
Citation: Lee, K.-S. Multi-Spectral

Food Classification and Caloric

Estimation Using Predicted Images.

Foods 2024, 13, 551. https://doi.org/

10.3390/foods13040551

Academic Editor: Zhengjun Qiu

Received: 5 January 2024

Revised: 7 February 2024

Accepted: 9 February 2024

Published: 11 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Multi-Spectral Food Classification and Caloric Estimation
Using Predicted Images
Ki-Seung Lee

Department of Electrical and Electronic Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu,
Seoul 143-701, Republic of Korea; kseung@konkuk.ac.kr; Tel.: +82-02-450-3489

Abstract: In nutrition science, methods that accomplish continuous recognition of ingested foods
with minimal user intervention have great utility. Our recent study showed that using images taken
at a variety of wavelengths, including ultraviolet (UV) and near-infrared (NIR) bands, improves the
accuracy of food classification and caloric estimation. With this approach, however, analysis time
increases as the number of wavelengths increases, and there are practical implementation issues
associated with a large number of light sources. To alleviate these problems, we proposed a method
that used only standard red-green-blue (RGB) images to achieve performance that approximates
the use of multi-wavelength images. This method used RGB images to predict the images at each
wavelength (including UV and NIR bands), instead of using the images actually acquired with a
camera. Deep neural networks (DNN) were used to predict the images at each wavelength from
the RGB images. To validate the effectiveness of the proposed method, feasibility tests were carried
out on 101 foods. The experimental results showed maximum recognition rates of 99.45 and 98.24%
using the actual and predicted images, respectively. Those rates were significantly higher than using
only the RGB images, which returned a recognition rate of only 86.3%. For caloric estimation, the
minimum values for mean absolute percentage error (MAPE) were 11.67 and 12.13 when using the
actual and predicted images, respectively. These results confirmed that the use of RGB images alone
achieves performance that is similar to multi-wavelength imaging techniques.

Keywords: convolutional neural network; multispectral imaging; food recognition; caloric estimation;
image conversion

1. Introduction

Understanding the nutritional content of foods consumed is important for the proper
treatment of a variety of conditions, which is not limited to problems associated with
metabolic diseases such as obesity [1]. To accomplish such an understanding, it is necessary
to continuously monitor the type and amount of ingested food. Conventional methods of
monitoring the type and amount of food consumed are manual recording methods [2–4].
Recently, diet-related apps have been implemented on mobile devices to make it easier for
users. The accuracy of this approach, however, is affected by user error and inattention,
which makes it less useful.

To partially solve this problem, several types of automatic food recognizers (AFRs)
have been developed by which the amounts of and types ingested foods were continuously
monitored with minimal user intervention. AFRs are divided into several categories based
on what cues are used for classification. A technique that uses sound (acoustics) to identify
food types is based on the sounds produced when food is chewed or swallowed [5–9].
Throat microphones [5,6] and in-ear microphone [7–9] were used as the acoustic sensors.
When applying an HMM-based recognizer to acoustic signals recorded by a throat mi-
crophone to classify seven foods, a recognition rate of 81.5∼90.1% was reported [6]. In a
food recognition study using an in-ear microphone, it was reported to achieve an accuracy
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of 66∼79% for seven different foods [8]. However, since it is difficult to distinguish differ-
ent foods based on acoustic signals alone, there are limits to what can be achieved with
acoustic cues.

Since foods have their own unique shapes, textures, and colors, visual cues have been
used to classify food types and estimate portion sizes [10–21]. From a classical vision-based
pattern recognition perspective, automatic food classification is implemented through a
series of processes: segmentation, feature selection, and classification of food images. As
neural networks have been applied to various image recognition tasks, attempts have
been made to use artificial neural networks (ANN) to categorize food types [14,19,20] and
estimate the calorie content of foods [14,18,21]. Caloric estimation using visual cues is
based on the following assumptions: (1) The calorie counts per size (weight) of a food are
uniquely determined by the food item. (2) Food items can be identified primarily by their
appearance. (3) The size of a food can be estimated from visual information. When using a
convolutional neural network (CNN) to classify foods and predict calories for 15 different
food items, it was found to be more accurate than classical pattern recognition [14]. Previous
image-based food analysis techniques have primarily used RGB images acquired under
visible light. This method has the advantage of easy image acquisition, but it is limited by
poor food recognition accuracy for visually similar foods. Another limitation is the inability
to utilize the specific response that certain foods emit to ultraviolet and infrared light.

