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Abstract: The present study aims to investigate the chromogenic effect and the interaction between
starch-pigment complexes of corn starch (CS) and potato starch (PS) complexed with paprika red
pigment. Compared to PS, CS showed 12.5 times higher adsorption capacity for paprika red pig-
ment. Additionally, the a* value of CS-P (26.90 ± 0.23) was significantly higher than that of PS-P
(22.45 ± 1.84), resulting in a corn starch-paprika red pigment complex (CS-P) with a more intense red
colour. The addition of paprika red pigment significantly decreased the particle size and porosity of
CS by 48.14 ± 5.29% and 17.01 ± 3.80%, respectively. Conversely, no significant impact on PS was
observed. Additionally, the Fourier transform infrared (FT-IR) spectroscopy results revealed that the
starch molecules and paprika red pigment were bound to each other through strong hydrogen bonds.
X-diffraction (XRD) results indicated that the starch-paprika red pigment complexes have a V-shaped
structure. Furthermore, the relative crystallinity of the complexes between starch and red pepper
pigment showed an increasing trend, however, the relative crystallinity of CS increased significantly
by 11.77 ± 0.99–49.21 ± 3.67%. Consequently, the CS-P colouring was good.

Keywords: corn starch; potato starch; paprika red pigment; chromogenic effect; structural characterisation

1. Introduction

Paprika red pigment, consisting of capsorubin, capsanthin, β-carotene, zeaxanthin,
and β-cryptoxanthin, is a high-quality natural dye mainly extracted from dried chili pep-
pers [1]. As a precursor of vitamin A, paprika red pigment possesses various physiological
functions. Studies have shown that paprika red pigment has the potential to regulate
lipid metabolism, thereby reducing the risk of cardiovascular diseases, cancer, and other
chronic diseases [2]. Paprika red pigment has been commercialized as colourants, feed
supplements, and nutritional products due to its wide distribution, bright colour, high
safety, and anti-oxidation, and is widely used in food, medical, feed, cosmetics, and other
fields [3]. For instance, paprika red pigment imparts higher initial redness to fresh red
sausage and fresh chorizo (red-line meat products), which remains unchanged until the
end of the product’s shelf life [4]. Paprika red pigment could ameliorate the detrimental
effects of diet-induced obesity by improving impaired lipid metabolism [5].

With the emerging growth of the social economy, people’s consumption level has
increased considerably, accelerating the demand for food with high standards for ap-
pearance and sensory quality and meeting healthier dietary requirements. Studies have
indicated that red environments are often more stimulating for consumers, leading to an
augmented interest in purchasing products. Hence, developing products with appealing
colours and appearance is crucial within the food sector. The food industry has been
working on the development of highly stable, attractive colours, and low-cost synthetic
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dyes to improve the appearance of food products. Nevertheless, synthetic food additives,
such as carmine and quinoline yellow, have the potential to cause health issues such as
allergies, irritability, and even more severe conditions like cancer. Therefore, in recent years,
research on the development and application of natural dye has received considerable
attention [6]. Although paprika red pigment has a wide range of applications in the food
industry, its high lipophilicity, low water solubility, and light sensitivity significantly hinder
its application as a natural food additive [7]. To address these issues, efforts were made
to encapsulate paprika red pigment in lipid nanoparticles, liposomes, and emulsions [8].
Paprika red pigment may also interact with proteins [9], polysaccharides [10], and other in-
organic nanoparticles [11] to form complexes with high stability and activities. Particularly,
polysaccharides are promising delivery systems due to their good biocompatibility and
biodegradability [12]. For example, in a previous study, the stability of the colour index
in yoghurt stained with the complex formed by paprika red pigment and β-cyclodextrin
was higher than that of yoghurt stained with paprika red pigment alone [13]. Additionally,
the capsaicin-chitosan colloidal complex had high colloidal stability and high apparent
solubility [14]. Ethyl cellulose-capsaicin composite membrane has the advantages of ease
in production, eco-friendliness, and high antimicrobial activity [10]. Therefore, polysaccha-
rides can be used as potential carriers of natural pigments such as paprika red pigment
with wide research prospects.

