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Abstract: Microalgae are a sustainable source for the production of biofuels and bioactive compounds.
This review discusses significant research on innovative extraction techniques using dimethyl ether
(DME) as a green subcritical fluid. DME, which is characterized by its low boiling point and safety
as an organic solvent, exhibits remarkable properties that enable high extraction rates of various
active compounds, including lipids and bioactive compounds, from high-water-content microalgae
without the need for drying. In this review, the superiority of liquefied DME extraction technology
for microalgae over conventional methods is discussed in detail. In addition, we elucidate the
extraction mechanism of this technology and address its safety for human health and the environment.
This review also covers aspects related to extraction equipment, various applications of different
extraction processes, and the estimation and trend analysis of the Hansen solubility parameters. In
addition, we anticipate a promising trajectory for the expansion of this technology for the extraction
of various resources.
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1. Introduction

Plants contain a wide variety of naturally occurring organic compounds that are pro-
duced and metabolized in their bodies. These compounds include waxes, terpenoids, lipids,
phenolic compounds, polar glucosides, alkaloids, sugars, peptides, and various other sub-
stances [1]. The most important physiologically active plant compounds include phenolic
compounds (including flavonoids), saponins, and cyclins, which play key roles as dietary
supplements [2]. Natural phytonutrients are widely distributed and contain a diverse
range of compounds with low to high molecular weights [3–5]. Compounds with strong
physiological activities against living organisms have attracted considerable attention from
researchers, leading to the exploration of new natural products and structural modifications,
particularly in fields such as medicine, pharmaceuticals, and nutraceuticals [3–8].

Organic compounds obtained from nature serve as dietary supplements that help
improve health, delay aging, prevent chronic disease, prolong life, and support the structure
and function of the body [9–11]. The market for dietary supplements was estimated to
be approximately USD 353 billion in 2019 and it is growing steadily [12]. Because of the
impact of the COVID-19 pandemic, the demand for dietary supplements has increased and
was projected to reach approximately USD 561 billion by 2022 [13]. Consumers seek health
and immune benefits from dietary supplements to protect themselves from infections
and diseases.

Substances such as antibiotics, chemical preservatives, and alkaloids have been used in
the formulation and extraction of bioactive compounds in various food industries, includ-
ing sugarcane [14], tea [15], coffee [16], and plant extracts [17,18]. The preparation of natural
material samples involves several critical steps: The initial phase includes preliminary
washing of plant materials, drying or lyophilization, and grinding for homogenization. The
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next steps include extraction and qualitative/quantitative analyses [19]. The production of
natural materials is expensive and has the drawback of reduced nutrient concentrations
in the raw material itself; this poses a significant obstacle for the natural materials indus-
try [20,21]. Consequently, several natural ingredients require solvent-based extraction and
purification to produce dietary supplements [22,23].

To extract compounds from natural sources while avoiding high temperatures and
dryness, researchers should employ methods that use water-miscible solvents, low-boiling
solvents for extraction, or solvents that can be evaporated at 40 ◦C using solar heat. In
addition, the selected solvents must have a large difference in boiling point compared to
water to ensure minimal residue and nontoxicity. Liquefied dimethyl ether (DME) has been
proposed as a solvent that meets these requirements [24].

This review provides information on the extraction of natural products from renewable
sources using liquefied DME, an environmentally friendly solvent. DME, with a standard
boiling point of −24.8 ◦C because of its molecular structure, requires pressurization up
to 0.59 MPa before it can be used as a liquid solvent at 25 ◦C [25]. The EU allows the
use of DME as a food extraction medium [26], and the United States Food and Drug
Administration (FDA) classifies DME as “Generally Recognized as Safe (GRAS)” [27]. This
review outlines the potential applications of liquefied DME in the extraction of various
functional compounds from foods, dietary supplements, and medicinal plants. It aims to
highlight how liquefied DME, as an alternative to traditional, toxic organic solvents, can be
beneficial to industries engaged in the solvent extraction of natural products.

2. Disadvantages of Conventional Extraction Techniques
2.1. Disadvantages of Traditional Solvent Extraction

Conventional extraction methods for natural organic compounds have historically
relied on various solid–liquid extraction techniques using organic solvents, such as the
Soxhlet extraction method, immersion method, and steam distillation [28]. Commonly
used solvents in these methods include acetone, acetic acid, chloroform, dichloromethane,
diethyl ether, ethanol, and hexane (Table 1). The quantitative and qualitative performance
of the extraction depends heavily on the polarity of the solvent used. This necessitates
the selection of a solvent appropriate for the polarity of the target component, without
a predefined method or solvent [29]. Despite their simplicity, conventional extraction
methods suffer from low selectivity, low recovery and extraction rates, labor intensiveness,
time consumption, and the use of large amounts of often toxic organic solvents, leading to
potential trace residues in the extracts [30].

Traditionally, organic solvents such as chloroform, hexane, methanol, and dichloromethane
have been used to extract lipids and other functional compounds [31,32] (Figure 1). However,
owing to significant waste generation and risks to the environment and human health, the
demand for sustainable, nontoxic extraction methods has increased. Conventional extraction
processes require dried algal starting materials and consume considerable time and energy [33].
For lipid extraction from microalgae, 90% of process energy consumption is attributed to lipid
extraction [34]. Wet extraction, which accounts for 70% of total energy consumption, appears to be
promising. Therefore, exploring new processes for lipid recovery from microalgae using limited
drying methods is necessary. Currently, easily recoverable lipid species are prioritized.
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Figure 1. Conventional organic solvent extraction of phytochemicals.

Ethanol is a low molecular weight organic compound that exhibits both hydrophilic
and lipophilic properties, making it suitable for the extraction of bioactive compounds such
as phenolic acids, flavonoids, and phenolic acid esters [35]. However, the use of ethanol
in food processing is prohibited in certain regions and cultures, necessitating the use of
alternative solvents. When ethanol is used to extract highly aqueous samples, the addition
of benzene to the ethanol–water mixture is required to increase water volatility and prevent
water contamination via co-boiling, thereby preserving the non-polar components [36].
Considering the effect of ethanol on human health, dietary supplements should either
avoid its use or maintain its concentration as low as possible [37,38]. In a study conducted
in 2021, liquid herbal dietary supplements (103) were purchased from a pharmacy (Novi
Sad, Serbia) and the presence of ethanol and specific residual solvents was analyzed
using gas chromatography–mass spectrometry (GC–MS). Among the eighteen products for
infants under two years of age, only one product had no quantifiable ethanol content [39].
Therefore, awareness among professionals and the general public should be increased.

Supercritical carbon dioxide (scCO2) exhibits an intermediate state between gas and
liquid when maintained at high temperatures and pressures above the critical point (31.3 ◦C,
7.38 MPa) [40]. The use of scCO2 remarkably improves the extraction efficiency of functional
components, enabling selective extraction via temperature or pressure control [41–43]. The
extraction of functional components using scCO2 has been applied to various natural food
sources, such as essential oils [44], γ-oryzanol [45], chamomile seed oil [46], and hops [47],
as well as for caffeine removal [48] and oil extraction from microalgae [49–51]. However,
the extraction of functional components from highly aqueous samples using supercritical
methods is challenging [52]. This is because of the non-polar nature of scCO2, which often
requires the addition of entrainer solvents such as methanol [53,54], ethanol [55], and
acetone [56] to facilitate extraction [57].
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Table 1. Comparison of extraction techniques using different solvents.

