were purchased from a local market,
while virgin avocado oil and extra virgin olive oil were obtained from local producers. All
oils were acquired within their expiration dates and stored at a temperature of 5 ◦C until
subjected to analysis.

For classification purposes, the pure avocado oil was analysed in 25 replicates. Ad-
ditionally, blends of avocado oil with 5%, 10%, 20%, 35%, and 50% of each oil (namely,
soybean, canola, corn, sunflower, and olive oil) were analysed in five replicates, resulting
in total of 125 blends (five oils × five concentrations × five replicates).

For calibration purposes, both pure avocado oil and its blends with 5% to 50% in 5%
intervals of these oils were analysed in five replicates, resulting in 55 samples for each
blend. The blending procedure involved weighing the respective oils in 4 mL glass vials
and manually agitating them for approximately 30 s. The analyses were conducted at least
4 h after sample preparation, with no visible bubbles in the oil medium.

2.2. Colour Sensor Analysis

A TCS34725 colour sensor (Texas Advanced Optoelectronic Solutions Inc., Plano, TX,
USA) was utilised to acquire digital readings of red, green, blue (RGB), and clear light (C)
values. This sensor was interfaced with an Arduino Uno, employing an integration time
of 24 milliseconds and a gain set at 1×. A sample holder was constructed using white
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ethylene-vinyl acetate (EVA) material. The samples, contained in 4 mL cuvettes, were
analysed without the use of any solvent. The analysis of the samples took place under two
distinct lighting conditions: ultraviolet light (3V, 395 nm LED) and white light from the
sensor’s light source (Figure 1). The closed sample holder ensured lighting standardisation.
Raw readings for red (R), green (G), blue (B), and clear light (C) outputs were acquired by
averaging 10 readings. Subsequently, the raw RGB values were normalised by dividing
them by the C value, resulting in the R, G, and B values used as descriptors in the models.
The sensor’s output was captured using Realterm software (version 2.0.0.70, i2cchip). The
Arduino code is available in the Supplementary Materials (File S1).
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Figure 1. Device used to read colour parameters of oils based on a TCS34725 sensor interfaced
with Arduino.

2.3. Statistical Analysis

The data analysis was explored through two main tasks: a supervised classification to
discriminate blends of different vegetable oils in avocado oil and a multivariate calibration
to predict the proportion of a specific oil blended with avocado oil. Two classification
methods were used: Linear Discriminant Analysis (LDA) and Least Squares Support Vector
Machine (LS-SVM). LDA is a technique that finds a linear combination of features that
characterises or separates two or more classes, resulting in a linear classifier [15]. LS-SVM,
widely used in classification and nonlinear function estimation, is a version of SVM that
solves linear equations instead of a quadratic programming problem. This overcomes
the major drawback of SVM, which is its higher computational burden for constrained
optimisation programming [16]. In the same way, both linear and non-linear methodologies
were used for the multivariate calibrations: Multiple Linear Regression (MLR) and LS-SVM.
The used dataset is available in the Supplementary Materials (File S2).

2.3.1. Supervised Classification

The classification task was executed using two distinct approaches: (i) a binary classi-
fication contrasting pure avocado oil against blends of avocado oil mixed with soybean,
canola, corn, sunflower, and olive oils; and (ii) a simultaneous six-class classification in-
volving pure avocado oil and each of the five oil blends. Two classification methods were
employed for this task: LDA and LS-SVM, employing a radial basis function, implemented
through the LS-SVM lab version 1.8 toolbox [17]. All computations were conducted using
Octave version 5.2.0 [18].

The dataset was partitioned into a calibration set, encompassing 70% of the total
samples, and a test set consisting of the remaining 30%, employing the Kennard-Stone
algorithm [19].

The robustness of the models was assessed using the y-randomization test, which
consists of fixing the X matrix (independent variables) and shuffling the y vector (dependent
variables, classes) to obtain new models. It is expected that the predictive performance will
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decrease as the response is truly related to its predictor, thus validating the relationship
between independent and dependent variables.