To overcome these limitations, food analysis based on multispectral analysis has been
widely adopted [22–37]. The basic principle is that each individual ingredient of a food has
a unique absorption spectrum. Typically, water has a distinctly higher level of absorption
in the IR region compared with that in the visible light region. Multispectral analysis has
also been used to quantify various food components such as oil, water [22], vinegar [25],
soluble protein [35], and sugar [26–34]. Such methods, however, required spectrometers,
light sources, and hyperspectral image acquisition equipment, which led to problems such
as cost, size, and power consumption, making it difficult to implement on wearable devices.

Multispectral imaging is a method of acquiring individual images from a single wave-
length light source, including the UV and near-infrared (NIR) regions, and using them
to analyze food [29,37]. This method does not require equipment such as a spectropho-
tometer and is easy to implement using an optical camera with several LEDs and a silicon
imaging sensor, which allows an analysis of food using an approximated light absorption
distribution. In a study of detecting vinegar and dressing oil on the surface of lettuce
leaves using a light source composed of 10 LEDs with different wavelengths, an accuracy of
84.2% was achieved when using five LEDs [25]. Multiwavelength imaging techniques have
been widely applied to the detection and quantification of various components in food.
(e.g., sugar in sugarcane [27], water in beef [22], sugar in peaches [28], soluble solids in
pomegranates [31], sugar in apples [26], sugar in black tea [33], sugar in potatoes [32], and
soluble protein in oilseed rape leaves [35]). The calorie content of a food can be calculated
from the estimated amount of each ingredient.

In this study, we applied multiwavelength imaging techniques to the task of catego-
rizing foods and estimating their caloric content. The feasibility of using NIR/UV images
for food classification and caloric estimation was verified in terms of accuracy. This was
especially true for similar looking foods. Despite the many advantages of multi-wavelength
imaging techniques, several issues remain that should be addressed for practical imple-
mentation using small wearable devices. Since the number of wavelengths is related to
the resolution of the absorption/reflective spectrum of a multiwavelength image, accom-
plishing accuracy in food analysis makes it highly preferable to use as large a number
of wavelengths as possible. Using many wavelengths, however, increases the problems
associated with light source control along with drive circuitry, which leads to problems such
as large bulk, high power consumption, and heat generation. Another issue is the increased
time required for food analysis. Even if the analysis itself is completed in a very short time,
the total acquisition time of the image (before analysis) increases linearly with the number
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of wavelengths applied. When the above issues are considered, choosing a smaller number
of wavelengths is preferable from the perspective of practical implementation.

In the present study, we focused on ways to mitigate the challenges caused by acquir-
ing multi-wavelength images while retaining the advantages of multi-wavelength imaging.
Previous work has investigated the use of RGB images to estimate other types of images,
such as depth distribution [38,39] and semantic segmentation map [40]. An attempt has
also been made to use RGB images to predict IR images for the visualization of vegetation
map [41,42] and vein patterns [43]. In the present study, we proposed a method that uses
image conversion techniques to produce single-wavelength predictions of UV/NIR images
from RGB images to accomplish food classification and caloric estimation. Before recom-
mending such a method, there was a clear need to guarantee that the single-wavelength
images estimated from the RGB image would approximate the actual images. Therefore,
we evaluated the performance of image conversion for a variety of everyday foods with
respect to the accuracy of food classification and caloric estimation.

2. Materials and Methods
2.1. Data Acquisition

The types of foods used in this study are listed in Table 1, along with their calorie
counts. The foods used in the experiment were selected from everyday foods, taking
into account various physical properties and health effects. Calorie counts for each food
were calculated using the calorie-per-weight value and measured weight, if Nutrition
Facts are available. For foods without nutrition facts, calorie values were calculated using
various nutritional information (food composition, calorie-per-weight, cooking method,
etc) published by the Korea Food and Drug Administration (KFDA) [44] and measured
weights. Actual measured caloric values were accomplished without using the food
analysis equipment in this study, because unevenly distributed food ingredients could
lead to different values depending on the sample location. Moreover, the objective was
to estimate representative caloric counts using visual cues, and it was reasonable to use
values measured by a recognized organization. All liquid foods were captured by placing
the same amount of food in the same cup. This was done to suppress the adverse effects
that could be caused by different cup shapes and volumes on food classification and
caloric estimation. There were many food pairs that were visually similar but nutritionally
different, such as (coffee, coffee with sugar), (cider, water), (tofu, milk pudding), (milk soda,
milk).The usefulness of UV and NIR images for food classification and caloric estimation
was effectively demonstrated by the selection of these foods.