Solvent Extraction Method Extraction, Temperature,
and Time

Boiling Point of Solvent
[◦C] Compound Type Reference

Acetone Ultrasound-assisted extraction 45 ◦C, 20 min 56.0 Tannins [58]
Acetic acid Ultrasound-assisted extraction 50 ◦C, 30 min 118 Flavonoids [59]
Chloroform Homogenization and drying at 65 ◦C overnight 25 ◦C, 61.0 Lipids [60]

Dichloromethane Dichloromethane/methanol solvent system;
freeze-drying at 80 ◦C for 24 h 50 ◦C, 6 h 39.6 Lipids [61]

Diethyl ether Soxhlet extraction; rinsing bath at room
temperature for 12 h 5 h 34.0 Lipids [62]

DME Flow extraction 25 ◦C, −24.8 Lipids [63]
Ethanol Soxhlet extraction 100 ◦C, 8 h 78.4 Rice bran oil [64]
Ethyl acetate Soxhlet extraction 8 h 77.1 Phenolic compounds [65]
Hexane Soxhlet extraction 60 ◦C, 11 h 68.7 Phenolic compounds [66]

Methanol Homogenization 60 ◦C, 24 h 64.7 Phenolics, alkaloids,
flavonoids, and terpenoids [67]

Water Shaking incubation 25 ◦C, 24 h 100
Phenolic compounds,
flavonoids, anthocyanins,
and antioxidants

[68]
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2.2. Disadvantages of Traditional Extraction Methods

Pre-drying is essential for moisture-containing natural products because moisture
content inhibits solvent extraction [69]. For example, coffee hulls have a high moisture
content, ranging from 18% to 80% w/w, which includes bound water trapped in the fine
structure of solid particles. Therefore, most solvent extraction techniques require dried
samples [70]. Historically, drying natural materials under natural conditions has been
the primary method of preservation. However, this method is now being abandoned
owing to its lengthy process and the inability to adjust the drying parameters. Recent
drying methods for natural materials include heating, freezing, convection, and microwave
vacuum drying [71]. Drying conditions and plant species considerably affect the content of
bioactive compounds. For example, heat-drying Asiatic pennywort powder results in lower
levels of phenolic bioactive compounds and reduced antioxidant activity [72]. Similarly,
the vitamin C content of dried Stevia rebaudiana leaves decreases with increasing drying
temperatures [73].

The production of instant coffee requires high thermal energy (21.10 and 8.50 MJ/kg
product) for spray drying and extraction, accounting for three-quarters of the total pro-
cess [74]. Spray drying is the most commonly used method for this purpose and requires
10–20 times more energy per kilogram of evaporated water than drying using an evaporator.
To reduce energy consumption, researchers use evaporators to preconcentrate coffee sam-
ples before drying [75]. Heat-sensitive substances require extraction at room temperature
or cold solvent removal, such as via lyophilization. High extraction temperatures result in
solvent loss and component degradation. Anthocyanins, which are valuable, colored bioac-
tive compounds, are increasingly extracted worldwide, but their functionality is limited by
their decomposition at 50–60 ◦C, indicating limited temperature stability [76]. Essential oils,
composed mainly of terpenoids and aromatic compounds, exhibit remarkable antioxidant
activity but low thermal stability. Because of the low thermal stability of leaf oils, the
manufacturing process of leaf-oil-related products requires the addition of antioxidants to
maintain their quality [77].

The extraction of natural compounds requires a series of complex operations, such
as sample drying, pulverization, extraction, and solvent removal [78] (Figure 1). The ex-
traction process begins with solvent selection and involves the use of extraction techniques
with higher extraction rates [79]. Traditional extraction techniques such as maceration,
Soxhlet extraction, and decoction have significant drawbacks, including long extraction
times, poor selectivity, expensive solvents, and the need for significant solvent evapo-
ration [80]. Consequently, modern methods such as enzyme-assisted extraction (EAE),
ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized
liquid extraction (PLE), and supercritical fluid extraction (SFE) have been developed [81,82].
These techniques use minimal amounts of solvents or specialized green solvents and offer
several advantages over traditional extraction methods.

Maceration involves coarsely grinding the raw material, placing it in a container,
pouring the solvent to completely cover the material, and extracting it while stirring until
the soluble substances dissolve [83]. However, this method typically takes several days to
weeks due to its long soaking time [84].

Soxhlet extraction, a model extraction technique traditionally used to extract com-
pounds, particularly lipids, from solid or semi-solid matrices, has several drawbacks, such
as long extraction times (12–24 h), high solvent volumes, high energy consumption, and
issues regarding selectivity and efficiency [85–87].

Decoction is used to extract thermally stable bioactive compounds by boiling the raw
materials in water [88]. However, this limits the extraction of water-soluble components,
increases the solvent-to-solid ratio, and introduces numerous water-soluble impurities
into the extract [89]. In addition, decoction cannot be used to extract thermolabile or
volatile compounds.

In recent years, advances in extraction techniques have focused on modern methods
that use minimal amounts of solvents or specific green solvents. EAE has proven useful for
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the extraction of cell-wall-associated phytochemicals [90]. This environmentally friendly
method requires less energy and equipment than other techniques and reduces the use of
toxic solvents. However, enzymes are prohibitively too expensive for use in large-scale
extractions [91].

UAE increases the extraction efficiency by promoting solute dissolution, diffusion,
and heat transfer through the generation of cavitation via ultrasound irradiation in the
solvent [92]. UAE requires minimal solvent and energy consumption and reduces the
extraction temperature and time. Increasing the temperature increases solute detachment
from the solvent, solute solubility, solvent viscosity, and solvent diffusion within the tissue
matrix. However, excessively high temperatures can decrease yield because of weakened
cavitation effects [93], as observed by Al-Dhabi et al.; in this study, the yield increased
with temperature from 30 to 45 ◦C during the extraction of phenolic compounds from used
coffee grounds but decreased beyond 45 ◦C [94].

MAE combines traditional solvent extraction with microwave irradiation and converts
the absorbed energy into heat, resulting in the heating of the material [95]. It offers
advantages such as improved extraction yields, reduced thermal degradation, and the
selective heating of plant materials. However, excessive microwave power can cause the
decomposition of heat-sensitive compounds in the plant matrix, thereby reducing extraction
efficiency [96]. In addition, MAE generates waste and consumes solvents.

PLE maintains the solvent in a liquid state above its boiling point under high pres-
sure and increases solute solubility, diffusion, and solvent permeability into the matrix;
however, its high extraction temperature (140–170 ◦C) may limit its use for thermolabile
compounds [97].

SFE, which operates at low critical temperatures (31 ◦C), offers attractive advantages
such as low toxicity, selectivity, inactivity, low cost, and the ability to extract thermally
unstable compounds using scCO2, which is ideal for extracting non-polar natural products.
The addition of entrainer solvents to enhance the solvation properties of CO2 is also
feasible [98,99].

3. Advantages of Liquefied DME as an Extractant
3.1. Physical Properties of DME

DME is a simple ether with the chemical formula CH3–O–CH3 and lacks a direct
C–C bond. DME has a high oxygen content (34.8%) and low carbon-to-hydrogen ratio
(C:H) [100]. The two methyl groups in DME form two polarized bonds oriented at an
angle of 111.8 ± 0.2◦, resulting in a bent V-shaped molecular geometry around the central
oxygen atom [101]. DME contains two types of bonds (C–O and C–H). Although there is a
0.4-unit electronegativity difference between C–H bonds, which results in weak polarity,
C–O bonds have a 1-unit electronegativity difference, indicating a higher polarity [102].
Because of the uneven distribution of charged electron clouds throughout the molecule,
DME exhibits a dipole moment of 1.3 D, making it a polar substance [103]. In addition, the
polarization of the nonbonding electron pairs on oxygen contributes to the dipole moment
of DME.

DME is a gas under standard conditions and has a boiling point of −24.8 ◦C [25]. This
gaseous state results in minimal residue in the extracted materials [104]. Although denser
than dry air, DME exists as a vapor at 0.1 MPa and 25 ◦C. Moreover, it transitions from the
vapor to the liquid phase above a saturated vapor pressure of 0.59 MPa at 25 ◦C [105,106].
The density of liquid DME at 25 ◦C is 668 kg/m3 [107].