Model validation parameters encompassed Precision (PRE), Recall (REC), Accuracy
(ACU), Error rate (ERR), F1-score (F1S), and Matthews Correlation Coefficient (MCC) [20,21]
based on the total of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN):

PRE =
TP

TP + FP
× 100 (1)

REC =
TP

TP + FN
× 100 (2)

ACU =
TP + TN

TP + TN + FP + FN
× 100 (3)

ERR =
FP + FN

TP + TN + FP + FN
× 100 (4)

F1S =
2TP

2TP + FP + FN
(5)

MCC =
TP × TN − FN × FP√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)
(6)

The MCC is a reliable statistical parameter that produces a high score only if the
prediction achieves good results in all four categories of the confusion matrix (true positives,
false negatives, true negatives, and false positives), proportionally to both the number of
positive and negative elements in the dataset [22]. The MCC values can range from −1 to
+1. A value of +1 indicates a perfect prediction, 0 represents a random prediction, and
−1 indicates an inverse prediction.

2.3.2. Multivariate Calibration

Two modelling approaches were examined to predict the proportion of soybean,
canola, corn, sunflower, and olive oils blended within avocado oil: MLR and LS-SVM. All
computations were conducted using Octave version 5.2.0 [18].

The dataset was partitioned into a calibration set, encompassing 70% of the total
samples, and a test set, comprising the remaining 30%, employing the Kennard-Stone
algorithm. The adequacy of model fitting was evaluated using the determination coefficient
(R2) and the root mean squared error (RMSE) for calibration, y-randomization, and external
validation (test set).

The R2
m value was computed (Equation (7)) to ensure that the predicted values obtained

through external validation not only exhibit a strong correlation with the observed values
but also demonstrate congruency. A threshold of 0.5 was adopted as valid [23].

R2
m = R2

(
1 −

√
R2 − R2

0

)
(7)

where R2 and R2
0 represent the quadratic correlation coefficients between the actual and

predicted values, with and without the intercept, respectively.
Furthermore, the robustness of the models was examined via the y-randomization

test. The cR2
p value was computed, which accounts for the distinction between the y-

randomization R2 (R2
rand) and calibration R2 (R2

cal) (Equation (8)). A cR2
p > 0.5 was estab-

lished to attest to the absence of overfitting or random adjustment [23].

cR2
p = R2

cal

(√
R2

cal − R2
rand

)
(8)
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3. Results
3.1. Discriminating between Pure and Blended Avocado Oil

The initial approach was a binary assessment for evaluating the discriminative po-
tential between pure avocado oil and its blends with various vegetable oils. To achieve
this, blends of 5%, 10%, 20%, 35%, and 50% of these oils were denoted as the blended class,
whereas pure avocado oil was considered as the pure class. The effect of the light source,
whether white or UV light, on the classification outcomes was analysed. Detailed classifica-
tion results are presented in Table 1 and Tables S1–S4 in the Supplementary Materials.

The differentiation between the two classes, namely pure and blended avocado oil, was
attempted through LDA and LS-SVM models. The LDA models, whether employing white
or UV light, exhibited unsatisfactory performance in the classification of pure avocado oil
versus blended oil. The results revealed a 100% recall for the blended avocado oil class but
produced a recall of 0 for pure avocado oil, both for calibration and test sets. The practical
interpretation of these findings indicates that this model exhibited excessive stringency,
thereby categorising all samples, including those of pure avocado oil, as blends.

Conversely, the LS-SVM model yielded praiseworthy results in the binary classification
between pure and blended avocado oil (Table 1), achieving flawless classifications (with an
accuracy of 100%) under white light. The MCC values of +1 for both calibration and test
sets further corroborated these outcomes. Additionally, the low MCC values observed in
the y-randomization test indicated the absence of overfitting or random adjustments in
the model.

3.2. Discriminating between Blend Types in Avocado Oil

The next approach aimed to achieve multi-class discrimination between pure avocado
oil and avocado oil blended with canola, sunflower, corn, olive, and soybean oils. Similar to
the initial approach, discrimination among samples was attempted with LDA and LS-SVM
models under two distinct illuminants (white or UV light). The performance parameters of
this approach are presented in Table 2 and Tables S5–S8 in the Supplementary Materials.