Table 1. Dataset properties per food item.

Food Name Caloric Count (kcal) Food Name Calorie Count (kcal)

apple juice N/a pork (steamed) 441.41
almond milk 41.57 potato chips 130.82
banana 127.80 potato chips (onion flavor) 133.95
banana milk 110.27 sports drink (blue) 17.00
chocolate bar (high protein) 167.00 chocolate bar (with fruits) 170.00
beef steak 319.39 milk pudding 189.41
beef steak with source 330.29 ramen (Korean-style noodles) 280.00
black noodles 170.00 rice (steamed) 258.45
black noodles with oil N/a rice cake 262.46
blacktea 52.68 rice cake and honey 288.60
bread 129.54 rice juice 106.21
bread and butter 182.04 rice (steamed, low-calorie) 171.18
castela 287.68 multi-grain rice 258.08
cherryade 79.06 rice noodles 140.00
chicken breast 109.00 cracker 217.88
chicken noodles 255.00 salad1 (lettuce and cucumber) 24.20
black chocolate 222.04 salad1 with olive oil 37.69
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Table 1. Cont.

Food Name Caloric Count (kcal) Food Name Calorie Count (kcal)

milk chocolate 228.43 salad2 (cabbage and carrot) 17.28
chocolate milk 122.62 salad2 with fruit-dressing 28.04
cider 70.55 armond cereal (served with milk) 217.36
clam chowder 90.00 corn cereal (served with milk) 205.19
coffee 18.56 soybean milk 85.95
coffee with sugar (10%) 55.74 spagetti 373.73
coffee with sugar (20%) 92.92 kiwi soda (sugar-free) 2.34
coffee with sugar (30%) 130.11 tofu 62.37
coke 76.36 cherry tomato 36.00
corn milk 97.18 tomato juice 59.80
corn soup 85.00 cherry tomato and syrup 61.90
cup noodle 120.00 fruit soda 27.04
rice with tuna and pepper 418.15 vinegar 20.16
dietcoke 0.00 pure water 0.00
choclate bar 249.00 watermelon juice 79.97
roasted duck 360.98 grape soda 92.43
orange soda 33.33 grape soda (sugar-free) 0.00
orange soda (sugar-free) 2.77 fried potato 331.50
fried potato and powder 364.92 yogurt 114.56
sports drink 47.23 yogurt and sugar 106.04
ginger tea 96.79 milk soda 86.84
honey tea 126.69 salt crackers 218.89
caffelatte 79.13 onion soap 83.00
caffelatte with sugar (10%) 115.66 orange juice 82.17
caffelatte with sugar (20%) 152.19 peach (cutted) 55.38
caffelatte with sugar (30%) 188.72 pear juice 90.02
mango candy 91.00 peach and syrup 124.80
mango jelly 212.43 peanuts 217.96
milk 94.50 peanuts and salt 218.21
sweet milk N/a milk tea 63.46
green soda 84.55 pizza (beef) 212.08
pizza (seafood) 148.83 pizza (potato) 179.34
pizza (combination) 175.87 plain yogurt 109.89
sports drink (white) 43.95

mean 139.27
standard deviation 101.36

The acquisition of multispectral images was achieved by using a custom-made image
acquisition system shown in Figure 1. The food was placed on a tray and the distance
between the tray and the light source was approximately 25 cm. Four digital cameras
(Arducam 1080p, Nanjing, China) were used, each facing the center of the food tray,
with an acquired image size of 640 × 480 pixels (HV). The camera was equipped with a
CMOS imaging sensor (Omnivision OV2710, Santa Clara, CA, USA) had a field of view of
100◦ × 138◦ (HD). The depth of each pixel was represented at 16 bits.

Each camera was equipped with an IR cut filter that was activated by an external
control signal. By using this, visible light was blocked when capturing NIR images. The
light source was made up of a total of 20 LEDs (Marubeni Φ5 through hole-type, Chiyoda-
ku, Tokyo, Japan) emitting different wavelengths of light (385, 405, 430, 470, 490, 510, 560,
590, 625, 645, 660, 810, 850, 870, 890, 910, 950, 970, 1020 nm, and white). The wavelengths
were chosen to ensure that the quantum efficiency of the image sensor in the camera used
was at least 10%. The white LEDs were used to acquire the RGB images and the other LEDs
were intended to obtain the images of the corresponding wavelengths. Each light source
consisted of 10 white LEDs and 30 LEDs for each wavelength. The light source for each
wavelength was shaped like a circle with a diameter of 42 mm. This was calculated from
the radiation angle of the adopted LEDs and the distance between the light source and the
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food so that entire area of the food tray was illuminated. The center of the light source
at a specific wavelength was shifted to that of the food tray before image acquisition at
that wavelength. A linear stage driven by a stepping motor (Sanyo-Denki SF2422-12B41,
Toshima-ku, Tokyo, Japan) was used to move the light source.