The dielectric constant (ε) of liquid DME at 30.5 ◦C and 6.3 MPa is 5.34 [108]. In com-
parison, the dielectric constant (ε) of water (30 ◦C, 25 MPa) is 80 [109]. This suggests that the
polarity of DME is suitable for dissolving non-polar to moderately polar substances [110].
DME can bind to both polar and non-polar compounds via the oxygen atom at its molecular
center. It forms hydrogen bonds with the hydrogen atoms of other molecules, thereby
increasing extractability [63,111].
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3.2. Cell Destruction and Drying-Free Extraction Techniques

Plant cells are surrounded by a cell wall, which is mainly composed of cellulose. For
example, microalgae such as Chlorella species possess a robust cell wall approximately
88 nm in thickness [112]. Consequently, the extraction of active components, such as lipids,
from cells requires long processing times, hydrophobic extraction solvents, and energy-
intensive mechanical disruption methods [113]. Because phospholipids in cell membranes
are amphiphilic molecules, they require a mixture of polar and non-polar organic solvents
for extraction. Liquid DME is well-known for extracting neutral and complex lipids from
dairy products [114]. Liquid DME is used to extract compounds from various wet and dry
biomasses containing lipid-rich compounds without cell disruption [24,115–118] (Figure 2).
The liquefied DME extraction method is suitable for extracting lipids from the microalgae
diatom Chaetoceros gracilis and the coccolithophore Pleurochrysis carterae, whose cell walls
are biomineralized [24]. The “hard” biomineralized cell walls of the microalgae were found
to have no effect on lipid extraction from liquefied DME.

Figure 2. Extraction process using liquefied DME; liquefied DME dissolves the phospholipid bilayer
of the cell membrane and water.

In addition, an energy-intensive pre-treatment process to dehydrate the wet microalgae
prior to solvent extraction is essential to increase the extraction efficiency of the active
compounds in the microalgae [119]. Unlike conventional supercritical extraction solvents,
DME exhibits substantial miscibility and mutual solubility in water. It exhibits high
hydrophilicity and dissolves in water at 35 wt% (0.55 MPa, 25 ◦C), while the solubility
of water in DME is 7.0 wt% (0.55 MPa, 25 ◦C) [120]. Pre-blending ethanol with DME at
approximately 6 wt% allows for customizable mixing ratios of DME and water [120]. Upon
interaction with water, DME acts as a hydrogen bond acceptor, resulting in the formation
of weak hydrogen bonds between the oxygen atoms of DME and those of water [63,111].
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This property allows DME to process wet feedstock [121]. Depending on the composition
of the mixture, water can act as a co-solvent for water-soluble compounds [24,114,122].

3.3. Safety of Liquefied DME as an Extraction Solvent

DME, a recognized organic solvent with a low boiling point that is safe for human
use, has significant potential for the extraction of various active ingredients. It has been
approved for use as an extraction solvent in the food industries of the United States,
Europe, and other regions. The European Food Safety Authority (EFSA), in its assessment
of the safety of DME as an extraction solvent for the removal of fats from animal protein
sources, stated that residual levels of up to 9 µg/kg in extracted animal protein do not
pose a significant safety concern [26]. Food Standards Australia New Zealand (FSANZ)
approved the use of DME as an extraction solvent processing aid for all dairy ingredients
and products [123].

In the United States, DME can be commercially marketed for its intended use without
the need for the FDA to promulgate food-additive regulations [27]. In addition, under the
Federal Food, Drug, and Cosmetic Act (FFDCA), amended by the Food Quality Protection
Act (FQPA) in 1996, DuPont petitioned the Environmental Protection Agency (EPA) for
tolerance exemptions for DME residues. Consequently, the EPA determined that it was no
longer necessary to establish a maximum residue limit for DME [124].

In experiments with rats exposed to DME, DME residues in the bodies of the rats were
in the range of 14–19 ppm when the airborne concentration of DME reached 1000 ppm.
These concentrations were equivalent to 1/61 of the airborne concentrations accumu-
lated in the body. After inhalation for 60 min, the rats’ various organs showed DME
concentrations that decreased to less than 4 ppm within 90 min [125,126]. In blood, ex-
posure up to 10,000 ppm showed no significant effects, and a 30-week exposure to DME
(2000–20,000 ppm) revealed no adverse effects [125,126].

As of 2022, the current toxicity data on DME lacks information on oral and ocular irri-
tation, skin absorption, skin irritation, and skin sensitization. In 1925, Davidson et al. found
that exposure to DME at concentrations of 50,000 and 75,000 ppm for 12 min produced mild
intoxication but no significant objective symptoms [127]. Regarding occupational exposure
limits, the accepted workplace air concentration for DME in Europe, the United States, and
Japan is 1000 ppm, which is equivalent to the handling standards for liquefied petroleum
gas (LPG) [125,126]. DuPont recommends an exposure limit (eight-hour, time-weighted
average) of 1000 ppm (v/v) for DME in the workplace [128].

3.4. Environmental Issues Caused by Liquefied DME Extraction

The synthesis of DME from renewable sources, utilizing biomass-derived CO2 and
hydrogen generated via water electrolysis (powered by solar or wind energy), enables
the production of DME from renewable feedstocks [129]. The lack of explosive peroxide
formation in DME allows safe storage [130]. As it does not form peroxide aerosols, DME
has attracted considerable attention as a propellant for household hairsprays [131]. Gen-
erally considered biodegradable, nontoxic, non-carcinogenic, and non-corrosive, DME
has proven to be ideal for various everyday applications such as personal care products
(hairsprays, shaving creams, foams, and antiperspirants), household products, paints,
coatings, food, insect repellents, and animal products [132,133]. DME then undergoes
photochemical reactions with OH radicals to produce CO2 and H2O [134]. Experimental
modeling under ultraviolet radiation indicates that DME has a degradation half-life of
3–30 h, reaching approximately 100–150 h in the upper atmospheric regions up to an
altitude of approximately 10 km. Although freon compounds may take several years or
decades to degrade, DME degradation occurs in approximately 0.014 years (5.1 days) [134].
Owing to its atmospheric degradation time of several tens of hours, DME contributes
minimally to photochemical reactions and is, therefore, of negligible concern regarding
global warming or ozone depletion [135]. Reports indicate that DME has a global warming
potential of 1.2 over 20 years, 0.3 over 100 years, and 0.1 over 500 years for CO2 [134]. With a
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short atmospheric life of 5.1 days and negligible ozone impact, DME is a spray gas that does
not destroy the ozone layer [136]. DME has several advantages such as nontoxicity and
low environmental risk, ensuring that it does not contaminate water, sink into waterways,
or leach into the soil, even in the event of accidental release.

DME has similar physical properties to LPG and has been developed as a synthetic
fuel. In China, it is used commercially as a substitute for LPG in city gas, often blended
with 20% propane for consumer use [137]. It is also used as a fuel in automotive and
industrial applications. However, pure DME has an explosive range of 3.427 vol% in
air, which is a significant safety concern when used as an extraction solvent [137]. To
address this issue, the blending of DME with CO2 has been investigated. When the mole
fraction of CO2 exceeds 0.882, the mixture falls out of the explosive range and becomes
non-flammable [137]. In addition to flammability concerns, DME offers unique extraction
capabilities. DME, although weakly polar, has the ability to extract both polar and non-
polar substances, unlike supercritical carbon dioxide and hexane that are non-polar and
selectively extract non-polar substances [137].

3.5. Liquefied DME Extraction

Figure 3 shows a schematic of a laboratory-scale liquefied DME extraction system [138].
This DME extraction system consists of a series of connections, including a metal tank
containing liquefied DME (500 mL capacity), an extraction column (10–100 mL capacity),
and an extraction solution collection tank (96 mL capacity).

Figure 3. Schematic of a laboratory-scale extraction system using liquefied DME.

Kanda et al. pioneered the design and development of the first DME ambient-
temperature drying and purification process prototype [139]. Using this prototype, ambient
temperature dewatering and deodorization of high-moisture coal and sewage sludge were
achieved [139]. Kanda et al. (2019) developed the largest microalgal oil extraction appara-
tus in the world (Figure 4a). This apparatus successfully extracts oil from high-moisture
microalgae without drying [140]. In addition, they were able to limit CO2 emissions during
the extraction process to a level determined by the CO2 captured from the oil. A centrifu-
gal separator was used to recover microalgae from a 300-ton raceway cultivation tank at
1500–2100 G and at a processing rate of 3–7 tons per hour (Figure 4b).
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Figure 4. (a) Experimental setup of a microalgae oil extraction system using liquefied DME; (b) A
microalgae recovery system [140].

