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Abstract: Ecklonia cava, a brown seaweed native to the East Asian coast, is known for its unique
composition, including polysaccharides, polyphenols, and phlorotannins. Fucoidan is a sulfated
polysaccharide widely used as a functional ingredient in foods. This study obtained crude polysaccha-
rides (ECC_CPS) from E. cava celluclast enzymatic hydrolysate using ethanol precipitation. ECC_CPS
increased cell viability during the proliferation of Hanwoo muscle satellite cells (HMSCs). The effect
of ECC_CPS on the expression of proliferation-related markers was confirmed as MYF5 and MYOD
expression significantly increased, whereas PAX7 expression was maintained. The evaluation of cell
migration activity has a major impact on cell proliferation and differentiation, and the cell migration
index significantly increased with ECC_CPS treatment (p < 0.01). This was related to the HGF/MET
pathway and FAK pathway. Treatment with ECC_CPS promoted differentiation at the cell differentia-
tion stage, thereby increasing the expression of differentiation markers, such as MYH2, MYH7, and
MYOG (p < 0.001 or p < 0.01). Therefore, our findings imply that crude polysaccharide obtained from
E. cava can be an additive ingredient that enhances the proliferation and differentiation of muscle
satellite cells used in the manufacture of cultured meat products.

Keywords: Ecklonia cava; polysaccharide; proliferation; differentiation; Hanwoo muscle satellite cells

1. Introduction

The world population is predicted to reach 10 billion by 2050, and food shortage
problems will occur solely because of the increase in protein production through traditional
livestock farming, which relies on livestock raising [1]. Food security is becoming an
increasingly critical issue in light of the global food crisis and increasing environmental
pollution [2]. To ensure food security, national support is being provided for international
cell-culture-based food research, and various measures are being implemented for exploring
alternative food sources [3]. Research on cell-culture-based meat is in its early stages, and
the market has not yet been formed; therefore, the foundations of the food-tech industry
are currently insufficient for securing food sovereignty [4,5].

With increasing concerns about climate change, carbon footprints are being increas-
ingly investigated, with food systems being one of the major contributors [6]. Among
the various livestock species, beef cattle have been recognized as major contributors to
greenhouse gas emissions, primarily due to enteric fermentation [7]. Raising beef cattle
can thus result in substantial greenhouse gas production and environmental pollution.
Consequently, continually increasing the population of beef cattle is not feasible.

The sustainability of food systems is crucial for present and future generations. There-
fore, the production of artificial meat using cellular agriculture has emerged as a novel
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sustainable protein production method [8]. One piece of muscle tissue can be multiplied
by a trillion strands, which can easily alleviate problems of protein scarcity [9]. Cell pro-
liferation and differentiation must be enhanced to produce large quantities of meat [10].
The activation of satellite cells should be improved to increase cell proliferation, provide
abundant progeny, and support the generation of muscle tissue [11].

Seaweeds have long been known for their nutritional richness and diverse bioactive
constituents [12]. Ecklonia cava, a brown alga native to East Asian coastal regions, is known
for its unique composition, encompassing polysaccharides, polyphenols, phlorotannins,
and other bioactive molecules [13]. Several studies have demonstrated that these com-
pounds have antioxidant, anti-inflammatory, and antimicrobial properties [14]. Importantly,
recent studies have suggested their potential role in modulating cellular processes, specif-
ically cell proliferation and differentiation [15–18]. If hydrolyzed E. cava extract and its
crude polysaccharide are proven to be effective in promoting muscle cell proliferation and
differentiation in Hanwoo, they could serve as a valuable and eco-friendly supplements in
the production of cultured meat using Hanwoo muscle cells.

Therefore, the objective of this study was to comprehensively evaluate the effect of
hydrolyzed E. cava extract and its crude polysaccharide on the proliferation and differentia-
tion of Hanwoo muscle cells, with a specific emphasis on proliferation and differentiation of
the satellite cells.

2. Materials and Methods
2.1. Hydrolysis of E. cava and Preparation of Crude Polysaccharide

Ecklonia cava was purchased from a local market on Jeju Island (Korea), washed
three times, freeze-dried, and ground into powder. Enzymatic hydrolysis was performed
using the glycolytic enzyme celluclast (Novozymes, Bagsvaerd, Denmark). Next, 3 g of
E. cava powder was suspended in distilled water and incubated with 30 mg of celluclast
(Enzyme–substrate = 1:100) under the conditions of a shaking incubator (pH 4.5, 50 ◦C,
120 rpm, and 24 h). The enzyme was then inactivated by heating at 100 ◦C for 10 min. The
hydrolysate was centrifuged at 13,000× g for 10 min at 4 ◦C. The pH of the supernatant
was adjusted to 7.0 using NaOH (1 M, Sigma-Aldrich, St. Louis, MO, USA)). The celluclast
enzyme hydrolysate of E. cava was named ECC.