Figure 1. Photograph of the image acquisition system.

Data augmentation in previous studies was achieved primarily through artificial image
transformation. In this study, however, four separate cameras and a rotating table were
employed to obtain real images from as many angles as possible. The angular resolution
of the rotary table was adjustable from 1 to 30◦. A microcontroller that received control
commands from a desktop PC performed all operations of the acquisition system, including
moving the LED panel, rotating the table, and turning on and off each LED. Two datasets
were prepared for food classification and calorie estimation, respectively. The individual
data in the first dataset consisted of image-food item pairs, and the individual data in the
second dataset consisted of image-calorie value (presented in Table 1) pairs. For foods
without nutrition facts (bread and butter, coffee with sugar, sweet milk, steamed pork,
steamed rice, rice cake, rice cake and honey, and salad1 with olive oil), the calorie count
was calculated by the following process:

(1) Get the nutritional information for the individual ingredients in the food.
(2) Measure the weight of each ingredient in the food.
(3) Calculate the total calories using the nutritional information and the weight of

each ingredient.
(4) Mix the ingredients sufficiently (in the case of mixed foods) and acquire the image.

For foods for which nutrition facts were provided, calories were calculated using only
the measured weight and nutrition information for the food.

2.2. Food Classification and Caloric Estimation

Automatic food classification can be formulated as a general pattern recognition
problem based on images. In the multi-wavelength approach, instead of using just one
of the RGB images, a combination of images acquired at each wavelength was used to
classify the food items or to estimate the specific ingredients or calories in a particular
food. Accordingly, two issues should be considered: the design of the pattern recognition
methods particularly for food images and the optimal wavelength combinations in terms
of food classification/analysis. In the present study, convolutional neural networks (CNNs)
were employed to classify food images. A validation dataset was used to heuristically
determine the architecture of the CNN (Figure 2). The ratio of the number of images in the
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validation and learning datasets was 1:10. Since pattern recognition was performed within
a single category of food recognition, the resultant CNN had a relatively simple architecture
compared with previously developed CNNs (e.g., VGG-16 [14], ResNet152+ANN [19],
Inception-v3) that considered a variety of images and categories.

Figure 2. The CNN architecture for food classification, where Nw is the number of input images and
Nt is the number of targets. (101 for food classification and 1 for caloric estimation).

Rather than the full size of an image, it was experimentally confirmed that a reduced
image (64 × 64) was more beneficial in terms of classification/estimation accuracy. No
cropping was needed to extract the food portion. Accordingly, the steps for classification
and estimation could be carried out on the entire image, which included both background
and food.

A rectified linear unit (ReLU) was used as the activation function for all of the hidden
layers. For the output layer, a soft-max function and a linear combination function were
adopted for food classification and caloric estimation, respectively. The loss function for
caloric estimation was given by the mean absolute percentage error (MAPE). The MAPE in
calories for the i-th food item is given by

MAPEi =
|Mi − M̂i|

Mi
(1)

where M̂i and Mi are the estimated and true calories, respectively, for the i-th food item.
As for food classification, the cross-entropy was adopted as the loss function. As shown in
Table 1, some foods have a reference caloric value of zero, in which case the MAPE cannot
be calculated. In the present study, a caloric amount of zero was replaced with a minimum
value of 5 (kcal), as defined by [44]. When training CNNs for both caloric estimation and
food classification, the losses converged when the number of epochs exceeded 1000. The
mini-batch size was set to 32, which produced the best performance in all cases.

Although the determination of the optimal wavelength combination was an offline
process, training and evaluating a CNN for every combination of wavelengths was very
time consuming. In this study, a piecewise selection method [45] was used to reduce the
time to determine the optimal combination as opposed to obtaining similar results by
using a brute-force grid search. A piecewise selection method is basically an incremental
construction method. The set of wavelengths is constructed step by step by adding or
removing wavelengths either to or from the previously constructed set.