As shown in Table 2, modular and pilot-scale extraction systems have been developed
and are sold worldwide for the extraction of useful components using liquefied DME. The
Dexso Butanex 345/600 mm extractor is a modular aluminum extraction system [141]. This
method can be used to directly produce high-purity essential oil extracts from plants. Other
extractors are designed for solvents with a boiling point below ambient temperature, such
as liquefied DME or butane, typically with a boiling point below 0 ◦C and a liquefaction
pressure below 0.8 MPa at 20 ◦C [142–144]. These are characterized by the fact that the
vaporized solvents are recompressed and liquefied for reuse. Because its body volume is
as large as 2.5–200 L, the extractor can be installed in various places, such as laboratories,
manufacturing plants, food and beverage factories, and agricultural food stores. The
specific heat capacity of liquefied DME at 310 K and 0.817 MPa is 2.70 kJ·kg−1·K−1 [145].
The latent heat of vaporization of DME is 460 kJ·kg−1 [146]. In contrast, the specific
heat capacity of methanol at 293.15 K is 2.55 kJ·kg−1·K−1. However, the latent heat of
vaporization of methanol is 1109 kJ·kg−1 [147]. Because the latent heat of vaporization of
methanol is much greater than that of DME, recycling the same weight of liquefied DME
would theoretically reduce the energy consumption to less than half that of methanol.

Table 2. Extraction system using commercially available liquefied DME.

Product Name Specification Solvents and Applications Reference

Dexso Butanex 345/600 mm
Extractor

A 125 or 50 cm extraction tube, for up to 40 g or
100 g (1.4 or 3.6 ounces)
Centerpiece with magnetic tripod, easy assembly
Magnetic feet, safe stand
O-ring seal, safe extraction
Emptying unit, easy emptying
Reusable stainless-steel screen, low maintenance
Temperature: room temperature

Supports DME and butane.
Ideal for small amounts of
plant material and trimming.

[141]

Pilot Extraction Plants
Volume extractor: 3 L
Volume extract/solvent tank: 2 × 20 L
Design temperature: −10/+50 ◦C

Supports DME, propane, and
butane.
Solvents can be
reused/recycled.

[142]
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Table 2. Cont.

Product Name Specification Solvents and Applications Reference

Subcritical extraction
equipment

Extraction tank volume: 2.5 L
Production capacity: 20 L
Temperature: <40 ◦C
Using pressure: 0.8 MPa

Supports DME, butane,
hexane, and ethanol.
Ideal for plant oil extraction.

[143]

Mini solvent extraction unit
for lab

Volume of extraction pot: 5–200 L
Separation tank: 5–200 L
Temperature: room temperature
Buffer tank: 5–200 L
Condenser: 1–10 m2

Solvent pot 19–159 L
Gauge tank: 1–145 L
Heater: 6 kw

Supports DME.
Apply to precious vegetable
oils, essential oils, animal oils,
microalgae oils, natural dyes,
vegetable proteins, and
general-purpose spices.
Solvents can be
reused/recycled.

[144]

4. Applications of Liquefied DME Extraction
4.1. Lipid Extraction from Microalgae

Microalgal biomass is a rich source of various nutrients, including fatty acids, carotenoids,
proteins, minerals, and other essential nutrients that can be used as functional food ingredi-
ents [140–148]. Many species of microalgae grow well in saline water, such as seawater, thus
avoiding the need for limited freshwater resources [149]. Some oleaginous species of microal-
gae overproduce lipids and fatty acids by modifying the physical and chemical properties of
the culture medium [150]. The lipid content of some microalgae may reach 77%, exceeding
the index of higher plants (such as soybeans) [151]. The protein content of Arthrospira maxima
has been found to reach 71% [152].

Microalgal oils have recently been used as alternatives to fish and vegetable oils with
low nutritional values [153]. Microalgal oils contain highly utilizable and nontoxic fatty
acids, such as polyunsaturated fatty acids (PUFA), arachidonic acid (ARA), c-linolenic
acid (GLA), eicosapentaenoic acid, and docosahexaenoic acid (DHA) [154]. Long-chain
polyunsaturated fatty acids such as eicosapentaenoic acid (ω-3 C20:5) and DHA (ω-3
C22:6) obtained from microalgae are essential for humans due to their beneficial effects on
health, including neurodevelopment and the prevention of chronic diseases [155]. Certain
microalgal species (Haptophyta, Bacillariophyta, Ochrophyta, and Rhodophyta) have been
reported to contain up to 30–50% eicosapentaenoic acid [156–159] and 22–58% DHA of the
total fatty acids [160].

Table 3 summarizes examples of studies on lipid extraction from microalgae using
liquefied DME. In 2010, Kanda et al. successfully extracted oils from high-moisture natural
blue–green microalgae (91% moisture) at 20 ◦C using liquefied DME for the first time [161].
They extracted 40.1% of the sample dry weight lipids by flowing 114 g of liquefied DME at
10 mL/min over 6.650 g of natural blue–green microalgae (0.599 g dry sample). In addition,
68.1% of water was simultaneously extracted and 99.7% of the lipids were extracted into
liquefied DME, compared to the Bligh–Dyer method of total lipid extraction. This study
demonstrated the possibility of extracting lipids directly from wet microalgal cultures.

Kanda et al. observed that the extraction of liquefied DME from five microalgae species
(78.2–93.4% moisture content) yielded 9.9–40.1% of the dry weight of the microalgae [162].
The extraction of lipids using the liquefied DME extraction and Bligh–Dyer methods
was comparable. Analysis of the molecular weight distribution of the extracted lipids
via gel permeation chromatography (GPC) showed that the liquefied DME and Bligh–
Dyer methods were comparable for chloroform and tetrahydrofuran eluents. The weight-
average and number-average molecular weights obtained using the liquefied DME method
were similar to the molecular weight distribution of the lipids extracted using the Bligh–
Dyer method. A disadvantage of the degradation method in terms of fuel quality is the
high N content due to the gasification of chlorophyll and proteins at high temperatures
(300–600 ◦C) [163]. The lipids extracted using DME had low oxygen and nitrogen contents
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(2.62%) and high carbon (70.9%) and hydrogen (10.0%) contents. The higher heating value
(HHV) of the extract was relatively high (33.8 MJ/kg), which is comparable to the HHV of
first-generation biodiesel and essentially the same as that of conventional fossil oil [162,164].
Furthermore, the HHV of the residue after DME extraction was 18.3 kJ/kg, but the residue
retained sufficient heat content to be a potential carbon-neutral fuel.

The paste derived from green alga Botryococcus braunii Race B has attracted consider-
able attention as a petroleum substitute because it has a high hydrocarbon content (25–75%
dry weight), and its hydrocarbon components, botryocoxene, and methylqualene can be
easily converted into biofuels [165,166]. Botryococcus braunii also secretes extracellular
hydrocarbons, a feature not observed in other algae. Liquefied DME was used to extract hy-
drocarbons and lipids from the Botryococcus braunii Race B paste [167]. The extraction yield
and major components of the Botryococcus braunii Race B paste extract obtained via liquefied
DME extraction were similar to those obtained using hexane Soxhlet extraction of the dried
mass; GCMS of the DME extract showed that the major components of the Botryococcus
braunii Race B paste, the C32–C34 botryococcenes, were present in large amounts.

The successful use of liquefied DME-based lipid extraction has been reported for
several microalgae species, including Haematococcus pluvialis [168], Euglena gracilis [169,170],
Aurantiochytrium limacinum [171], Arthrospira platensis [172], Chaetoceros gracilis, Pleurochry-
sis carterae [24], Monostroma nitidum [173], Tetradesmus obliquus [173], Nannochloropsis ocu-
late [174], Phaeodactylum tricornutum [175], Haematococcus pluvialis [176], and various oth-
ers [177,178]. These extractions resulted in high yields of specific oleaginous components
and bio-oils, highlighting the efficacy of liquefied DME extraction.

Recent studies on common microalgae and cyanobacterial species (Arthrospira platensis,
Nannochloropsis gaditana, Phaeodactylum tricornutum, and Scenedesmus almeriensis) using
dried powders for liquefied DME extraction have reported oil yields ranging from 0.5%
to 2.7% of the dried mass (5–19% of total lipids) [177]. At the same time, cryo-milling of
algae increased lipid yields to 1.7–5.6% of the dry mass (17–50% of total lipids), including
valuable polyunsaturated fatty acids influenced by the microalgae species. The ease of
lipid separation and high dehydration capacities of liquefied DME-based lipid extraction
make it a promising method for lipid extraction from microalgae.