Crude polysaccharides from ECC were obtained via gradient ethanol precipitation [19].
Briefly, 99.5% ethanol was mixed with ECC (1 L:0.5 L), and then the crude polysaccharide
was precipitated for 12 h at 4 ◦C. Centrifugation was performed at 5000× g for 20 min, and
the precipitate was named ECC_CPS1. This process was repeated to obtain ECC_CPS2 and
ECC_CPS3. Finally, the ECC and ECC_CPS were freeze-dried and used in future studies.

2.2. Monosaccharide Composition Analysis Using High-Performance Anion-
Exchange Chromatography

The monosaccharide composition of ECC and ECC_CPSs was analyzed using high-
performance anion-exchange chromatography (HPAEC) [20]. The used detector and col-
umn were pulsed amperometric detector (Dionex, Sunnyvale, CA, USA) and CarboPac™
PA10 column (I.D.: 2 mm, length: 250 mm, particle size: 10 µm, Dionex) for separation.
All ECC and ECC_CPSs were hydrolyzed using trifluoroacetic acid (Sigma-Aldrich). The
injection volume was 20 µL, flow rate was 1 mL/min, and eluent A/B was 18 mM NaOH/
200 mM NaOH. The eluent program was as follows: 0–20 min, 0% B; 20–35 min, 100% B;
35–45 min, 0% B.

2.3. Primary Hanwoo Muscle Satellite Cell Isolation (HMSCs)

Briskets from 34-month-old castrated Hanwoo steers were collected from slaughter-
house A in Eumseong-gun, Chungcheongbuk-do, Republic of Korea. After storage in
an icebox and transportation to the laboratory, muscle tissue was collected and treated
with a collagenase type II mix (Worthington, Lakewood, NJ, USA). Connective tissues and
muscle cells were separated by repeated centrifugation at 70× g and 800× g. The pellet
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(muscle cells) obtained using centrifugation was filtered through 100 µm and 40 µm filters
and red blood cells were lysed with Ammonium–Chloride–Potassium (ACK) lysis buffer
(ThermoFisher, Waltham, MA, USA). The extracted muscle cells were placed in a freezing
medium (Gibco, Grand Island, NY, USA) and stored in liquid nitrogen until analysis.

Prior to purification of Hanwoo muscle satellite cells (HMSCs) using fluorescence
activated cell sorting (FACS), the extracted Hanwoo muscle cells were cultured in flasks
coated with 5 mg/mL bovine collagen type I (Sigma-Aldrich) until confluent. Cells were
suspended in a FACS buffer (1:100, bovine serum albumin in phosphate-buffered saline
(PBS)) and incubated with APC anti-human CD29 antibody (1:10, BioLegend, San Diego,
CA, USA), PE-CyTM7 anti-human CD56 antibody (1:10, BD Biosciences, Lakes, NJ, USA),
FITC anti-sheep CD31 antibody (1:10, Bio-Rad, Hercules, CA, USA), and FITC anti-sheep
CD45 antibody (1:10, Bio-Rad) for 30 min at 4 ◦C [21]. After antibody treatment, cells were
washed twice with cold PBS and resuspended in FACS buffer. CD31-, CD45-, CD29+, and
CD56+ cells were sorted using a FACS Aria II Cell Sorter (BD Biosciences).

2.4. Cell Proliferation and Differentiation

Cell proliferation was assessed using Ham’s F-10 medium (Gibco) containing 20%
fetal bovine serum (FBS, Gibco), 1% antibiotic mixture (Lonza, Morrisville, NC, USA), and
0.05% basic fibroblast growth factor (bFGF, Gibco). Cell differentiation was performed in
Dulbecco’s Modified Eagle Medium (DMEM) (Gibco) containing 2% FBS and 1% antibiotic
mixture. Cell proliferation cultures were seeded at 1800/cm2 and cultured in a humidified
CO2 incubator at 37 ◦C, 5% CO2 with Ham’s F-10 media for 7 d. Cell differentiation cultures
were seeded at 5000/cm2 and cultured under the same conditions as the proliferation
cultures, and Ham’s F-10 medium was replaced with DMEM when the cells reached
confluency in 80–90% of the area in the flask. Proliferated HMSCs were observed using an
EVOS M5000 imaging system (ThermoFisher) at the same time each day.