2.3. Prediction of UV/NIR Images Using RGB Images

In food analysis, UV/NIR images have many advantages over optical RGB images
from a complementary perspective, but there are some issues that must be addressed from
an implementation perspective. Compared with RGB images that can be acquired under
natural light, capturing UV/NIR images requires a separate light source that emits light in
that specific range of wavelengths. This means a separate space and drive circuit for the
UV/NIR light source is required, which is problematic for smaller-sized wearable devices.
The camera employed in this study has a quantum efficiency of more than 40% in the
385–1020 nm wavelength band, which eliminates the need for additional UV/NIR cameras.
Images for each wavelength cannot be simultaneously acquired, however, and must be
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gathered in separate acquisition instances. As the number of wavelengths increases, image
acquisition time increases, which can lead to issues such as camera displacement effects
during acquisition, as well as to long periods of time needed for analysis. This means
that achieving high performance in food analysis comes at the cost of increased hardware
complexity and longer analysis times.

If it is possible to obtain UV/NIR images from RGB images, the benefits of UV/NIR
imaging for food analysis could be realized with much less time for acquisition and with
no changes in hardware. Previous studies have demonstrated the feasibility of using RGB
images to predict a different domain for its application-specific representation [41]. This
study aims to improve the accuracy of food classification and caloric estimation using
UV/NIR images predicted from RGB images instead of captured (real) UV/NIR images by
using the image conversion techniques.

Using RGB images to estimate UV/NIR images could be basically be formulated
as a problem of finding the pixel-by-pixel mapping rules between the two images. This
is based on the assumption that a large amount of low-level information, such as the
location of edges, is shared between the two images [43]. Despite the existence of shared
information between the two images, each image has unique characteristics that cannot
be explained by a simple dependency relationship. Therefore, it was reasonable that the
correspondence between the two images was represented by non-linear mapping rules such
as those of deep neural networks [38,40–43,46]. Similarly, a CNN was adopted to estimate
UV/NIR images from RGB images in the present study. The CNN architecture used in this
study is shown in Figure 3, which basically is similar to that of U-net [46]. In a previous
study, a dual encoder-decoder based architecture with different depths [41] and conditional
generative adversarial networks [42,43] was employed to estimate NIR images from optical
RGB images. These two architectures were tested in terms of food recognition and caloric
estimation accuracy on the image dataset used in the present study. No clear performance
advantage over the structure shown in Figure 3 was observed in our experiments. A small
modification was made to the architecture of the original U-net to meet the objectives of the
present study (food classification and caloric estimation). At each layer, the convolution
kernel size (3 × 3), image depth (3-16-32-64-128-256-256-128-64-32-16-1) and pooling type
(2 × 2 max pooling) was determined empirically using the validation dataset.

Figure 3. The architecture of the CNN that was used to convert RGB images to UV/NIR images.

A backpropagation algorithm using the Minimum Mean Square Error (MMSE) Square
Error (MMSE) criterion was used to train the CNN. The objective function is given by the
mean square error between the estimated and the actual UV (or NIR) images, as follows:

E =
1
N

N

∑
n=1

{
F (W, Xn)− Yn

}2
(2)



Foods 2024, 13, 551 8 of 15

where F (W, Xn) is the output of the CNN with a set of kernels W where the input RGB
image Xn is given. Yn denotes the target image (UV or NIR image) at frame index n and
N is the total number of training images. In order to improve the learning convergence, a
stochastic gradient descent algorithm was performed in mini-batches with multiple epochs.
The updated estimate of the set of kernels W with a learning rate λ is iteratively calculated
as follows:

Wn+1 = Wn − λ ▽W E (3)

For image-to-image conversion, there are several metrics that could be employed to
evaluate the performance of a trained neural networks. In this study, however, performance
should be evaluated in terms of caloric estimation and food classification accuracy rather
than how visually similar the estimated images are to the actual image. To this end,
each metric was quantitatively analyzed for estimation accuracy to determine which had
more significantly appraised the performance. The results are presented in the following
experimental results section.