Starch, derived from the polymerisation of glucose molecules, is a polysaccharide
widely used in food as a good wall material. It is reported that the interaction of β-carotene
and sweet potato starch could improve the bioaccessibility and bioavailability of β-carotene
and starch molecules [15]. In a previous study, a curcumin emulsion delivery system was
developed using debranched starch as a carrier, which offered improved stability and
solubility of curcumin compared to the system developed using Tween 80 and lectin [16].
CS can be used as a carrier for grape seed proanthocyanidins [17]. Seaweed polyphenols
bind to CS and promote its gelation [18]. Starches and pigments are mainly connected by
non-covalent bonds [19]. A previous study on the interaction between sorghum proan-
thocyanidin and amylose and demonstrated that sorghum proanthocyanidin interacts
effectively with amylose through hydrophobic and hydrogen bonding [20]. The study
discovered that lutein binds to soybean starch through hydrophobic forces, resulting in a
complex that significantly enhances lutein stability [21]. The tremella fuciformis polysac-
charide could interact with PS mainly through hydrogen bonds [22]. The barley β-glucan
interacts with PS through hydrogen bonding, thereby improving the gelling properties
of PS [23]. To date, some interactions of capsaicin with indica starch and high-amylose
corn starch have been reported internationally [24,25]. However, no studies have reported
the complex mechanisms between paprika red pigment and corn starch (CS), the most
dominant in the starch industry, and between paprika red pigment and potato starch (PS),
the second most important starch in the industry. Therefore, in this study, corn starch-
paprika red pigment (CS-P) and potato starch-pigment (PS-P) complexes were prepared
from paprika red pigment, CS, and PS, and their physicochemical properties were charac-
terised using scanning electron microscopy (SEM), pore space, high-performance liquid
chromatography (HPLC), particle size, Fourier transform infrared spectroscopy (FT-IR),
and x-ray diffraction (XRD) technique. Furthermore, the adsorption capacity and colour
rendering effect of CS and PS on paprika red pigment were determined. The experimental
results provide a theoretical basis for developing a natural colourant that can be used as a
substitute for nitrite.

2. Materials and Methods
2.1. Materials

Paprika red pigment E150 (>98%) was provided by M&G Biotechnology Group Co.,
Ltd. (Handan, China). Corn starch (>99%) was purchased from Yishui Dadi Corn De-
velopment Co., Ltd. (Yishui, China). Potato starch (>99%) was purchased from Yantai
Shuangta Food Co., Ltd. (Yantai, China). Amylopectin was obtained from Shanghai Al-
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addin Biochemical Technology Co., Ltd. (Shanghai, China). Amylose was purchased from
Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). Methanol (MeOH) (Chromatographic grade)
and methyl tert-butyl ether (MTBE) (Chromatographic grade) were purchased from Beijing
Mairuida Technology Co., Ltd. (Beijing, China). Capsanthin standard sample (>97%), cap-
sorubin standard sample (>97%), zeaxanthin standard sample (>97%), and β-cryptoxanthin
standard sample (>97%) were obtained from Shanghai Huicheng Biotechnology Co., Ltd.
(Shanghai, China). β-Carotene standard sample (>97%) was purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). The reagents acetone, n-
hexane, and ethyl ether were of analytical grade and were purchased from Sinopharm
Group Chemical Reagent Co., Ltd. (Shanghai, China). Sodium chloride, anhydrous sodium
sulfate, sodium hydroxide, potassium iodide, and iodine were purchased from Fuchen
(Tianjin) Chemical Reagent Co., Ltd. (Tianjin, China).

2.2. Preparation of Starch-Paprika Red Pigment Complexes

Preparation of starch-paprika red pigment complexes was performed as follows: First,
2 g of different types of starch (corn starch, potato starch, amylose, and amylopectin) and
50 mg paprika red pigment were mixed with 28 mL of MeOH to make a starch-paprika red
pigment suspension. Then, the starch-paprika red pigment suspension was heated at 70 ◦C
(DF-101S, Gongyi Yuhua instrument Co., Ltd., Gongyi, China) for 30 min with continuous
stirring and then cooled to indoor temperature. Subsequently, the starch-paprika red
pigment suspension was centrifuged at 4 ◦C and 8000 r/min (JXN-30, Beckman Coulter
Co., Ltd., Brea, CA, America) for 20 min, and the precipitate was collected. The precipitate
was washed twice with MeOH to remove the free material that was not bound to the
starch. Finally, the starch-paprika red pigment complexes were recovered by drying in
a vacuum freeze dryer (LGJ-1C-56, Beijing Yatai Colon Instrument Technology Co., Ltd.,
Beijing, China).