2.5. Cell Proliferation Assay

HMSC proliferation was measured using the CellTiter 96® Proliferation Assay
(Promega, Madison, WI, USA). HMSCs were cultured in 96-well plates for 4 d with ECC
and ECC_CPSs (10, 50, and 100 µg/mL), and the assay uses the principle that 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)
is converted to formazan by the dehydrogenase enzyme in the cells. MTS reagent was
dispensed into each well and further incubated for 2 h, and the absorbance was measured
at 490 nm.

2.6. Quantitative Real-Time PCR (qRT-PCR)

The extraction of mRNA from HMSCs cultured for 4 d with ECC_CPS3 was per-
formed according to the manufacturer’s manual of the Total RNA Extraction Kit (iNtRON
Biotechnology, Seongnam, Republic of Korea). Extracted mRNA was used to prepare
cDNA according to the manufacturer’s instructions for the cDNA Reverse Transcription
Kit (ThermoFisher). PCR was performed using SYBR Green (ELPIS-BIOTECH, Daejeon,
Korea) and the primer sequences listed in Table 1. Gene amplification was as follows: 50
◦C for 2 min, 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 10 s and 20 s between 52
and 55 ◦C. The mRNA quantification method used the 2−∆∆CT method [22].

Table 1. Primer sequences used in RT-qPCR analysis.

Primer Description Sequence (5′-3′)

PAX7 Paired box 7 F: AGCCGGGTTAGCAAGATACT
R: GAAACTCTGGCTGACCTTGA

MYF5 Myogenic factor 5 F: ATTACCAGAGACACCGACCA
R: CAGGAGCCGTCGTAGAAGTA

MYOD Myoblast determination protein 1 F: AACAGCGGACGACTTCTATG
R: GTTAGTCGTCTTGCGTTTGC
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Table 1. Cont.

Primer Description Sequence (5′-3′)

HGF Hepatocyte growth factor F: CACACGAACACAGCTTTTTG
R: ATGGGACCTCGGTAACTTTC

MET Mesenchymal–epithelial transition factor F: TTCATTGGGGAGCACTATGT
R: CAAAGGGTGGACTGTTGTTC

CAV3 Cavolin 3 F: AAAGACAGTCCACCATGGAA
R: ACCGAAACCCTTTATTGGAG

ITGB1 Integrin subunit β1 F: AGATGAGGTGAACAGCGAAG
R: CTCACACACTCGACACTTGC

CCND1 Cyclin D1 F: CTCGAAGATGAAGGAGACCA
R: GAAGTGCTCGATGAAGTCGT

MYH2 Myosin heavy chain 2 F: CCAGTGGAGGACCAAGTATG
R: TTCCTTTGCTTTTTGTCCAG

MYH7 Myosin heavy chain 7 F: TGGACAAGAAGCAGAGGAAC
R: TTGAAGGTCTCCAGATGCTC

MYOG Myogenin F: ACAAACCATGCACATCTCCT
R: AGCACAGAGACCTTGGTCAG

β-Actin F: CGCAGAAAACGAGATGAGAT
R: CTCGGCCACACTGTAGAACT

2.7. Cell Migration Effect (Wound-Healing Assay)

To determine cell migration, a wound-healing assay was performed. HMSCs were
incubated in 6-well plates with ECC_CPS3. The next day, confluent cells were scraped
evenly across the wells using a 1 mL pipette tip. The plates were incubated for 24 h. The
scratched regions were photographed at 0 and 24 h using an EVOS-M5000 imaging system.
The migration index was analyzed using ImageJ software (for Window ver., NIH, Bethesda,
MD, USA).

2.8. Statistical Analysis

To test the significance of the results (n = 3), the statistical processing program SPSS (ver.
20, SPSS Inc., Chicago, IL, USA). To compare significant differences between measurements,
Student’s t-test or Duncan’s multiple range test was performed (p < 0.05).

3. Results and Discussion
3.1. Monosaccharide Composition Analysis of E. cava Extract

The functional activities of polysaccharides are greatly influenced by the monosac-
charides that they contain [20]. Therefore, the monosaccharide compositions of ECC and
ECC_CPSs as revealed by HPAEC analysis are shown in Figure 1.