3. Experimental Results
3.1. Image Conversion

We first evaluated the performance of the image conversion (RGB-to-UV and RGB-
to-NIR). A total of 10,908 pairs of RGB-(UV/NIR) images were used to train the CNN
for image conversion, and 3636 RGB images were evaluated separately. The wavelengths
targeted for conversion were 385, 405, 810, 850, 870, 890, 910, 950, 970 and 1020 nm, with
an equal number of images in each wavelength. Objective measures used to evaluate
the conversion performance included peak signal-to-noise ratio (PSNR) and structural
similarity index mapping (SSIM) [47]. The results appear in Table 2. The PSNR showed
values that approximated 30 dB for all wavelengths except for 385 nm. The highest PSNR
of 34.28 dB was observed at the 385 nm wavelength, which correspondingly had the
lowest error. When similar values for SNR were observed at all wavelengths, this was
due mainly to the fact that the morphological characteristics of similar food items were
not changed, and only the brightness values within each boundary of the image were
affected. In applications such as image compression, if the PSNR of the restored image is
close to 30 dB, the corresponding image is visually similar to the original image without
unnoticeable distortion. Thus, the experimental results indicate that the image at each
wavelength predicted by RGB could serve as a substitute for the actual acquired image
from a visual perspective. The SSIM values for each wavelength also showed no significant
deviation from the overall average. However, the SSIM showed behavior that differed
slightly from that of the PSNR. The maximum SSIM was obtained at 810 nm. The SSIM was
lowest at 405 nm, but the PSNR was relatively high (31.05 dB) at that wavelength. Although
the target image was different, the results are generally similar to previous RGB-to-NIR
image conversion techniques (e.g., SSIM value of 0.847 at 820 nm [42]).

Table 2. Image prediction performance.

Wavelength (nm) 385 405 810 850 870 890 910 950 970 1020 Avg. Std.

PSNR (dB) 34.28 31.05 30.18 29.71 30.15 30.76 30.63 29.38 30.06 29.87 30.61 1.38

SSIM 0.863 0.774 0.912 0.871 0.906 0.906 0.831 0.876 0.856 0.851 0.865 0.042

Examples of the UV/NIR images predicted from RGB images appear in Figure 4, along
with the actual captured images for comparison. As shown in the figure, the predicted
images are in close visual agreement with the actual images acquired by the camera. These
results were somewhat expected based on the objective metrics. However, some spots in
areas of uniform brightness (e.g., the coke region in the “coke image”) were occasionally
found in the predicted image.
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wavelength (nm)
358 405 810 850 870 890 910 950 970 1020

(a)

(b)

(c)

(d)

Figure 4. Examples of the original (top)/predicted (bottom) images at each wavelength for (a) corn
soup, (b) coke, (c) tomato, and (d) pork.

3.2. Food Classification

The correct classification rates for food images according to the number of wavelengths
when using actual images from the camera appear in Table 3. For comparison, the four
different NN architectures using RGB images alone were tested, which included VGG-16
nets [14], ResNet152+ANN [19], and a wide hierarchical subnetwork-based neural network
(WI-HSNN) [20]. The output nodes of these neural networks were adjusted to match the
number of food items adopted in this study, and the classification accuracy was compared
with the proposed NN architecture. All images, except for the RGB images, were acquired
from UV and NIR light sources.

The four neural networks using only RGB images showed similar classification ac-
curacy, as shown in Table 3. The proposed neural network architecture revealed only
a 0.81% difference in classification accuracy compared to the WI-HSNN, which showed
the highest accuracy. The results showed that the addition of just a single wavelength
image at 970 nm to the RGB image increased the recognition rate by 10.32%. This was
due primarily to a significant increase in recognition rates for food pairs that looked very
similar but had differences between the UV or NIR images [45]. The highest recognition
rate was 99.45% when recognition was performed using eight single-wavelength images
in addition to the RGB image. When all wavelengths of images (11 including the RGB
image) were used, the recognition rate was slightly lower than its maximum, which was
likely a result of overtraining due to excessive image usage. The correlation coefficient
between the recognition rate and the number of wavelengths was 0.767, which indicated a
significant increase in the recognition rate with the number of wavelengths. However, this
also indicated that increasing the recognition rate comes at a cost: more lights, more image
acquisition time, etc.
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Table 3. Food classification accuracies for each of selected wavelengths, in the case of using actual
captured images.

No. of
Images Selected Wavelengths (nm) Acc.

(%)

1 RGB (VGG16) [14] 85.54
1 RGB (ResNet152+ANN) [19] 87.23
1 RGB (WI-HSNN) [20] 88.04
1 RGB (proposed) 86.30
2 RGB 970 96.62
3 RGB 910 970 98.60
4 RGB 405 910 970 98.43
5 RGB 405 910 950 970 98.71
6 RGB 385 405 910 950 970 99.06
7 RGB 385 405 890 910 950 970 99.23
8 RGB 385 810 850 890 910 950 970 99.37
9 RGB 385 810 850 870 890 910 950 970 99.45
10 RGB 385 810 850 870 890 910 950 970 1020 99.06
11 RGB 385 405 810 850 870 890 910 950 970 1020 99.15