2.3. Colour Evaluation of Starch-Paprika Red Pigment Complexes

Colour values (L*, a*, b*) of PS-P and CS-P were determined via a spectrophotometer
(CR-800, Beijing Kemerunda Instruments Co., Ltd., Beijing, China). The hue (h) of samples
were calculated using the following equation [26],

h = tan−1 b*

a*

where L, a, and b represent the sample brightness, red/green value, and yellow/blue value,
and L*, a*, and b* represent the control brightness, red/green value, and yellow/blue value.

2.4. Determination of Reflectance and Scattering Rate of Starch-Paprika Red Pigment Complexes

The starch-paprika red complexes were placed in a quartz cuvette measuring 1 cm,
and their reflectance was measured using the reflectance mode of the spectrophotometer
(CR-800, Beijing Kemerunda Instruments Co., Ltd., Beijing, China) within a range of
400–700 nm. The transmission mode of the spectrophotometer was utilized to determine
the transmittance and haze of the samples, and based on the following equation, the
scattering rate of the starch-paprika red pigment complexes was calculated.

Scattering rate(%) = transmittance × haze

2.5. Analysis of Pigments Adsorbed by Starch in Paprika Red Pigment
2.5.1. Pretreatment of Samples

Using the method by Kim et al. [27], appropriate adjustments were made to perform
the following analysis. For the analysis of carotenoids, extraction was carried out using
acetone. For the extraction, 1 g of dried sample was mixed with 20 mL of acetone and
shaken for 20 min, and was repeated until the solution was colourless. The supernatants
were merged and the solvents were evaporated to dryness using a rotary evaporator (RE-
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52AA, Shanghai Yarong Company Biochemical Instrument Factory, Shanghai, China) at
35 ◦C, dissolved with 15 mL ether/n-hexane [1:1(w/w)], then incubated with 15 mL MeOH
and 5 mL 30% KOH/MeOH at room temperature for 2 h 30 min in the dark, and this was
repeated until the solution was colourless. The supernatants were then washed several
times with distilled water until the pH was neutral, and 5 mL of 10% NaCl and 5 mL of 2%
Na2SO4 were added and discarded as the separated hydrophilic phase. After evaporating
the collected extracts, the residue was dissolved in MeOH/MTBE (1 mL) [1:1(w/w)] and
passed through a 0.22 µm microporous filter membrane until ready for use. Standard curves
were plotted using standards of capsorubin, capsanthin, zeaxanthin, β-cryptoxanthin, and
β-carotene that were >97% pure. The calculation of the adsorption ratio of starch to paprika
red pigment was performed utilizing the subsequent formula,

Adsorption ratio(%) =
S

STotal
× 100%

where S represents the content of individual pigments in the starch-paprika red complexes
and Stotal represents the total pigment content in the starch-paprika red complexes.

2.5.2. Analysis of Pigments Content in CS-P and PS-P

The content of five pigments in CS-P and PS-P complexes was determined via HPLC
(Waters 2695, Waters Corporation, Milford, MA, USA). Using the method by Murillo et al. [28],
with some modifications, separation was performed using a Venusil XBP C30 column
(4.6 × 250 mm, 5 µm) (Tianjin Bona Ijar Technology Co., Ltd., Tianjin, China) at 25 ◦C,
and the mobile phase was a binary solvent consisting of phase A (MeOH/MTBE/W,
81:15:4, v/v/v) and phase B (MeOH/MTBE/W, 6:90:4, v/v/v). The UV wavelength was
set to 450 nm. The injection volume was set to 1 µL and the flow rate was 1 mL/min. The
gradients were programmed as follows (%B): first, 0–45 min, 0–50% of B; second, 45–50 min,
50–0% of B; and finally, 50–60 min, 0% of B.

2.6. Determination of Complexing Index (CI) of Samples

The values of CI of CS-P, PS-P, amylose-P, and amylopectin-P were measured using
the method described by Wang et al. [29] with a slight modification. Briefly, 1 mL of
the samples mentioned above were mixed with 200 µL I2/KI [1.3% (w/w) I2 and 2.0%
(w/w) KI in deionized water] solution, and the absorbance was measured at 620 nm via a
Ultraviolet-visible Spectrophotometer (SHIMADZU-1280, Shimadzu Corporation, Kyoto,
Japan). The complex index was calculated using the following equation [30].