Table 3. Extraction of lipids from microalgae using liquefied DME: lipid and water extraction rates.

Authors Resource Lipid Extraction
Yield (%)

Water Content
(%)

Dewatering Rate
(%)

Kanda et al., 2011 [161] Natural blue–green microalgae 40.1 91.0 68.1
Kanda et al., 2012 [162] Natural blue–green microalgae 9.9–23.2 78.2–93.4 83–91
Kanda et al., 2013 [167] Botryococcus braunii Race B paste 48.9 74.3 –
Boonnoun et al., 2014 [168] Haematococcus pluvialis 30.0 82.1 –
Kanda et al., 2015 [169] Euglena gracilis 32.5 80.3 92.0
Sakuragi et al., 2016 [170] Euglena gracilis 19.7 95.0 –
Hoshino et al., 2016 [171] Aurantiochytrium limacinum 46.1 67.9 –
Hoshino et al., 2017 [172] Arthrospira platensis 9.8 80.1 94.2

Kanda et al., 2020 [24] Chaetoceros gracilis
Pleurochrysis carterae

22.0
11.6

88.5
62.0

81
–

Wang et al., 2020 [173] Tetradesmus obliquus 21.9–29.5 65.0–85.0 100
Wang et al., 2021 [174] Nannochloropsis oculata 23.3 94.8 100
Bauer et al., 2022 [175] Phaeodactylum tricornutum 9.2 10.0–80.0 –

Myint et al., 2023 [176] Haematococcus pluvialis 290.1 mg g−1 dry
extract

75.7 99.3

Bauer et al., 2023 [177] Four common microalgae and
cyanobacteria 1.7–5.6 4.70–2.51 –

Kanda et al., 2023 [178] Chaetoceros simplex var. calcitrans 22.7 90 100
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4.2. Extraction of Functional Components from Natural Resources

In addition to lipids, liquefied DME has been used to extract bioactive compounds
from various sources, including spices, green tea, algae, fruits, vegetables, grains, natural
plants, and fish (Table 4). In 2003, Catchpole et al. used liquefied DME to extract specific
pungent compounds from ginger, black pepper, and chili powder [179]. Despite the
significant extraction of water, liquefied DME showed similar efficacy as scCO2 in isolating
pungent compounds from spices. Complete extraction was achieved with minimal solvent
consumption. At temperatures of 35, 40, 50, and 60 ◦C, liquefied DME showed nearly
equivalent extraction rates. Subsequently, subcritical propane was suggested as a cost-
effective alternative to CO2 because of its lower operating pressure and reduced energy
consumption during spice extraction, similar to liquefied DME. However, subcritical
propane is the least effective at dissolving pungent components and is unsuitable for
carotenoid extraction [179,180].

Liquefied DME has been previously used to decaffeinate green tea [181]. The main
functional components of green tea are caffeine and catechins [182]. Excessive caffeine
consumption can lead to health problems, such as dizziness, increased heart rate, tremors,
and insomnia, owing to overstimulation of the central nervous system [183]. Liquefied
DME enables catechin extraction while completely removing caffeine. Ciulla et al. also
demonstrated higher extraction rates of caffeine from coffee beans and powder using
liquefied DME rather than using scCO2-based extraction methods [184].

Natural carotenoids exhibit several beneficial effects, including antioxidant, anti-
inflammatory, antiproliferative, and antiapoptotic properties [185]. As antioxidants, carotenoids
detoxify intracellular free radicals, thereby reducing the incidence of oxidative damage and as-
sociated diseases [186]. Carotenoids, which are widely distributed in nature, are biosynthesized
by various organisms, including photosynthetic organisms such as algae, plants, fungi, and
bacteria [186]. As humans lack the ability to synthesize carotenoids internally, their intake of
carotenoids is primarily through fruits and vegetables, plants, and algae.

Using an enzyme-assisted DME and ethanol co-solvent extraction method,
Billakanti et al. were able to extract almost all lipids, including polyunsaturated fatty
acids and fucoxanthin, from the wet, brown seaweed Undaria pinnatifida [187]. Undaria
pinnatifida contains a mixture of sulfated and branched chain polysaccharides that are
tightly bound to the cell wall [188]. Therefore, extracting bioactive compounds from brown
seaweed biomass is difficult because the cell wall is a major obstacle [189]. Kanda et al.
successfully extracted high concentrations of fucoxanthin (390 µg/g dry Undaria pinnati-
fida) from wet Undaria pinnatifida (water content was 93.2%) using liquefied DME (286 g,
extraction time 43 min) [111]. This yield was significantly higher than those achieved using
Soxhlet extraction with ethanol (50 µg/g) and scCO2 extraction (60.12 µg/g) [190].

Microalgae have attracted widespread attention as natural sources of carotenoids
because they grow faster than other higher plants. The Liquefied DME extraction method
successfully extracted 7.70 mg/g of astaxanthin, a carotenoid, and 30.0% of its dry weight
of lipids from microalgae (Haematococcus pluvialis) [168]. The extraction rate of astaxanthin
was 1.82% lower than that achieved through acetone extraction using drying and cell
disruption. Liquefied DME extraction removed 92% of the water from the microalgae
and increased the carbon and hydrogen contents. Babadi et al. reported the extraction of
total carotenoids (4.14 mg/g algal dry weight) and total chlorophyll (8.45 mg/g algal dry
weight) from the microalgae Chlorococcum humicola using liquefied DME [191]. Liquefied
DME extraction was performed using a liquefied DME: algae wet weight ratio of 45:1 (w/w)
at 41 ◦C for 20 min with stirring at 400 rpm. Liquefied DME showed a higher extraction
rate than the conventional solvent acetone, suggesting that it is highly selective toward less
polar carotenoids. Liquefied DME has also been successfully used to extract carotenoids
from other raw materials, such as Japanese pumpkin peel [192] and marigold flowers [193].

Rice bran has been reported to have cholesterol-lowering and antioxidant proper-
ties [194]. Γ-Oryzanol, a bioactive compound abundant in rice bran, has been reported
to have antioxidant, anti-inflammatory, anticancer, and antidiabetic effects [195]. Liq-
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uefied DME has been reported to extract γ-oryzanol; unsaturated fatty acids such as
linoleic and oleic acid, and phytosterol; and the plant wax extract policosanol from rice
bran [45,117,196].

Moreover, liquefied DME has been used to extract bioactive compounds from citrus
leaves and peels (citrus flavonoids) [197], Garcinia mangostana Linn (mangostin) [198],
vegetables (proteins) [199], lemon peel tissue (citric acid, vitamin C, and essential oils) [200],
tuna liver (fish oil, n-3 polyunsaturated fatty acids) [201,202], macroalgae Monostroma
nitidum (Lutein) [203], Japanese knotweed rhizomes (resveratrol and glycoside) [204],
Centella asiatica leaves (triterpenoid) [205], hops (α-acids and β-acids) [206], cyanobacteria
(fatty acids) [207], sugar mill waste (policosanol and phytosterol) [208], Curcuma longa
L. (curcumin) [138], and diatom Chaetoceros simplex var. calcitrans (fucoxanthin) [178]
(Figure 5). Most studies have indicated that liquefied DME exhibits a higher extraction rate
than conventional extraction methods. In addition, liquefied DME, which is nontoxic and
leaves no residue in the extract, is one of the best extraction solvents because it extracts
bioactive compounds directly from wet natural products without the need for drying,
grinding, or other manipulations.

Figure 5. Structure of bioactive compounds extracted from natural products using liquefied DME.
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Table 4. Extraction of biologically active compounds from natural products using liquefied DME extraction.