The use of white light generally resulted in superior performance compared to the
UV light condition across all classes, for both LDA and LS-SVM models. As in the binary
classification, the LDA models exhibited inferior performance to the LS-SVM. Specifically,
the LDA models had accuracies hovering around 80%; however, the low values of precision,
recall, F1-score, and MCC indicated inadequate classification performance across all classes.
Moreover, the relatively high accuracy observed in the y-randomization test suggested
a potential tendency towards random adjustments. Thus, it can be inferred that the
colourimetric data read by the sensor might not have been adequate to linearly describe
the differentiation between pure avocado oil and its blends.

On the other hand, the LS-SVM models had superior performance, particularly under
white light condition, with a low error rate across all classes. The models exhibited accuracy
levels exceeding 90% for most classes in both the calibration and test sets. Furthermore,
the elevated values of precision, recall, F1-score, and MCC confirmed the efficacy of this
approach, while the poor performance in the y-randomization test, especially with low
MCC values, suggested the absence of overfitting or random adjustments [23].

Lower MCC values were observed for the test set in the cases of canola (MCC = 0.56)
and soybean (MCC = 0.78) blends. In these instances, a few samples assumed to be soybean
blends were classified as canola oil blends (Table S2). Nonetheless, the model indicated
that these samples were not pure avocado oil; rather, they lacked the specific oil blended
with the avocado oil.

3.3. Predicting the Blend Level in Avocado Oil

In order to construct the calibration models, samples for each blend, ranging from 0%
to 50% vegetable oil (canola, corn, soy, sunflower, and olive), were analysed. The statistical
parameters from the MLR and LS-SVM models for all blends under the two illuminants
(white and UV light) are detailed in Table 3.
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Table 1. Performance parameters for LDA and LS-SVM two-class models to discriminate pure avocado oil from its blends with canola, sunflower, corn, olive, and
soybean oils using the TCS34725 colour sensor under white and UV light.

White Light UV Light

LDA LS-SVM LDA LS-SVM

Overall Pure Blended * Overall Pure Blended * Overall Pure Blended * Overall Pure Blended *

calibration

PRE 42.0 0.0 84.0 100.0 100.0 100.0 92.9 100.0 85.9 95.3 92.9 97.7
REC 50.0 0.0 100.0 100.0 100.0 100.0 53.3 6.7 100.0 92.7 86.7 98.8
ACU 84.0 84.0 84.0 100.0 100.0 100.0 86.0 86.0 86.0 97.0 97.0 97.0
ERR 16.0 16.0 16.0 0.0 0.0 0.0 14.0 14.0 14.0 3.0 3.0 3.0
F1S 0.46 0.00 0.91 1.00 1.00 1.00 0.52 0.13 0.92 0.94 0.90 0.98

MCC 0.00 0.00 0.00 1.00 1.00 1.00 0.24 0.24 0.24 0.88 0.88 0.88

y-rand.

PRE 42.0 0.0 84.0 51.5 18.2 84.9 52.5 20.0 85.1 59.0 30.0 88.1
REC 50.0 0.0 100.0 53.0 6.3 99.8 50.2 1.3 99.1 60.3 20.7 100.0
ACU 84.0 84.0 84.0 84.8 84.8 84.8 84.4 84.4 84.4 88.1 88.1 88.1
ERR 16.0 16.0 16.0 15.2 15.2 15.2 15.6 15.6 15.6 11.9 11.9 11.9
F1S 0.46 0.00 0.91 0.50 0.08 0.92 0.47 0.03 0.92 0.57 0.21 0.94

MCC 0.00 0.00 0.00 0.09 0.09 0.09 0.01 0.01 0.01 0.22 0.22 0.22

test

PRE 41.0 0.0 82.0 100.0 100.0 100.0 40.0 0.0 80.0 82.7 75.0 90.5
REC 50.0 0.0 100.0 100.0 100.0 100.0 50.0 0.0 100.0 77.5 60.0 95.0
ACU 82.0 82.0 82.0 100.0 100.0 100.0 80.0 80.0 80.0 88.0 88.0 88.0
ERR 18.0 18.0 18.0 0.0 0.0 0.0 20.0 20.0 20.0 12.0 12.0 12.0
F1S 0.45 0.00 0.90 1.00 1.00 1.00 0.44 0.00 0.89 0.80 0.67 0.93

MCC 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.60 0.60 0.60

PRE: Precision. REC: Recall. ACU: Accuracy. ERR: Error rate. F1S: F1-score. MCC: Matthews correlation coefficient. * Avocado oil blended with 5, 10, 20, 35, or 50% canola, sunflower,
corn, olive, or soybean oils.
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Table 2. Performance parameters for LDA and LS-SVM six-class models to classify pure avocado oil and avocado oil blended with canola, sunflower, corn, olive, and
soybean oils using the TCS34725 colour sensor under white and UV light.