CI(%) =
Absstarch − Absstarch−paprika red pigment

Absstarch
× 100%

2.7. Scanning Electron Microscopy (SEM) Analysis

The microscopic morphology of the pretreated samples was observed using a S4800
SEM (Hitachi Production Co., Ltd., Tokyo, Japan). The dried samples were mounted on
a copper stake with a double-sided carbon tag and coated with platinum for 80 s. SEM
images were taken at an accelerating voltage of 15 kV and captured using the accompanying
software (Digital Micrograph 3.4).

2.8. Particle Size Analysis

The suspended particle sizes of PS, CS, PS-P, and CS-P were determined via particle
size analyzer (Mastersizer 2000, Malvern UK Go., Ltd., London, UK). The optical path of
the cuvettes used was 1 cm, and the refractive index and viscosity of the samples were
calculated using standard calculation tools provided by the software. During the process,
the sample was balanced for at least 1 min, and at least 13 consecutive readings were taken.
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2.9. Mercury Porosimetry Analysis

Using the method by Włodarczyk-Stasiak et al. [31], the measurements were carried
out using Mercury piezometers (AutoPore V 9600, Micromeritics Corporation, Norcross,
GA, USA). Briefly, 1 g of starches and starch-capsaicin complexes was dried at 105 ◦C,
placed in a dilatometer, outgassed underhigh vacuum, and filled with mercury under a
pressure range of 0.1 to 61,000 psi.

2.10. Fourier Transform Infra Red (FT-IR) Spectroscopy

The FT-IR spectrometer (IS 5, Thermo Fisher Scientific, Waltham, MA, USA) was used
to scan the FT-IR spectra of PS, CS, PS-P, and CS-P at full wavelength (4000–400 cm−1) at
room temperature. The dried samples mentioned above and 100 mg KBr were mixed in
the mixing mortar to make the powder more uniform. The spectrum was recorded using
32 scans with a resolution of 4 cm−1. Each sample was measured 3 times in parallel.

2.11. X-ray Diffraction

X-ray diffraction analyses of PS, CS, PS-P, and CS-P were performed using a SE
diffractometer (Nihon Riken Electric Co., Ltd., Niigata, Japan) operated at 40 kV and 40 mA
with graphite-filtered Cu Ka radiation and a q compensating slit. The relative intensity was
recorded in a scattering angle range (2θ) of 5–60◦ with a scintillation counter at a scanning
speed of 0.02◦/min, 17.7 s/step.

2.12. Statistical Analysis

Results are shown as mean ± standard deviation (n = 3). Statistical analysis was
carried out using SPSS System Software 22.0. Significant differences between the individual
means were tested using t-test and Duncan’s multiple range (p < 0.05). All graphs involved
in this article were drawn using OriginLab 2021 software, and all tables were drawn using
Office Word 2019 software.

3. Results
3.1. CS-P and PS-P Colour Comparison

The interactions between CS and PS with paprika red pigment were assessed using
a binary mixed system consisting of starch-paprika red pigment complexes. Figure 1A
displays the adsorption capacity of CS and PS for paprika red pigment. The results
showed that there was a significant difference in the adsorption capacity of CS and PS
for paprika red pigment, with CS-P being more reddish. Colour space is a geometric
representation of colour in three dimensions, which can be calculated and derived from the
initial stimulus values of red, green, and blue. Chromatic aberration is a viable measure
to assess the extent of colour variation between different substances [32]. Therefore, in
this study, the L*, a*, and b* values were used to verify the colour differences among
the samples. The CS-P L*, a*, and b* values exceeded those of PS-P (Table 1), and the
total colour difference ∆E was considerably higher than that of PS-P. This outcome is
consistent with the findings in Figure 1A. The hue (h) is a qualitative characteristic of colour,
traditionally defined as the property of red and green. It provides a clearer indication
of the degree to which starch is bound to pigments, proteins, polyphenols, and other
substances [33]. As shown in Figure 1B, the h-value for PS was higher than that for CS,
and both were greater than 90. Compared to CS and PS, the h-value for both CS-P and
PS-P were significantly lower at 47.88 ± 0.50 and 60.22 ± 0.60, respectively, indicating that
starches formed complexes with paprika red pigment and the binding capacity of CS for
paprika red pigment was stronger than that of PS. Starch is formed by numerous polymer
chains containing many hydroxyl groups and arrangements. The paprika red pigment also
possesses many hydrophilic hydroxyl groups [34]. Therefore, it can be inferred from the
above results that the interaction between starch macromolecules and paprika red pigment
might be attributed to the hydrogen bonding or van deer Waals forces, facilitating the
encapsulation of paprika red pigment into the starch particles [32].
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Table 1. Values of colour indices L*, a*, b*, h and ∆E of CS-P, PS-P and CS-P-SC complexes.