Authors Resource Specific Ingredients Extraction Solvent Lipid Extraction Yield (Dry Weight
of the Microalgae)

Catchpole et al., 2003 [179] Chili, black pepper, and ginger Capsaicin

Liquefied DME
scCO2
Propane
Acetone

19 g/kg
19 g/kg
11 g/kg
20 g/kg

Kanda et al., 2013 [181] Green tea Caffeine Liquefied DME 47 µg/g

Billakanti et al., 2013 [187] Macroalgae (Undaria pinnatifida) Fucoxanthin Liquefied DME
Ethanol

0.066 mg/g
0.060 mg/g

Hoshino et al., 2014 [197] Citrus Leaves and Peels Citrus flavonoids Liquefied DME 6.6–49.9 mg/g

Boonnoun et al., 2014 [168] Microalgae (Haematococcus pluvialis) Astaxanthin Liquefied DME
Acetone 0.33% 1.82%

Kanda et al., 2014 [111] Macroalgae (Undaria pinnatifida) Fucoxanthin Liquefied DME 390 µg/g

Goto et al., 2015 [190] Macroalgae (Undaria pinnatifida) Fucoxanthin Liquefied DME
scCO2

390 µg/g
58 µg/g

Noriyasu et al., 2015 [192] Japanese squash peel Chlorophylls and carotenoids Liquefied DME 0–300 µg/g fresh weight

Nerome et al., 2016 [198] Garcinia Mangostana Linn Mangostin Liquefied DME
Ethanol

42.9 mg/g
41.14 mg/g

Boonnoun et al., 2017 [193] Marigold flowers Lutein Liquefied DME 20.65 mg/g
Furukawa et al., 2016 [199] Vegetable Proteins Liquefied DME –

Nakamura et al., 2017 [200] Lemon peel tissue
Citric acid
Vitamin C
Essential oils

Liquefied DME 10.75 mg/100 g
43 mg/100 g 4%

Fang et al., 2018 [201] Tuna liver Fish oil Liquefied DME
scCO2

17.46 ± 0.23%
17.51 ± 0.11%

Kerdsiri et al., 2020 [117] Jasmine rice bran
γ-oryzanol
Linoleic acid
Oleic acid

Liquefied DME
2.47%
22.4%
39.5%
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Table 4. Cont.

Authors Resource Specific Ingredients Extraction Solvent Lipid Extraction Yield (Dry Weight
of the Microalgae)

Rice berry and rice bran
γ-oryzanol
Linoleic acid
Oleic acid

Liquefied DME
6.01%
20.0%
33.5%

Fang et al., 2019 [202] Tuna livers n-3 Polyunsaturated fatty acids

Liquefied DME
Wet reduction
Enzymatic extraction
scCO2

98.57 ± 0.60%
56.76 ± 1.57%
85.25 ± 1.29%
98.45 ± 1.04%

Vitamins

Liquefied DME
Wet reduction
Enzymatic extraction
scCO2

37.91 µg/g
17.99 µg/g
24.43 µg/g
40.26 µg/g

Wongwaiwech et al., 2020 [196] Rice bran oil
γ-oryzanol
Phytosterol
Policosanol

Liquefied DME
924.51 mg/100 g
367.54 mg/100 g
30,787 mg/100 g

Babadi et al., 2020 [191] Chlorococcum humicola Carotenoids
Chlorophylls Liquefied DME 4.14 mg/g

8.45 mg/g

Kanda et al., 2020 [203] Macroalgae Lutein
Liquefied DME 0.30 mg/g
Chloroform−methanol
extraction 0.24 mg/g

Kanda et al., 2022 [204] Japanese knotweed rhizome Resveratrol and glycoside Liquefied DME
Ethanol

0.342 and 2.57 mg/g
0.215 and 2.01 mg/g

Pingyod et al., 2021 [205] Centella asiatica leaves Triterpenoid Liquefied DME and ethanol 18.80%

Bizaj et al., 2021 [206] Hops α-Acids

Liquefied DME
Propane
scCO2
Sulfur hexafluoride

9.6%
8.7%
7.9%
0.1%

β-Acids

Liquefied DME
Propane
scCO2
Sulfur hexafluoride

4.5%
4.3%
3.8%
0.1%

Li et al., 2021 [207] Cyanobacteria Fatty acids Liquefied DME 8.72–21.15%
Kamchonemenukool et al.,
2022 [208] Sugar mill waste Policosanol Liquefied DME 2888 mg/100 g
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Table 4. Cont.

Authors Resource Specific Ingredients Extraction Solvent Lipid Extraction Yield (Dry Weight
of the Microalgae)

Phytosterol 10,147.75–20,878.75 mg/100 g

Ciulla et al., 2023 [184] Coffee beans and powder Caffeine Liquefied DME
scCO2

0.479 mg/g
0.32 mg/g

Kamchonemenukool et al., 2023 [45] Rice bran acid oil γ-oryzanol Liquefied DME
scCO2

4865.25 mg/100 g,
2569.04 mg/100 g

Kanda et al., 2023 [138]
Curcuma longa L. Curcumin Liquefied DME 7.94 mg/g

Ethanol 6.77 mg/g

Kanda et al., 2023 [178] Chaetoceros simplex var. calcitrans Fucoxanthin
Liquefied DME 9.2 mg/g
Ethanol 11.9 mg/g



Foods 2024, 13, 352 18 of 33

5. Theoretical Study of Liquefied DME

The use of Hansen solubility parameters (HSP) to evaluate the solubility of various
analytes of natural origin has increased [209]. HSP is used to quantify molecular interactions
and solubility [210,211].

HSP is based on three interaction forces: dispersion, dipole, and hydrogen bonding
forces. The dispersion force (δd) indicates random interactions between molecules and
represents the non-polar nature of the molecules. The dipole force (δp) indicates polar
interactions between molecules and represents the polar nature of the molecule. The
hydrogen bonding force (δh) represents hydrogen bonding interactions between molecules
and their hydrogen bonding abilities [212]. These interaction forces can be summed to
obtain the HSP. The solubility of a substance in a solvent is higher when its HSP is similar
to that of the solvent.

HSPs are typically estimated using experimental data or molecular modeling tech-
niques [213,214]. The HSP distance between two substances is expressed by the following
equation [215]:

Ra =

√
4(∆δd)2 + (∆δp)2 + (∆δh)2. (1)

The difference in the HSP Ra [MPa1/2] can be obtained by taking the sum of the squares
of the differences between the three parameters and determining their square roots [213].
The smaller the difference, the more similar the interactions between the substances and
the higher the solubility and compatibility.

Based on the experimental data on solute–solvent interactions, plotting the solubility
parameters of good and poor solvents for a solute in a three-dimensional diagram produces
a Hansen solubility sphere, with regions of good solvents clustered together [209]. The
spherical region indicates the extent to which the substance interacts with the solvent. The
radius of the sphere represents the interaction radius R0 [MPa1/2]. The ratio of Ra to R0
is the relative energy difference (RED), which can be calculated using Equation (2). Here,
RED ≤ 1 indicates a good solvent and RED > 1 indicates a poor solvent. RED can be used
as an indicator of solubility [209].

RED =
Ra

R0
(2)

In this study, Hansen solubility spheres for liquefied DME were generated using the
dissolved (29 species) and insoluble (9 species) components of liquefied DME (Table 5). The
HSP values of components that reliably dissolved in liquefied DME were obtained from
the literature. These extractable components are listed in Table 4. Some components were
calculated using the SMILES string method based on their molecular structures [216]. The
HSPs of some polymers were calculated by performing dissolution experiments. Spheres
were calculated by assigning their HSP data to the HSPiP software 4.1.04 [217]. As shown
in Table 5 and Figure 6, the δd, δp, and δh of liquefied DME were 19.2 MPa1/2, 6.3 MPa1/2,
and 9.2 MPa1/2, respectively, while its R0 was 9.4 MPa1/2. Furthermore, the calculated
RED values for liquefied DME and the solute are in good agreement with the actual
solubility experiments. Accurate calculation of the HSP of liquefied DME is important for
understanding the solubility of the target components during solvent extraction.
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Table 5. Calculation of the HSP sphere model and RED for liquefied DME based on the HSPs of
various solutes.