White Light

LDA LS−SVM

Overall Pure Canola Sunflower Corn Olive Soybean Overall Pure Canola Sunflower Corn Olive Soybean

calibration

PRE 62.1 82.4 42.2 100.0 68.2 80.0 0.0 98.5 100.0 90.9 100.0 100.0 100.0 100.0
REC 56.8 87.5 95.0 6.7 88.2 63.2 0.0 97.8 100.0 100.0 100.0 100.0 94.7 92.3
ACU 87.0 95.0 73.0 86.0 91.0 90.0 87.0 99.3 100.0 98.0 100.0 100.0 99.0 99.0
ERR 13.0 5.0 27.0 14.0 9.0 10.0 13.0 0.7 0.0 2.0 0.0 0.0 1.0 1.0
F1S 0.51 0.85 0.58 0.13 0.77 0.71 0.00 0.98 1.00 0.95 1.00 1.00 0.97 0.96

MCC 0.49 0.82 0.50 0.24 0.72 0.65 0.00 0.98 1.00 0.94 1.00 1.00 0.97 0.96

y-rand.

PRE 19.2 11.8 20.7 50.0 17.7 15.3 0.0 38.2 28.2 38.7 35.2 45.3 45.2 36.8
REC 16.2 12.5 46.5 3.3 22.9 12.1 0.0 36.7 76.9 75.5 8.0 15.3 18.9 25.4
ACU 72.7 71.0 53.6 85.0 68.8 70.6 87.0 79.4 63.7 69.7 86.0 84.5 83.3 89.3
ERR 27.3 29.0 46.4 15.0 31.2 29.4 13.0 20.6 36.3 30.3 14.0 15.5 16.7 10.7
F1S 0.1 0.1 0.3 0.1 0.2 0.1 0.0 0.30 0.41 0.51 0.12 0.22 0.24 0.29

MCC 0.01 −0.05 0.02 0.10 0.01 −0.04 0.00 0.26 0.28 0.36 0.15 0.22 0.23 0.28

test

PRE 26.6 63.6 16.7 0.0 54.5 25.5 0.0 89.7 100.0 38.5 100.0 100.0 100.0 100.0
REC 41.6 77.8 80.0 0.0 75.0 16.7 0.0 86.7 100.0 100.0 70.0 100.0 83.3 66.7
ACU 78.7 88.0 58.0 80.0 86.0 84.0 76.0 94.7 100.0 84.0 94.0 100.0 98.0 92.0
ERR 21.3 12.0 42.0 20.0 14.0 16.0 24.0 5.3 0.0 16.4 6.0 0.0 2.0 8.0
F1S 0.30 0.70 0.28 0.00 0.63 0.20 0.00 0.85 1.00 0.56 0.82 1.00 0.91 0.80

MCC 0.25 0.63 0.21 0.00 0.56 0.12 0.00 0.84 1.00 0.56 0.81 1.00 0.90 0.78

UV Light

LDA LS−SVM

Overall Pure Canola Sunflower Corn Olive Soybean Overall Pure Canola Sunflower Corn Olive Soybean

calibration

PRE 36.0 46.7 40.0 50.0 33.3 46.2 0.0 99.0 93.8 100.0 100.0 100.0 100.0 100.0
REC 42.5 93.3 31.6 36.8 33.3 60.0 0.0 99.1 100.0 100.0 94.7 100.0 100.0 100.0
ACU 81.3 83.0 78.0 81.0 80.0 78.0 88.0 99.7 99.0 100.0 99.0 100.0 100.0 100.0
ERR 18.7 17.0 22.0 19.0 20.0 22.0 12.0 0.3 1.0 0.0 1.0 0.0 0.0 0.0
F1S 0.38 0.62 0.35 0.42 0.33 0.52 0.00 0.99 0.97 1.00 0.97 1.00 1.00 1.00

MCC 0.29 0.58 0.22 0.32 0.22 0.39 0.00 0.99 0.96 1.00 0.97 1.00 1.00 1.00
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Table 2. Cont.