L* a* b* ∆E

PS-P 42.63 ± 0.41 b 22.45 ± 1.84 b 20.83 ± 1.40 b 6.75 ± 0.58
CS-P 46.01 ± 0.41 a 26.90 ± 0.23 a 25.39 ± 0.50 a 12.57 ± 0.63 ***

CS-P-SC 38.80 ± 0.11 c 18.44 ± 0.67 c 15.69 ± 0.47 c -
∆E denotes the total colour difference calculated using the CS-P-SC dispersion system as a control. CS-P: Corn
starch-paprika red pigment, PS-P: Potato starch-paprika red pigment, and CS-P-SC: Corn starch-paprika red
pigment-sodium caseinate. Values with different letters in the same column are significantly different (p ≤ 0.05).
Significant difference was defined as p < 0.05 (*** p < 0.001). Values are expressed as mean ± standard deviation
(n = 3).

3.2. Analysis of the Optical Properties of Starches and Starch-Paprika Red Pigment Complexes

Reflectance and scattering could describe the different phenomena occurring on the
surface of an object and are used to describe the interaction between light and the object.
For most substances, objects with high reflectance reflect light brightly and appear lighter,
while objects with low reflectance absorb more light and appear darker [35]. Based on
the microstructure analysis of CS and PS (Figure 2), the CS particles were found to be
smaller and rougher, whereas the PS particles were larger and smoother. Subsequently, the
reflectance of CS was higher than that of PS. Figure 3A indicates clear absorption peaks
around 700 nm for both CS-P and PS-P, suggesting a complex formation between starches
and paprika red pigment. Moreover, CS-P exhibited higher reflectance compared to PS-P,
resulting in a brighter and redder appearance for CS-P. The reflectivity of the complexes
increased with increased CS concentration (Figure 3C), implying that a higher concentration
of CS yields a redder colour for the complexes. Literature indicates that substances with
high reflectivity demonstrate low scattering, and the results of this experiment confirm this
hypothesis (Figure 3B,D).
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3.3. HPLC Analysis of Adsorption of Paprika Red Pigment from CS and PS

HPLC uses column packing to selectively retain the components in the material to
achieve the effect of separation of material components [36]. Moreover, HPLC is often used
to detect the colourants, such as synthetic and natural colourants in green-coloured food-
stuffs, curcuminoids, and synthetic edible pigments in beverages, etc. [37–39]. Therefore, in
this study, the adsorption of CS and PS to the five pigments with the highest paprika red
pigment was determined using HPLC. As shown in Table S1, the standard curve is linear
(R2 > 0.9900). The adsorption capacity and adsorption ratio show the distribution of the
substance on the adsorbent during the adsorption process. A greater adsorption capacity
suggests that the adsorbent has the ability to adsorb a higher quantity of substances. A high
adsorption ratio may indicate that the adsorbed substance is adsorbed effectively by the
adsorbent [40]. As shown in Table 2, both CS and PS adsorbed all five pigments. However,
CS adsorbed 85.44 ± 1.10 µg/g, representing 12.5 times higher adsorption capacity than PS.
This result suggests that CS has superior adsorption capabilities for paprika red pigments.
The adsorption ratios showed that both CS-P and PS-P had high capsanthin percentages,
indicating that CS and PS could effectively adsorb capsanthin, and the red pigment is
the primary colour-presenting substance in the starch-paprika red pigment complexes.
Furthermore, CS had a significantly higher adsorption ratio of capsanthin than PS, implying
that CS-P is redder than PS-P. Research suggests that the adsorption capacity of starch for
pigment molecules is related to the amount of amylose present [41]. Therefore, it can be
inferred that the variances in amylose content between CS and PS might lead to differences
in paprika red pigment adsorption by these starches.
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Table 2. Adsorption analysis of carotenoids in paprika red pigment by CS and PS.