No. Compounds δd δp δh
RED Reference(MPa1/2) (MPa1/2) (MPa1/2)

Soluble
1 Natural rubber 16.4 3.1 4.1 0.87 [218]
2 Nitrile rubber 20.4 12.4 4.1 0.88 [218]
3 Styrene-butadiene rubber 18 2.9 2.3 0.86 [219]
4 Ethylene-propylene rubber 17.2 2 2.6 0.94 [220]
5 Hydrogenated nitrile rubber 18.4 6 4.5 0.53 [221]
6 Fluoro rubber 16.1 9.3 6.6 0.78 [222]
7 Resveratrol 20.9 6.7 13.1 0.55 [204]
8 Phenanthrene 20.8 2.6 5.4 0.66 [223]
9 Pyrene 22.5 1.6 4 1.02 [223]
10 Lecithin 16.1 6.4 9.1 0.66 [224]
11 Camphor 17.3 10 4.9 0.73 SMILES
12 Ferulic acid 19.3 8.4 15.8 0.74 [225]
13 Caffeine 19.5 10.1 13 0.58 [226]
14 Curcumin 18.8 7.7 11.1 0.27 [227]
15 γ-oryzanol 18.6 6.5 3.3 0.64 [228]
16 Phytosterol 17.1 1.9 3 0.92 SMILES
17 Policosanol 15.9 1.7 4.4 1.00 [229]
18 Triterpenoid 18 9.2 12.8 0.55 SMILES
19 trans-Resveratrol 20.6 7.3 15.9 0.78 [230]
20 β-carotene 17.1 2.4 5.5 0.73 [231]
21 Policosanol 16.1 2.4 5 0.90 [229]
22 Oleic acid 16 2.8 6.2 0.84 [232]
23 Linoleic acid 18.1 2.9 7.2 0.48 [233]
24 Lutein 15.2 1.8 8.5 0.98 [234]
25 Xanthone 20.6 8.4 5.2 0.57 SMILES
26 Fucoxanthin 18.2 4.1 5.1 0.54 [235]
27 Astaxanthin 22.2 4.6 8.9 0.66 [236]
28 Capsaicin 18.3 15.4 8.9 0.99 SMILES
29 Butyl rubber 17.3 1.4 2.6 0.96 [218]
Insoluble
30 Chloroprene rubber 17.2 2.4 1.2 1.04 SMILES
31 Polytetrafluoroethylene 16.2 1.8 3.4 1.01 [237]
32 Low density polyethylene 16.2 2.1 2.4 1.06 [238]
33 Polyvinyl alcohol 17 9 18 1.09 Solubility experiments
34 Polyvinylpyrrolidone 18.1 10 18 1.04 Solubility experiments
35 Chitosan 22.8 17.1 26.6 2.31 Solubility experiments
36 Chitin 23.3 15 22.5 1.90 [239]
37 Polyacrylamide 19.5 19.7 16.4 1.62 Solubility experiments
38 Polyglutamic acid sodium salt 19.3 12.1 16.5 0.99 Solubility experiments
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Figure 6. HSP sphere model for liquefied DME (Red dots indicate dissolved components inside the
sphere, blue dots indicate insoluble components outside the sphere, and black dots indicate the center
of the DME sphere. Numbers correspond to compounds in Table 5).

6. Bioactive Extraction to Biomedical Advances

Tuna are one of the most important marine fish species worldwide [240]. Tuna giblets
are rich in bioactive compounds such as unsaturated fatty acids, vitamins, and proteins.
These compounds have antioxidant properties and can be converted into value-added
products [241]. However, the internal organs, particularly the livers, of tuna are difficult to
process and are often discarded [242].

Fang et al. reported that liquefied DME can be used to extract lipids and vitamins from
tuna liver [202]. Compared to the conventional scCO2 method, liquefied DME extraction
can prevent lipid oxidation and effectively reduce damage to omega-3 polyunsaturated
fatty acids (n-3 PUFAs) and vitamins, thereby obtaining high-quality liver oil with excellent
yield. The pressure used in liquefied DME extraction is much lower (0.8 MPa) than that
used in scCO2 extraction (35 MPa), and no freeze-drying pretreatment is required.

Lipids, water, and vitamins can be extracted from tuna liver using liquefied DME to
precipitate high-quality proteins. Currently, pH shifts, including alkaline or acidic extrac-
tion, isoelectric precipitation, centrifugation, and lyophilization, are the best processing
methods for obtaining proteins from tuna liver [243]. However, this method is complex
and time-consuming, and the lyophilization process is time- and energy-intensive [244].
Fang et al. used liquefied DME to extract lipids, pure metals, and water from tuna liver
and successfully isolated a high-quality protein powder [245,246]. The protein powder
remaining in the extraction residue demonstrated the superior ability of liquefied DME
extraction over conventional methods because its structure remained unaltered. However,
the protein powder contained a few toxic substances. Liquefied DME extraction removes
oils and fats from sturgeons and produces high-quality protein powder [247,248]. In con-
clusion, liquefied DME extraction has proven to be a promising low-cost technology for
the fish-oil industry. This technique is capable of extracting value-added unsaturated fatty
acids and vitamins and produces high-quality protein powder in the residue.

Kanda et al. crystallized glycine from an aqueous solution using liquefied DME as
an antisolvent [249]. Liquefied DME can be operated at 20–25 ◦C, potentially reducing the
energy consumption of drying or crystallization with ethanol. Kanda et al. also prepared
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liposomes by dissolving soy lecithin and cholesterol in liquefied DME and infusing them
into warm water [250]. Transmission electron microscopy, dynamic light scattering for
particle size distribution measurements, and zeta potential measurements revealed that
the resulting liposomes ranged in size from approximately 60 to 300 nm, with a zeta
potential of approximately −57 mV. This indicates that the liquefied DME injection method
successfully produces liposomes similar to those produced using conventional diethyl
ether at temperatures above 45 ◦C. The liquefied DME method does not require the residue
of conventional diethyl ether in the final product of liposomes or the high-temperature and
high-pressure conditions of scCO2.

Organ transplantation is a treatment option for patients with severe organ failure. Dur-
ing organ transplantation, cells derived from the patient are grown on a three-dimensional
scaffold to create an organ that will not be rejected. When porcine tissue is decellularized
to create a scaffold, the porcine aorta is similar in structure to the human aorta, making
it suitable for transplantation into humans [251]. The decellularization of tissues from
different species involves three steps: extraction of lipids using sodium dodecyl sulfate
(SDS), DNA fragmentation using DNase, and the removal of DNA fragments via washing
with water and ethanol [252]. However, long processing times, inflammation caused by
SDS at the contact site, and difficulty in completely removing the toxic surfactant from
the tissue may cause certain problems. Liquefied DME was used to extract lipids, DNA,
and cell nuclei from ostrich carotid tissue and porcine aorta [252–255]. Demonstrating
that ostrich carotid tissue can be used as an alternative to porcine scaffolds, researchers
can decellularize the porcine aorta after lipid extraction using DME, followed by DNase
treatment and washing for at least five days. Furthermore, the introduction of liquefied
DME into conventional decellularization eliminates the need for surfactants.

7. Future Trends

Hypersaline brines are produced via various processes, including oil and gas pro-
duction, and can contaminate surface water and groundwater if improperly treated [256].
High-pressure reverse osmosis (HPRO) is typically used to remove high salt concentra-
tions [257]. However, salinity is proportional to the pressure required for desalination;
therefore, RO with high osmotic pressure has high energy costs and requires high pressure
(100–300 bar) [258].

Another method for producing hypersaline brines is distillation, which is energy
intensive because it requires a phase change in water [259]. Desalination of hypersaline
brines can recover valuable minerals from seawater and industrial wastewater while
reducing the environmental risks associated with disposal [260].

The recent solvent-based technology for desalinating hypersaline brines offers the
advantage of avoiding the high thermal evaporation of water during extraction and regen-
eration. Additionally, it does not face the practical limitations associated with membrane
systems in comparison to conventional methods [261]. Two different processes are used
in this method: solvent-driven water extraction (SDWE) and solvent-driven fractional
crystallization (SDFC) [262].

In SDWE, a water-soluble organic solvent is poured into industrial wastewater or
seawater to increase the concentration of inorganic salts in the aqueous solution, which
are then precipitated [263]. The recovery of desalinated water does not use conventional
evaporation techniques but utilizes low-energy phase transfer through a solvent–water liq-
uid equilibrium or vapor–liquid phase equilibrium. Therefore, SDWE is used for seawater
desalination [263].