UV Light

LDA LS−SVM

Overall Pure Canola Sunflower Corn Olive Soybean Overall Pure Canola Sunflower Corn Olive Soybean

y-rand.

PRE 14.0 14.0 16.0 22.9 11.3 19.6 0.0 41.7 31.6 39.7 45.6 43.9 54.3 35.0
REC 15.7 28.0 12.6 16.8 11.3 25.5 0.0 44.0 86.0 65.3 33.7 13.3 41.0 25.0
ACU 72.2 63.4 70.8 73.4 73.4 64.2 88.0 81.7 67.6 77.1 83.3 86.1 86.0 90.3
ERR 27.8 36.6 29.2 26.6 26.6 35.8 12.0 18.3 32.4 22.9 16.7 13.9 14.0 9.7
F1S 0.14 0.19 0.14 0.19 0.11 0.22 0.00 0.36 0.46 0.48 0.33 0.19 0.43 0.26

MCC −0.01 −0.02 −0.03 0.04 −0.04 −0.01 0.00 0.32 0.37 0.39 0.31 0.20 0.42 0.26

test

PRE 34.9 45.0 14.3 28.6 100.0 21.4 0.0 52.1 63.6 25.0 62.5 66.7 33.3 61.5
REC 36.7 90.0 16.7 33.3 20.0 60.0 0.0 51.4 70.0 33.3 83.3 40.0 20.0 61.5
ACU 78.0 76.0 78.0 82.0 84.0 74.0 74.0 85.0 86.0 80.0 92.0 84.0 88.0 80.0
ERR 22.0 24.0 22.0 18.0 16.0 26.0 26.0 15.0 14.0 20.0 8.0 16.0 12.0 20.0
F1S 0.29 0.60 0.15 0.31 0.33 0.32 0.00 0.51 0.67 0.29 0.71 0.50 0.25 0.62

MCC 0.23 0.51 0.03 0.21 0.41 0.24 0.00 0.42 0.58 0.17 0.68 0.43 0.20 0.48

PRE: Precision. REC: Recall. ACU: Accuracy. ERR: Error rate. F1S: F1-score. MCC: Matthews correlation coefficient. Canola, sunflower, corn, olive, and soybean oil percentages in
avocado oil were 5, 10, 20, 35, or 50%.
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Table 3. Performance parameters for MLR and LS-SVM models to predict the proportion of canola,
sunflower, corn, olive, or soybean oils blended with avocado oil using the TCS34725 colour sensor
under white and UV light.