Adsorption Capacity (µg/g) Adsorption Ratio/%

CS

capsorubin 3.56 ± 0.03 e 4.57 ± 0.50 d

capsanthin 40.63 ± 0.65 a 48.24 ± 1.79 a

zeaxanthin 6.50 ± 0.08 d 8.78 ± 1.37 cd

β-cryptoxanthin 10.00 ± 0.15 c 11.85 ± 1.87 c

β-carotene 24.75 ± 0.19 b 29.81 ± 4.84 b

Total 85.44 ± 1.10 100

PS

capsorubin 0.40 ± 0.01 d 7.37 ± 1.20 c

capsanthin 2.75 ± 0.25 a 42.61 ± 2.94 a

zeaxanthin 0.48 ± 0.08 cd 9.09 ± 1.90 c

β-cryptoxanthin 0.75 ± 0.06 c 11.60 ± 2.24 c

β-carotene 2.27 ± 0.30 b 34.14 ± 5.36 b

Total 6.65 ± 1.53 100
CS: Corn starch, PS: Potato starch. Different letters indicate significant differences (p < 0.05). Values (mean ± SD)
were calculated using the results from three independent experiments.

3.4. CI values of the Starch-Paprika Red Pigment Complexes

The adsorption capacity of amylose and amylopectin for paprika red pigment was
determined through the CI method. CI is based on starch-iodine complex formation in
starch representing the degree of starch complexed with binding agents. The higher CI
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values indicate the enhanced degree of formation of V-type inclusion complexes between
paprika red pigment and amylose molecules [42]. Herein, the adsorption capacity of CS and
PS for paprika red pigment was compared, and the results showed that the capacity of CS
to adsorb paprika red pigment was significantly higher than that of PS with the CI values
of 77.23 ± 5.72% and 53.62 ± 5.90%, respectively. Secondly, the ability of amylose and
amylopectin to adsorb paprika red pigment was examined, demonstrating that amylose
was more readily bound to the paprika red pigment with a CI value of 79.97 ± 3.13%,
which was 4 times more than that of amylopectin (Figure 4). This phenomenon might be
attributed to the formation of starch molecules. Amylose is a primary linear polysaccharide
with α-(1-4)-linked D-glucose units. The complexing agents (lipids, emulsifiers, flavor
compounds, etc.) can induce amylose to form a single helix structure. The single helix
structure features a notably spacious hydrophobic cavity, wherein the inner surface holds a
lipophilic core comprised of C-H groups, while the outer surface consists of polar hydroxyl
groups. Additionally, the lipophilic core of the single helix allows for the entrance of the
aliphatic group of the complexing agent [43]. Therefore, the single helical structure of
the cavity formed by the amylose could adsorb more paprika red pigment. Amylopectin
consists of many short chains of glucose linked by α-1,4-glycosidic bonds, and these short
chains are linked together by α-1,6-glycosidic bonds at the reducing end, making it a highly
branched macromolecule. The weak complexing ability of amylopectin is attributed to the
short chain lengths of amylopectin branches and their steric hindrance [44]. CS contained a
considerable amount of straight-chain starch, in contrast to PS, which contained up to 79%
branched-chain starch. Consequently, the CI of CS was significantly higher than that of PS,
consistent with previous hypotheses.
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Figure 4. Complexing index of different starch-paprika red complexes. CS: Corn starch, PS: Potato
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nificant difference was defined as p < 0.05 (** p < 0.01, **** p < 0.0001). Values are expressed as
mean ± standard deviation (n = 3).

3.5. Particle Size Analysis of Starches and Starch-Paprika Red Pigment Complexes

Particle size plays a vital role in determining the interaction between pigments and
macromolecules. The average particle size of CS and PS was significantly higher than the
mean particle size of the starch-paprika red pigment complexes (Table 3), which might be
because the starches became gelatinous after gelatinisation during the complex formation,
resulting in the adhesion between the particles and the loss of the original morphology [13].
The reduced starch particle size could be attributed to the formation of smaller composite
particles during amylose release from the starch granules. Particle size can be an indicator
of complex stability. Generally, the smaller the particle size, the greater the stability of the
complex system [45]. The particle size of the complexes formed by starch and pigment
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decreased, assuming that the starch-paprika red pigment complexes were more stable.
Additionally, the particle size of CS-P was smaller compared to PS-P, indicating that
CS-P was more stable than PS-P. The CI experiment result indicated that corn starch
had a strong binding ability for paprika red pigment, resulting in a higher adsorption
capacity compared to PS-P. As a result, the particle size of CS-P was smaller. Similarly,
it was reported that the addition of lycopene reduced the particle size of amylose, and
with increasing ferulic acid concentration, the particle size of CS decreased [46]. Liang
et al. fabricated nanocomplexes of chitosan hydrochloride (CHC), carboxymethyl chitosan
(CMC), and anthocyanins (ACNs) through electrostatic interaction to improve the stability
of ACNs. At the optimal ratio of 1.2 g CHC to 1.0 g CMC (w/w, 8 mg of ACNs), the ACNs-
loaded CHC/CMC nanocomplexes showed high encapsulation efficiency with a smaller
particle size [47]. This phenomenon could be attributed to the fact that after the starches
interact with the small molecule, water is expelled from the complex in the presence of the
hydrophobic cavity.