ECC and ECC_CPSs are composed of four major monosaccharides: fucose, arabinose,
galactose, and glucose. Among the four monosaccharides, fucose was the most abundant
(ECC: 56.13%; ECC_CPS1: 51.17%; ECC_CPS3: 63.66%). However, for ECC_CPS2, the
glucose content (35.03%) was higher than the fucose content (25.82%). ECC_CPS3 had
the highest fucose content, and as a result, its glucose content was the lowest compared
to the other samples (ECC: 23.44%; ECC_CPS1: 24.65%; ECC_CPS2: 35.03%; ECC_CPS3:
6.12%). In the monosaccharide analysis of the crude polysaccharide, the high fucose content
suggests that the content of fucoidan, a sulfated polysaccharide, may be high. Previous
studies have reported a high fucoidan content in the polysaccharide extracts of E. cava [23].
Since fucoidan has been reported to have high antioxidant activity, it is expected to have a
positive effect on various biological functions in cells.

The cell-proliferative effects of polysaccharides are obtained from various materials [24,25].
Polysaccharides extracted from Ganoderma amboinense, a type of mushroom, have a pro-
liferative effect on normal cells (293T/17, HUV-EC-C, NIH/3T3, and THP-1) [25]. Ad-
ditionally, Yang et al. [24] reported that polysaccharides obtained from Usnea longissima
(moss) via ethanol precipitation significantly increased the proliferation of human Ha-
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CaT keratinocytes. In these studies, the authors explained that the antioxidant activity
of polysaccharides had a positive effect on cell proliferation. Therefore, considering the
monosaccharide composition results of ECC and ECC_CPSs (Figure 1) and preliminary
research reports showing a high fucoidan content [23], ECC and ECC_CPS are expected to
have positive effects on the proliferation and differentiation of MSCs.
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3.2. Effect of E. cava Extract on Proliferation Capacity of HMSCs

The cell proliferation capacity as determined using the MTS assay, to investigate the
effect of E. cava celluclast enzyme extract (ECC) and its crude polysaccharide extracts
(ECC_CPS1, ECC_CPS2, and ECC_CPS3) on the proliferation of HMSCs, after 4 d of cul-
ture is shown in Figure 2. In the case of ECC, in which the crude polysaccharide was
not separated through ethanol precipitation, no significant changes in cell viability com-
pared to the control were observed at all tested concentrations (p > 0.05). ECC_CPS1 and
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ECC_CPS2 showed no significant differences in cell viability; therefore, their proliferative
effect on HMSCs could not be confirmed. However, treatment with high concentrations
(100 µg/mL) of ECC_CPS1 and ECC_CPS2 showed a lower cell viability compared to the
control (p < 0.05), while high concentrations showed cytotoxicity. In contrast, ECC_CPS3
showed significantly higher cell viability than the control (10 µg/mL, p < 0.05). Thus,
ECC_CPS3 exerted a proliferative effect on HMSCs. However, at a high concentration of
100 µg/mL, it showed cytotoxicity similar to the other CPS samples.
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medium-only treated group; ECC, E. cava celluclast enzyme extract; ECC_CPS, crude polysaccharide
extracts of ECC.

As shown in Figure 3, the analysis of the mRNA expression of cell proliferation
markers (PAX7, MYF5, and MYOD) revealed that ECC_CPS3 significantly enhanced the
expression of MYF5 (p < 0.01) and MYOD (p < 0.05) among cell proliferation markers. There
was no significant difference in PAX7 expression in the control group (p > 0.05). PAX7 is a
myogenic marker predominantly expressed in quiescent satellite cells and plays a major role
in maintaining self-renewal, a key characteristic of stem cell stemness [26]. Additionally, a
decrease in PAX7 expression induces cell cycle arrest, leading to the differentiation of muscle
stem cells [27]. In this study, we confirmed that PAX7 expression in HMSCs was maintained
following ECC_CPS3 treatment (Figure 3). This finding indicates that ECC_CPS3 can
preserve the self-renewal capacity of HMSCs and is believed to promote proliferation in
the proliferation phase rather than moving to the differentiation phase. MYF5 is expressed
when quiescent satellite cells are activated and begin to proliferate into myoblasts [28].
Subsequently, MYOD is expressed, which regulates myoblast commitment [29]. MYF5 and
MYOD belong to the myogenic regulatory factor family (MRF) and can convert various
differentiated cell types to myogenesis [30]. In this study, MYF5 and MYOD expression
were increased by treatment with ECC_CPS3 (Figure 3). An increase in MYF5 expression
plays a major role in the activation of satellite cells and promotes the initiation of cell
proliferation, whereas an increase in MYOD expression can cause satellite cells to lose
their proliferative capacity, stop proliferating, and move to the differentiation phase [31].
However, in this study, with ECC_CPS3 treatment, the expression of PAX7 was maintained
rather than decreased along with an increase in MYF5 and MYOD, which means that the
proliferation capacity did not decrease [32]. Kim et al. [28] reported the effect of treatment
with fermented soybean meal and edible insect protein hydrolysate on the proliferation
markers of pig muscle stem cells in a medium with low FBS content. Kim et al. [28] reported
that among the proliferation markers, the expression of MYF5 and MYOD significantly
increased, while the expression of PAX7 was maintained, thereby indicating that the
proliferative potential of pig muscle stem cells is high.
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3.3. Effect of E. cava on Cell Migration Effect of HMSCs