SDFC, also known as antisolvent crystallization, is a method for inducing the sat-
uration of solutes in an aqueous solution using a water-miscible solvent to precipitate
inorganic salts [264]. SDFC can be used to fractionate important resources, including nickel,
cobalt, lithium, and rare earth elements, from industrial wastewater and solution mine
leachate [265]. Thus, SDWE and SDFC can extract valuable minerals from contaminated
wastewater without the need for water evaporation. These methods also protect existing
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freshwater resources by reducing the environmental impact of wastewater treatments and
minimizing wastewater runoff.

DME has a high relative volume, which increases the number of separation steps in the
solvent regeneration system and reduces residual solvent loss [266]. The most promising
organic solvent candidates are organic compounds that form asymmetric hydrogen bonds
with water, such as DME and trimethylamine. At 25 ◦C, these solvents exhibit volatilities
that are an order of magnitude higher than that of water [262]. DME is a low-polarity
organic solvent partially miscible with water. The low polarity of DME, with a dielectric
constant less than 5.0, minimizes the solubility of electrolytes such as sodium chloride in
the organic phase, enabling almost complete salt removal [108,263].

Moreover, the high volatility of DME allows for the rapid separation of water from
the water–DME mixture after absorption [266]; the low boiling point of DME (−24.8 ◦C)
minimizes the loss of foreign solvents in concentrated brine and demineralized water; DME
is a good choice for H-donor and H-acceptor solvents compared to other solvents and
has the advantage of being applicable to both solvent-driven fractional crystallization and
fractional crystallization methods [262].

Stetson et al. separated rare-earth and transition-metal salts from industrially gener-
ated magnet waste via fractional distillation crystallization using DME [267]. Lanthanides
and transition metals were selectively precipitated from aqueous solutions of metal salts by
feeding DME gas at a high pressure and allowing them to dissolve. This method allows
for the nontoxic separation of valuable elements from mixed salt solutions. The separation
of metals is facilitated by the differential response of the solubility of transition metal and
lanthanide sulfates to changes in temperature. Moreover, in the temperature range of
20–50 ◦C, the solubility of transition metal sulfates in water increases and that of lanthanide
sulfates decreases.

8. Conclusions

This review focused on the use of liquefied DME as an eco-friendly solvent in various
innovative extraction techniques. The low boiling point and solvent safety of DME enable
the efficient extraction of diverse bioactive compounds from aqueous samples without prior
drying. We also explored the superiority of liquefied DME extraction over conventional
methods, explained its extraction mechanism, and highlighted its safety. This review
discussed the potential of liquefied DME for various extraction processes and anticipated
its future applications. Moreover, we discussed the estimation and trend analysis of the
HSPs. This review highlighted the potential applications of DME in the extraction of
functional compounds from various sources and offered a safer option than traditional
toxic solvents for industries involved in natural product extraction.
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46. Milovanovic, S.; Grzegorczyk, A.; Świątek, Ł.; Grzęda, A.; Dębczak, A.; Tyskiewicz, K.; Konkol, M. A Novel Strategy for the
Separation of Functional Oils from Chamomile Seeds. Food Bioprocess Technol. 2023, 16, 1806–1821. [CrossRef] [PubMed]

47. Fischer, B.; Gevinski, E.V.; da Silva, D.M.; Júnior, P.A.L.; Bandiera, V.J.; Lohmann, A.M.; Rigo, D.; Duarte, P.F.; Franceschi, E.;
Zandoná, G.P.; et al. Extraction of hops pelletized (Humulus lupulus) with subcritical CO2 and hydrodistillation: Chemical
composition identification, kinetic model, and evaluation of antioxidant and antimicrobial activity. Food Res. Int. 2023, 167,
112712. [CrossRef] [PubMed]

48. De Marco, I.; Riemma, S.; Iannone, R. Life cycle assessment of supercritical CO2 extraction of caffeine from coffee beans. J.
Supercrit. Fluids 2018, 133, 393–400. [CrossRef]

49. Crampon, C.; Boutin, O.; Badens, E. Supercritical Carbon Dioxide Extraction of Molecules of Interest from Microalgae and
Seaweeds. Ind. Eng. Chem. Res. 2011, 50, 8941–8953. [CrossRef]

50. Santana, A.; Jesus, S.; Larrayoz, M.A.; Filho, R.M. Supercritical Carbon Dioxide Extraction of Algal Lipids for the Biodiesel
Production. Procedia Eng. 2012, 42, 1755–1761. [CrossRef]

http://data.europa.eu/eli/dir/2016/1855/oj
https://www.fda.gov/media/113335/download
https://doi.org/10.1016/j.seppur.2023.124147
https://doi.org/10.1080/01496395.2018.1546741
https://doi.org/10.1093/fqs/fyx004
https://doi.org/10.1016/j.biortech.2017.06.038
https://www.ncbi.nlm.nih.gov/pubmed/28634124
https://doi.org/10.3390/foods11213412
https://doi.org/10.1016/j.trac.2019.05.037
https://doi.org/10.1021/es900705j
https://www.ncbi.nlm.nih.gov/pubmed/19764204
https://doi.org/10.1155/2015/595393
https://www.ncbi.nlm.nih.gov/pubmed/26351514
https://doi.org/10.1021/acs.iecr.9b03095
https://www.ema.europa.eu/en/ethanol-content-herbal-medicinal-products-traditional-herbal-medicinal-products-used-children
https://www.ema.europa.eu/en/ethanol-content-herbal-medicinal-products-traditional-herbal-medicinal-products-used-children
https://www.federalregister.gov/documents/1995/03/13/95-6128/over-the-counter-drug-products-intended-for-oral-ingestion-that-contain-alcohol
https://www.federalregister.gov/documents/1995/03/13/95-6128/over-the-counter-drug-products-intended-for-oral-ingestion-that-contain-alcohol
https://www.federalregister.gov/documents/1995/03/13/95-6128/over-the-counter-drug-products-intended-for-oral-ingestion-that-contain-alcohol
https://doi.org/10.1016/j.jfca.2023.105483
https://doi.org/10.1016/j.supflu.2008.10.011
https://doi.org/10.1021/jf9908594
https://doi.org/10.1252/jcej.26.401
https://doi.org/10.1021/acsomega.1c06105
https://doi.org/10.1002/9781119829614.ch32
https://doi.org/10.1016/j.jafr.2023.100672
https://doi.org/10.1007/s11947-023-03038-9
https://www.ncbi.nlm.nih.gov/pubmed/37363382
https://doi.org/10.1016/j.foodres.2023.112712
https://www.ncbi.nlm.nih.gov/pubmed/37087215
https://doi.org/10.1016/j.supflu.2017.11.005
https://doi.org/10.1021/ie102297d
https://doi.org/10.1016/j.proeng.2012.07.569


Foods 2024, 13, 352 25 of 33

51. Lorenzen, J.; Igl, N.; Tippelt, M.; Stege, A.; Qoura, F.; Sohling, U.; Brück, T. Extraction of microalgae derived lipids with
supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst. Eng. 2017, 40, 911–918. [CrossRef] [PubMed]

52. Soh, L.; Zimmerman, J. Biodiesel production: The potential of algal lipids extracted with supercritical carbon dioxide. Green Chem.
2011, 13, 1422–1429. [CrossRef]

53. Hedayati, A.; Ghoreishi, S.M. Supercritical carbon dioxide extraction of glycyrrhizic acid from licorice plant root using binary
entrainer: Experimental optimization via response surface methodology. J. Supercrit. Fluids 2015, 100, 209–217. [CrossRef]

54. Anderson, K.E.; Siepmann, J.I. Solubility in Supercritical Carbon Dioxide: Importance of the Poynting Correction and Entrainer
Effects. J. Phys. Chem. B 2008, 112, 11374–11380. [CrossRef]

55. Ghoreishi, S.M.; Hedayati, A.; Mohammadi, S. Optimization of periodic static-dynamic supercritical CO2 extraction of taxifolin
from Pinus nigra bark with ethanol as entrainer. J. Supercrit. Fluids 2016, 113, 53–60. [CrossRef]

56. Shimizu, S.; Abbott, S. How Entrainers Enhance Solubility in Supercritical Carbon Dioxide. J. Phys. Chem. B 2016, 120, 3713–3723.
[CrossRef]
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