Table 3. Particle size, pore area, and porosity of starches and starch-paprika red pigment complexes.

Particle Size (µm) Pore Area (m2) Porosity (%)

CS 10.16 ± 0.12 b 0.48 ± 0.06 a 55.44 ± 0.65 a

PS 27.54 ± 0.28 a 0.19 ± 0.05 b 40.44 ± 0.75 c

CS-P 5.27 ± 0.60 c 0.48 ± 0.02 a 46.05 ± 2.12 b

PS-P 26.34 ± 0.22 a 0.25 ± 0.06 b 41.63 ± 1.81 c

CS: Corn starch, PS: Potato starch, CS-P: Corn starch-paprika red pigment, and PS-P: Potato starch-paprika red
pigment. Values with different letters in the same column are significantly different (p ≤ 0.05). Values (mean ± SD)
were calculated using the results from three independent experiments.

3.6. Pore Analysis of Starches and Starch-Paprika Red Pigment Complexes

The pore structure affects the adsorption properties, solubility, and storage of sub-
stances. The pore area represents a substance’s internal pore structure and helps evaluate its
adsorption properties. Porosity is a useful tool for determining the porosity and permeabil-
ity of a substance [48]. Generally, substances with large pore areas and high porosity exhibit
more adsorption sites, resulting in an increased ability to adsorb the targeted substances
effectively. Starch has a certain pore structure, so studying and evaluating the pore area
and porosity of starch are imperative to expand the starch application and modification.
According to Table 3, CS displayed greater pore area and porosity than PS. This result can
be explained by the microstructure of starch. As shown in Figure 2, the PS granules had a
smooth surface with no signs of pores and cracks. In contrast, the CS particles had more
surface pores and cracks, endowing them with better adsorption properties. Therefore,
CS-P was redder than PS-P. Lower porosity improves the substance’s stability due to the re-
duced number of voids and pores within the substance. This reduction limits the pathways
for air and moisture to enter and contributes to a reduction in some reactions, including
oxidation, decomposition, and deterioration [49]. The porosity of CS-P was significantly
lower than that of CS after the complexation of starch pigment. However, there was no
significant difference between the porosity of PS-P and PS. These results suggest that the
inclusion of paprika red pigment improved the stability of CS but had minimal impact
on the stability of PS. This experimental result was consistent with the results of CI and
particle size analyses. Su et al. found that the porosity of tapioca starch decreased following
the complexation of pigments from sugarcane juice with tapioca starch [50]. These results
offer theoretical guidance for developing an effective adsorbent.

3.7. Structural Characterisation of Starchs and Starch-Paprika Red Pigment Complexes
3.7.1. FT-IR Spectroscopy Analysis

FT-IR spectra are primarily used to observe the differences in the crystalline and amor-
phous regions between the complexes and the natural starch and the bonding forces [51].
Normally, starch shows typical bands and peaks in FT-IR spectra. Therefore, in this study,
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the effect of paprika red pigment on the structure of starch was explored using FTIR spec-
troscopy. The infrared spectra of CS, PS, CS-P, and PS-P complexes are illustrated in Figure 5.
The typical common absorption peaks are as follows: The absorption peak near 572 cm−1