Cell migration plays a crucial role in various biological functions of cells (e.g., muscle
differentiation, development, and regeneration) [33]. Therefore, to confirm the effect of
ECC_CPS3 on the migration of HMSCs, a wound-healing assay was conducted, and the
effect on mRNA expression related to cell migration was confirmed (Figure 4).
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tistically significant between ECC_CPS3 and Con. Con, medium-only treated group; ECC_CPS, Crude
polysaccharide extracts of E. cava celluclast enzyme extract. Yellow lines indicate cell migration range.
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Based on the cell migration index (%), calculated by comparing the scratch distance
between 0 and 24 h, the migration index of the control was 52.05% (Figure 4B). In contrast,
the treatment group with ECC_CPS3 showed a migration index of 68.47%, confirming a
significant increase in cell migration (p < 0.01). This finding suggests that treatment with
ECC_CPS3 increases the migratory activity of HMSCs, ultimately affecting cell proliferation
and differentiation. The positive effect of ECC_CPS3 on cell migration was confirmed by
analyzing the expression of cell-migration-related mRNAs (Figure 4C). Treatment with
ECC_CPS3 significantly increased the expression of the hepatocyte growth factor (HGF)
and mesenchymal–epithelial transition factor (MET) in HMSCs compared to the control
group (p < 0.05).

HGF is required for the activation of muscle satellite cells and plays a major role
in myoblast migration [34]. MET is a receptor (HGFR) for HGF [35]. MET is a tyrosine
kinase receptor that triggers cellular biological activity by binding to HGF. These processes
include proliferation, differentiation, survival, motility, and extracellular matrix (ECM)
degradation [36]. MET plays a major role in the regulation of myoblast migration and
fusion [37]. Therefore, HGF and MET and their expressions can be used as positive markers
of cell migration. In this study, treatment with ECC_CPS3 enhanced the expression of
HGF and MET in HMSCs, and the cell migration index increased, which indicates a cell
migration effect.

To further understand the effect of ECC_CPS3 on cell migration, we determined
the effect of ECC_CPS3 on the mRNA expression levels of focal adhesion kinase (FAK)
signaling pathway markers (Figure 5). ECC_CPS3 treatment significantly increased the
expressions of ITGB1 and CCND1 in HMSCs (p < 0.001). However, there was no significant
effect on CAV3 expression (p > 0.05). The FAK signaling pathway is a non-receptor tyrosine
kinase that plays a role in cell migration and adhesion and is important for muscle wound
healing and regeneration [38]. Activated FAK combines with integrins in the cell membrane
to form focal adhesions and plays a role in cell adhesion and migration [39]. Therefore, the
expression of integrin subunit β1 (IGTB1) and cyclin D1 (CCND1) following ECC_CPS3
treatment indicates the activation of the FAK signaling pathway and is believed to be
related to the cell-migration-enhancing effect of ECC_CPS3. This enhanced cell migration
activity is thought to positively affect the proliferation and differentiation of HMSCs.
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Figure 5. Effects of ECC_CPS3 (10 µg/mL) on focal adhesion kinase (FAK)-related mRNA expression
(CAV3, ITGB1, and CCND1) in HMSCs. All experimental data are expressed as the mean ± SD.
*** p < 0.001 is considered statistically significant between ECC_CPS3 and Con. NS indicates no
significant difference between ECC_CPS3 and Con (p > 0.05). Con, medium-only treated group;
ECC_CPS, crude polysaccharide extracts of E. cava celluclast enzyme extract.