White Light UV Light

MLR LS-SVM MLR LS-SVM

canola oil

calibration
RMSE 6.02 1.44 7.60 5.37

R2 0.86 0.99 0.78 0.90

y-randomization
RMSE 20.97 9.48 21.40 13.52

R2 0.02 0.64 0.01 0.44
cR2p 0.85 0.59 0.77 0.64

test
RMSE 6.36 2.55 7.12 7.35

R2 0.83 0.97 0.77 0.77
R2m 0.70 0.97 0.57 0.60

sunflower oil

calibration
RMSE 3.08 1.89 2.89 2.91

R2 0.96 0.99 0.97 0.97

y-randomization
RMSE 22.38 6.77 21.19 10.65

R2 0.06 0.78 0.04 0.61
cR2p 0.93 0.45 0.95 0.59

test
RMSE 2.63 1.37 3.86 3.81

R2 0.97 0.99 0.94 0.94
R2m 0.96 0.98 0.92 0.92

corn oil

calibration
RMSE 4.38 2.29 8.95 4.61

R2 0.93 0.98 0.66 0.91

y-randomization
RMSE 23.37 6.03 19.95 8.25

R2 0.01 0.72 0.03 0.81
cR2p 0.93 0.51 0.64 0.30

test
RMSE 4.31 2.62 7.53 7.91

R2 0.91 0.97 0.76 0.77
R2m 0.88 0.96 0.58 0.64

olive oil

calibration
RMSE 7.14 2.53 6.88 4.08

R2 0.82 0.98 0.82 0.94

y-randomization
RMSE 22.07 11.71 21.81 13.61

R2 0.02 0.60 0.01 0.57
cR2p 0.81 0.61 0.82 0.59

test
RMSE 6.39 3.07 5.74 4.92

R2 0.75 0.93 0.87 0.90
R2m 0.54 0.87 0.53 0.75

soybean oil

calibration
RMSE 2.45 0.90 2.20 1.54

R2 0.98 1.00 0.98 0.99

y-randomization
RMSE 22.26 12.79 22.37 8.07

R2 0.03 0.40 0.01 0.63
cR2p 0.96 0.77 0.97 0.60

test
RMSE 2.23 1.17 2.27 1.62

R2 0.98 0.99 0.98 0.99
R2m 0.96 0.99 0.98 0.99

The MLR models were able to predict the levels of canola, sunflower, corn, olive, and
soybean oils blended with avocado oil, achieving calibration R2 > 0.8 for both illuminants
(Table 3). However, the MLR models for canola and corn oil blends exhibited relatively
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lower calibration R2 values (0.78 and 0.66, respectively) under UV light. Also, R2 values
ranging from 0.75 to 0.98 were obtained for the test set, in addition to R2m values > 0.5,
indicating congruence between actual and predicted values. Despite high RMSE values
and low R2, the cR2p > 0.5 suggested no overfitting or random adjustments.

Conversely, the LS-SVM models produced superior outcomes compared to the MLR
models, particularly under white light, with R2 values > 0.93 for both calibration and test
sets. The RMSE values from the LS-SVM models were notably lower than those obtained
from the MLR models. Furthermore, the elevated R2m values (ranging from 0.87 to 0.99)
indicated excellent congruence between actual and predicted values. The LS-SVM models
exhibited poor performance in the y-randomization test, with cR2p values exceeding 0.5,
suggesting the robustness of these models without overfitting or random adjustments.
Comparisons between actual and predicted percentages of the vegetable oils in the blends
with avocado oil by LS-SVM using white light for both calibration and test sets are presented
in Figure 2.
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Figure 2. Actual and predicted proportion of canola, sunflower, corn, olive, or soybean oils blended
with avocado oil using the TCS34725 colour sensor under white light and LS-SVM models.
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4. Discussion

Certainly, the outcomes reveal that the models generated under white light conditions
exhibited superior classification metrics compared to those under UV light for both calibra-
tion and test sets. A long-wavelength band at 350–420 nm in excitation and 660–700 nm
in emission is attributed to the fluorescence of pigments of the chlorophyll group in olive
oils [24], while excitation at 320–420 nm and emission at 400–500 nm is associated with
oxidation products [25,26]. According to Hakonen and Beves [7], the fluorescence detected
at a 90◦ angle from an excitation light might produce inner filter effects due to the presence
of particles in a liquid medium. They suggested that this effect, when using a 405 nm
excitation light, could provide additional informative details for distinguishing pure oils
based on colour parameters obtained via a smartphone camera. However, they highlighted
a possible drawback of inhomogeneous sample images, which might have contributed
to the unsatisfactory classification performance for the oil blends using the colour sensor
under UV light. The evident difference in performance attributed to different light sources
aligns with the known significance of illumination in colourimetric techniques [26–28].

A noticeable disparity in classification performance and superior outcomes for LS-SVM
models over LDA was evident. LDA stands out as a prevalent choice among super-
vised methods for tasks like food matrix authentication, characterization, and adulteration
detection [29]. LDA is frequently used as a linear classifier [30], similar to MLR, a regression
method relying on the linear relationship between dependent and independent variables. In
contrast, LS-SVM employs a non-linear algorithm, which, although more computationally
intensive, exhibits greater generalisation power [31]. Some authors emphasise that machine
learning techniques such as SVM complement the implementation of low-cost sensors,
compensating for limitations in their design and manufacture [32]. This is feasible because
SVM operates as an optimisation-based model, seeking the best hyperplane to maximise
margins within a high-dimensional space. Unlike in linear regression, where the impact of
all data points is uniform, in SVM, each data point influences the final optimisation [33].
Therefore, the superiority of LS-SVM over LDA can be attributed to the mathematical
qualities of each model in terms of data processing and their ability to discriminate between
classes, with LS-SVM classification performing better than LDA.