As a way to solve this problem, the results of food recognition obtained by using
the predicted UV/NIR images from RGB images are presented in Table 4. The average
PSNRs and SSIMs are also presented as prediction performance metrics for images at
each selected wavelength. As with using the actual captured image, adding the predicted
single-wavelength image improved the classification rate by 5% over using the RGB image
alone. The maximum accuracy was obtained when all single wavelength images were
combined with the RGB image to train the neural network for food classification, with
a value of 98.24%. It is noteworthy that in this case, all single-wavelength images were
obtained from RGB images, so there was no need to increase either the acquisition time
or the number of wavelengths (or, equivalently, the number of light sources) as when
using actual images. The selected wavelengths were different from when actual images
were used and the classification rates were slightly lower than when using actual images.
The difference in the maximum classification rate between the two cases (using actual or
predicted images) was only 1.21%. Using the actual images, however, would require a total
of nine image acquisitions, which implies nine different LED light sources and a nine-folds
increase in acquisition time.

Table 4. Food classification accuracies, average PSNR, and average SSIM for each of selected wave-
lengths for food classification, in the case of using predicted images.

No. of
Images Selected Wavelengths (nm) Acc.

(%)
Avg.

PSNR
Avg.

SSIM

1 RGB 90.23 – –
2 RGB 950 95.24 29.38 0.876
3 RGB 385 870 96.89 32.22 0.885
4 RGB 385 870 1020 97.61 31.43 0.874
5 RGB 385 810 870 1020 96.59 31.12 0.883
6 RGB 385 810 850 870 970 98.13 30.88 0.882
7 RGB 385 405 810 850 870 1020 97.91 30.87 0.863
8 RGB 385 405 810 850 870 910 1020 97.85 30.84 0.858
9 RGB 385 405 810 850 870 910 970 1020 98.16 30.74 0.858

10 RGB 385 405 810 850 870 890 910 950 970 97.77 30.69 0.866
11 RGB 385 405 810 850 870 890 910 950 970 1020 98.24 30.61 0.865

The relationships between each of the image conversion metrics and the recognition
rates were also analyzed. There was a positive correlation between the PSNR and the
classification rate, with a value of 0.340, which is insignificant. The correlation coefficient
between SSIM and the recognition rate was −0.522, which means that even if the predicted
image approximates the actual image in terms of SSIM metrics, the recognition rate could
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be worse. These results suggest that the metrics employed for image prediction are not
significantly related to recognition rate.

The experiment was also conducted in which the conversion rules (RGB-to-UV, RGB-to-
NIR) from the images acquired in this study were applied to the images in the well-known
food image dataset, such as FOOD-101. Since the reference images (single wavelength
images) were not available in FOOD-101, it was impossible to evaluate the performance
of image conversion in terms of PSNR, SSIM, etc. However, meaningful performance
improvements were achieved, when food classification rules were constructed using the
estimated UV/NIR images. This indicates that although the conversion rules were not built
from the FOOD-101 dataset, these conversion rules were useful for multi-wavelength food
classification for the FOOD-101 dataset.

3.3. Caloric Estimation

The results of estimating calories from images of food appear in Table 5 when training
a neural network using RGB images alone and UV/NIR images together. In the case of
using RGB image alone, the VGG-16 nets with the linear activation function at the output
node [14] was also tested for comparison. The two neural networks using only RGB images
reveled similar performance in terms of MAPE (28.65 vs. 27.95). The MAPE was decreased
by 24.12% (from 28.65 to 21.74) when one NIR image at 970nm was used with an RGB
image. This was the maximum reduction that could be achieved by increasing the number
of wavelengths by one, which indicates that the addition of only a single wavelength image
to an RGB image could result in the greatest reduction in MAPE.

Table 5. Caloric estimation results for each of selected wavelengths, in the case of using actual
captured images.

No. of
Images Selected Wavelengths (nm) MAPE

1 RGB (VGG16) [14] 27.95
1 RGB (proposed) 28.65
2 RGB 970 21.74
3 RGB 385 1020 18.54
4 RGB 385 970 1020 18.30
5 RGB 385 850 970 1020 14.57
6 RGB 385 850 890 970 1020 14.29
7 RGB 385 405 850 910 979 1020 12.63
8 RGB 385 405 850 910 950 970 1020 11.67
9 RGB 385 405 850 870 910 950 970 1020 15.00