3.4. Effect of E. cava Extract on Differentiation Capacity of HMSCs

As shown in Figure 6, treatment with ECC_CPS3 resulted in a significant increase in
the mRNA levels of cell differentiation markers, such as MYH2 (p < 0.01), MYH7 (p < 0.001),
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and MYOG (p < 0.01), compared to the control group, as revealed using qRT-PCR analysis
conducted on the 4th day of differentiation. In contrast, ECC_CPS3 had no significant effect
on MYOD mRNA expression (p > 0.05).
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Myogenin (MYOG) is a member of the MRF family [40]. It is the main target of MYOD
and plays a role in initiating terminal differentiation along with MRF4. It is involved in key
reactions during myogenesis, including myoblast-to-myocyte transition, myotube fusion,
and myofiber maturation [41]. Furthermore, the myosin heavy chain (MYHC) is one of the
representative late-stage differentiation markers whose expression level increases as muscle
cell differentiation progresses [22]. MYH2 and MYH7 are known expression factors that
are used to identify myofiber types IIa and I, respectively [28]. Treatment with ECC_CPS3
increased the expression of MYOG by 1.34-fold and the expressions of MYH2 and MYH7
by 1.36-fold and 1.54-fold, respectively (Figure 6). The expressions of MYOG and MYHs
indicate the early and late stages of differentiation, respectively, and the expression of MYH7
is significantly higher than that of MYOG [42], implying that ECC_CPS3 treatment had an
excellent ability to promote differentiation and that sufficient differentiation had already
occurred on the fourth day of differentiation. In contrast, the expression of MYOD did not
significantly change after ECC_CPS3 treatment at the differentiation stage (p > 0.05). This
result was contrary to the finding that treatment with ECC_CPS3 significantly increased
the expression of MYOD at the proliferation stage (Figure 3). MYOD, together with MYF5,
is used as a marker for undifferentiated proliferating myoblasts and MYOD plays a role
in initiating differentiation at the myoblast stage before differentiation [43]. Therefore,
we believe that the expression of MYOD was not affected by ECC_CPS3 treatment when
differentiation had already begun on the 4th day.

Research is actively underway to find substances in natural products that can promote
the differentiation of muscle stem cells. Guo et al. [15] reported that three flavonoids
(quercetin, icariin, and 3,2′-dihydroxyflavone) exhibited pro-differentiation effects by in-
creasing the expression of MYHC mRNA in porcine muscle stem cells. The degree of cell
differentiation into multinucleated myotubes was confirmed by determining MYHC mRNA
expression. In addition, the effect of Tenebrio molitor enzyme hydrolysates (Alcalase and
Flavourzyme), commonly known as mealworms, on the differentiation of porcine muscle
stem cells has been reported [28]. The expressions of MYH1 and MYH4, which are cell dif-
ferentiation markers, significantly increased, and myotube formation was better than that
of the control group in cell morphology after 48 h of differentiation [28]. Additionally, it has
been reported that polysaccharide extracted from Bletilla striata enhances human tenocyte
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(a type of connective tissue cell that connects muscles to bone) proliferation [17]. The study
reported that polysaccharide had the effect of promoting proliferation by activating various
signaling pathways, such as MEK/ERK1/2 and PI3K/Akt.

Many studies on the functionality of crude polysaccharide obtained from seaweed
through ethanol precipitation have already been reported [20,44,45]. It can be confirmed
through previous studies that the content of polysaccharide in sediment increases during
ethanol precipitation [20,45,46]. Therefore, it is thought that the positive effect of ECC_CPS3
on the proliferation and differentiation of muscle stem cells obtained from this study was
caused by the polysaccharide present in the E. cava extract.

4. Conclusions

In conclusion, we found that crude polysaccharides obtained from E. cava celluclast
enzymatic hydrolysates can facilitate the proliferation and differentiation of Hanwoo muscle
satellite cells (HMSCs). Treatment with ECC_CPS3 obtained through ethanol precipitation
significantly increased the viability of HMSCs. In addition, it significantly increased the
expression of cell proliferation markers MYF5 and MYOD mRNA and maintained the
expression of PAX7, thereby confirming that it maintained the stemness of HMSCs and
promoted proliferation. We confirmed that the cell migration activity of HMSCs was
increased by activating the HGF/MET and FAK pathways related to cell migration. Finally,
differentiation was promoted at the cell differentiation stage, enhancing the expression of
differentiation markers, such as MYH2, MYH7, and MYOG. These findings suggest that
crude polysaccharide obtained from Ecklonia cava is highly promising as an additive that
can efficiently promote proliferation and differentiation in the production of cultured meat
derived from Hanwoo.
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