These outcomes confirm that the RGB sensor coupled with LS-SVM not only detected
blends of vegetable oils in avocado oil but was also able to predict the blend proportion.
Assessing oil authenticity typically involves quantifying triacylglycerol components using
gas chromatography or high-performance liquid chromatography, especially when evaluat-
ing blends of virgin oils, such as avocado or olive, with refined vegetable oils [34]. Another
common approach involves spectroscopic methods coupled with chemometric tools [35].
However, both of these methods require the use of expensive equipment, reagents, and/or
considerable time, in contrast to the colour sensor-based device used in the present work.

This study had similar or superior performance compared to previous studies that
used colourimetric sensors or traditional analytical techniques to assess oil quality. Huang
et al. (2022) achieved cross-validation with accuracy of 90.7% and 81.5% for distinguishing
extra virgin olive oil from its mixtures with soybean and corn oil, respectively, using a
colourimetric sensor array [17]. Naik et al. (2023) demonstrated that a paper-based colour
sensor was able to detect the presence of palm oil and sunflower oil added to cow ghee at a
concentration of 2.5% or more [36]. Amit et al. (2020) achieved an RMSE lower than 1% for
a test set when using Fourier transform infrared spectroscopy to detect fried coconut oil
mixed with pure coconut oil [37]. Tian et al. (2019) reported that gas chromatography can
reliably identify peanut oil mixed with a minimum of 5% rapeseed oil based on fatty acid
profiles [38]. Similar to the present study and others [39–43], all of these studies focused
on demonstrating the feasibility of analytical techniques without examine mixtures of oils
from different suppliers. Therefore, once the feasibility of an analytical technique has been
demonstrated, further research can be conducted to validate and investigate the robustness
of methods using larger and more diverse sample sets from different sources and suppliers.
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5. Conclusions

This proof-of-concept study presents evidence regarding a cost-effective colour sensor
(RGB), which can be a feasible solution for detecting and distinguishing blends of vegetable
oils in avocado oil. This RGB sensor was able to quantify blends in avocado oil and
their proportions.

The classification models effectively identified mixtures of various vegetable oils
in avocado oil, with an accuracy exceeding 90%. Notably, non-linear LS-SVM models
performed better under white light conditions, using the sensor’s light source, thereby
streamlining the analysis process. In addition, the method proved to be rapid and cost-
effective, without the necessity of any additional sample pretreatment.

This evidence can be used in future research for further validation and robustness
studies with even higher number of samples and other oils or mixtures, thus further
establishing this portable device as useful for accurately detecting oil blends.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods13040572/s1, Table S1: Confusion matrix for the test set obtained by
LDA two-class model to discriminate pure avocado oil from its blends with canola, sunflower, corn,
olive, and soybean oils using the TCS34725 sensor under white light; Table S2: Confusion matrix for
the test set obtained by LDA two-class model to discriminate pure avocado oil from its blends with
canola, sunflower, corn, olive, and soybean oils using the TCS34725 sensor under UV light; Table S3:
Confusion matrix for the test set obtained by LS-SVM two-class model to discriminate pure avocado
oil from its blends with canola, sunflower, corn, olive, and soybean oils using the TCS34725 sensor
under white light; Table S4: Confusion matrix for the test set obtained by LS-SVM two-class model to
discriminate pure avocado oil from its blends with canola, sunflower, corn, olive, and soybean oils
using the TCS34725 sensor under UV light; Table S5: Confusion matrix for the test set obtained by
LDA six-class model to classify pure avocado oil and avocado oil blended with canola, sunflower,
corn, olive, and soybean oils using the TCS34725 sensor under white light; Table S6: Confusion matrix
for the test set obtained by LDA six-class model to classify pure avocado oil and avocado oil blended
with canola, sunflower, corn, olive, and soybean oils using the TCS34725 sensor under UV light; Table
S7: Confusion matrix for the test set obtained by LS-SVM six-class model to classify pure avocado oil
and avocado oil blended with canola, sunflower, corn, olive, and soybean oils using the TCS34725
sensor under white light; Table S8: Confusion matrix for the test set obtained by LS-SVM six-class
model to classify pure avocado oil and avocado oil blended with canola, sunflower, corn, olive, and
soybean oils using the TCS34725 sensor under UV light; File S1: Arduino code for TCS34725 sensor;
File S2: Dataset with sensor readings, oil classes and percentages.
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