10 RGB 385 405 810 850 870 910 950 970 1020 12.68
11 RGB 385 405 810 850 870 890 910 950 970 1020 21.42

While the MAPE values decreased as the number of wavelengths increased, there was
a significant increase in MAPE values when using images of all wavelengths adopted in
this study. This appears to be a side effect of using too many multiwavelength images,
as evidenced by the fact that the MAPE value actually increases as the number of images
increases from 8 to 9. Excluding the maximum number of wavelengths (11), the correlation
coefficient between MAPE and the number of wavelengths is −0.8471, indicating that
MAPE decreases significantly with the number of wavelengths. Linear regression analysis
also showed that the MAPE was decreased by 1.034 when the number of wavelengths was
increased by one. The minimum MAPE (11.67) was obtained when a total of 8 images
was used, which includes RGB images. Similar to food classification, it is apparent that
an 8-fold acquisition of images is required compared with the conventional method using
only RGB images.

So far, the results were obtained by using the actually captured images. The results
of caloric estimation using UV/NIR images predicted from RGB images are presented in
Table 6. The results are similar to using actual acquired images. When the neural network
was trained by adding just one type of single-wavelength NIR image to the RGB image,
a 37.55% reduction in MAPE was achieved. The first wavelength selected was 970 nm,
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which approximates the 950 nm that was observed when using the actual images. The
correlation coefficient between MAPE and the number of images (number of wavelengths)
was −0.7166, which is slightly lower than when using actual acquisition images. The lowest
MAPE value was obtained when a total of 11 images was used, indicating that more images
were needed when using predicted images compared with using actual images, such as
for food classification. The difference in the minimum MAPE value between using the
actual acquisition images and using the estimated images was only 0.46, which was is not
a significant difference. Such results demonstrate that image conversion techniques are
useful in caloric estimation with high accuracy while overcoming the challenges associated
with an increased number of light sources and repeated image acquisition.

Table 6. Caloric estimation results for each of selected wavelengths, in the case of using predicted images.

No. of
Images

Selected Wavelengths (nm)
MAPE

Avg.
PSNR

Avg.
SSIM

1 RGB 32.28 – –
2 RGB 970 20.16 30.06 0.856
3 RGB 385 970 17.59 32.17 0.859
4 RGB 385 405 970 16.65 31.80 0.831
5 RGB 385 405 850 970 18.19 31.28 0.841
6 RGB 385 405 850 890 970 15.96 31.17 0.854
7 RGB 385 850 870 890 970 1020 16.21 30.81 0.876
8 RGB 385 405 850 870 890 970 1020 17.05 30.84 0.861
9 RGB 385 405 850 870 890 950 970 1020 17.41 30.66 0.863
10 RGB 385 405 810 850 870 890 910 950 1020 12.13 30.60 0.868
11 RGB 385 405 810 850 870 890 910 950 970 1020 18.71 30.61 0.865

A correlation analysis between the accuracy of caloric estimation and the objective
metrics of image conversion was also investigated. Both PSNR and SSIM have negative
correlation coefficients, which means that a better conversion performance equates to a
more accurate caloric estimation. However, the absolute value of the correlation coefficient
is very small (0.097 and 0.256 for PSNR and SSIM, respectively), and indicates that PSNR
and SSIM, which we used as metrics of conversion performance in this study, do not
significantly affect the accuracy of caloric estimation. These results suggest that, as in food
classification, the metrics in image conversion that are more closely related to the accuracy
of caloric estimation should be explored.

4. Conclusions

Image-based food analysis technology is an attractive method since it does not require
expensive specialized equipment and can be implemented on existing wearable devices. It
is essential that the precision of image-based analysis is at least comparable to what could
be achieved with specialized equipment. To this end, multi-wavelength image analysis was
adopted in which multiple images acquired from multiple narrow-band wavelength light
sources including UV and NIR lights were used. Such an approach showed significantly
higher accuracy in food classification and caloric estimation compared to using RGB images
only. There are the drawbacks, however, of requiring multiple light sources and long
acquisition times. To mitigate these problems, we propose the use of converted RGB images
instead of actual UV/NIR images acquired using a camera.

It was experimentally confirmed that the UV/NIR images estimated from the RGB
images were very similar to the originals from both visual and objective perspectives.
The performance of the multi-wavelength food analysis techniques using the estimated
images approximated the use of actual images in terms of both food classification and
caloric estimation. In conclusion, high performance multi-wavelength imaging techniques
could be achieved using conventional RGB images with only a software change. As future
study, we will focus on image conversion techniques that improve not only the visual and



Foods 2024, 13, 551 13 of 15

objective similarities between the converted and original images, but also on the precision
of food analysis.
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