refers to the skeletal mode vibration of starch, the absorption peak at 986 cm−1 refers to the
backbone vibration of the asymmetric ring mode (α-1,4-glycosidic bonds (C-O-C) of starch,
the absorption peaks at 1161 cm−1 refers to the C-O bond and the stretching vibration
of the C-C bond, the band at 1462 cm−1 refers to the bending vibration of CH2 [52], and
the band around 1654 cm−1 refers to the absorption peak in the amorphous region of
adsorbed water in starch. The band at 2156 cm−1 was probably due to the presence of free
water in starch. An intermediate intensity peak at 2930 cm−1 refers to the antisymmetric
stretching oscillation of CH2, and the band around 3000 cm−1 to 3600 cm−1 was dominated
by hydrogen bond stretching vibrations and absorption, which was a sensitive indicator
to characterize the strength of hydrogen bonds [53]. As shown in Figure 5A, no new
absorption peaks appeared, and no absorption peaks disappeared for the starch-paprika
red pigment complex compared to CS and PS, indicating no chemical bond modification or
covalent bond formation between starch and paprika red pigment. Overall, the addition of
paprika red pigment had little effect on the chemical bonding of CS and PS molecules. As
shown in Figure 5B,C, after the addition of paprika red pigment, the absorption peaks of
CS-P and PS-P complexes were enhanced at 3421.82 cm−1, indicating the formation of a
strong hydrogen bond between starches and paprika red pigment [54].
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spectra of PS and PS−P complex (C) are shown. CS: corn starch, PS: potato starch, CS−P: corn
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3.7.2. X-Diffraction Analysis

XRD plays a crucial role in identifying the formation of starch complexes with polyphe-
nols, lipids, and anthocyanins [55]. Therefore, in this study, the binding mechanism between
starches and paprika red pigment was determined via XRD. The XRD analysis revealed
that type A starch exhibited notable peaks at 2θ = 15.05◦, 17.09◦, 17.92◦, and 23.00◦ while
type B starch exhibited discernible absorption peaks at 2θ = 15.26◦, 17.21◦, 19.75◦, 22.32◦,
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and 24.08◦ [56]. As shown in Figure 6A,C, CS exhibited strong characteristic peaks at
2θ = 15.50◦, 17.09◦, and 23.00◦ and PS exhibited characteristic peaks at 2θ = 17.21◦, 19.75◦,
and 22.32◦, indicating that CS exhibits a typical A-type diffraction peak while PS displays
a typical b-type diffraction peak. Additionally, the starch V-shaped structure showed
characteristic broad peaks at 13.00◦ and 20.00◦. The CS-P and PS-P complexes showed
characteristic broad peaks at 20.00◦ (Figure 6B,D). It can be seen that the starch formed a
V-shaped structure after binding to the paprika red pigment, which was consistent with the
findings of Liu et al. The presence of paprika red pigment significantly altered the crystal
structure of starch. A higher proportion of ligand material increases the probability of
forming a V-shaped structure [57]. As shown in Figure 6E, CS-P had a relative crystallinity
of 49.21 ± 3.67%, which was significantly higher than that of CS with 11.77 ± 0.99%. Addi-
tionally, PS-P had a slightly higher relative crystallinity of 52.74 ± 1.75% than that of PS
with 50.93 ± 2.74%. These results suggested that the resultant structure was more stable
and compact, with increased relative crystallinity due to the complexation of starch with
paprika red pigment.
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4. Conclusions

In summary, the CS-P and PS-P complexes were synthesized using CS, PS, and paprika
red pigment, and their structures were analyzed. The results showed that both CS and PS
had the ability to adsorb paprika red pigment, with CS exhibiting the highest ability. CS-P
exhibited a brighter and redder appearance than PS-P. The particle size and pore structure
analyses demonstrated that the stability of the starch-paprika red pigment complexes
was surpassed compared to the starch molecules. Moreover, CS-P displayed greater
stability than PS-P. The FT-IR and XRD analyses demonstrated that strong hydrogen bond
interactions were formed between the starch molecules and paprika red pigment. The
starch-paprika red pigment complexes displayed a V-type structure with increased relative
crystallinity. However, the relative crystallinity of CS-P was greater than that of PS-P,
suggesting that the stability of CS-P was superior to that of PS-P. Overall, CS-P has a better
colour appearance than PS-P. This study provides a theoretical basis for further exploitation
of paprika red pigment and starch. In the future, the starch-pigment complexes can be
used in the delivery systems to develop more optimal controlled-release and targeted
drug delivery systems. Despite the positive outcomes, the study has many limitations
that need to be addressed. Firstly, the colour difference in capsanthin in different starches
is influenced by various factors, such as the properties of starch particles, the optical
properties of the dispersion system, and the selective adsorption of red and yellow pigments
in capsaicin. However, quantifying the contribution of each factor remains a challenge. In
addition, further investigation into the colouring effect of different starches on capsanthin
is imperative.
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