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Abstract: Red cabbage (RC), a cruciferous vegetable rich in various bioactive substances, can signifi-
cantly reduce the risk factors of several non-communicable diseases, but the mechanism underlying
the biological effects of RC remains unclear. Furthermore, mechanisms that operate through the
regulation of gut microbiota also are not known. Given the relationships between diet, gut microbiota,
and health, a diet-induced mice obesity model was used to elucidate the influence of RC on gut
microbial composition and bacteria–bacteria interactions in mice. After 24 h of dietary intervention, a
high-fat (HF) diet with the intake of RC led to increased Firmicutes/Bacteroidetes (F/B) ratios in the
feces of mice. RC also reduced the relative abundance of Bifidobacteria, Lactobacillus, and Akkermansia
muciniphila in mice fed a low-fat (LF) diet. After 8-weeks of dietary intervention, RC significantly
changed the structure and the ecological network of the gut microbial community. Particularly, RC
inhibited an HF-diet-induced increase in AF12 in mice, and this genus was positively correlated with
body weight, low-density lipoprotein level, and fecal bile acid of mice. Unclassified Clostridiales,
specifically increased via RC consumption, were also found to negatively correlate with hepatic
free cholesterol levels in mice. Overall, our results demonstrated that RC modulating gut microbial
composition and interactions are associated with the attenuation of HF-diet-induced body weight
gain and altered cholesterol metabolism in mice.

Keywords: red cabbage; mice obesity model; gut microbiota; 16S rRNA sequencing

1. Introduction

The human digestive tract commonly hosts a diverse range of microorganisms, in-
cluding bacteria, fungi, viruses, and parasites, collectively known as the gut microbiota.
This microbiota, comprising over 100 billion to 100 trillion microorganisms, plays a crucial
role in maintaining the dynamic equilibrium of human health and diseases [1–3]. The mi-
croorganisms in the gut have a significant impact on the metabolism, immune system, and
overall physiology of the human host. Numerous research investigations have indicated
that imbalances in the gastrointestinal microbiome can play a crucial role in the emergence
of various ailments, including metabolic syndrome (excessive weight and associated condi-
tions), high blood pressure, and depressive disorders [4–6]. Obesity is currently one of the
most widespread public health issues globally among chronic diseases. Projections suggest
that over 1 billion individuals will face the risk of obesity by 2030 [7]. Additionally, visceral
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obesity contributes significantly to chronic conditions like type 2 diabetes, hepatic steatosis,
and cardiovascular disease [8,9]. Studies in epidemiology have indicated that dietary
interventions play a crucial role in combating obesity and its associated illnesses, and can
also impact the makeup of the gut microbiome [10,11]. According to reports, people with
varying eating habits possess distinct microbiomes. Consuming diets rich in sugar and fat
can disturb bacterial metabolism and balance, resulting in microbiota dysbiosis, obesity,
and metabolic syndrome [12]. On the other hand, the intake of phytonutrients that are
abundant in vitamins, polyphenols, flavonoids, and other compounds can enhance the
distribution of lipids and regulate the imbalance of gut ecology in the body. As a result,
this can contribute to the prevention and treatment of different metabolic disorders [13,14].
Furthermore, alterations in dietary habits can swiftly lead to modifications in the makeup
of the intestinal microbiota [15].

Red cabbage (RC), a vegetable of the Brassica genus, is a readily available consumer
dietary product that is rich in purported health-promoting bioactives [16]. RC has a
higher level of polyphenols and antioxidant activity compared to white cabbage [17]. The
majority of polyphenols do not get absorbed in the small intestine; instead, they go into
the colon where they alter the makeup of the gut microbiota. This alteration promotes
the growth of helpful bacteria while suppressing harmful bacteria, ultimately enhancing
the availability of polyphenols [18]. Other well-known bioactive compounds in RC, such
as glucosinolates (GSLs) that are stable in the natural matrix but readily hydrolyzed by
endogenous mustard enzymes (EC 3.2.1.147), activate mechanical actions when consumed,
to produce compounds such as isothiocyanates (ITC) and indole [19]. According to previous
reports, indole derived from GSL plays a role in preserving the natural defense of the human
gut, activating aryl hydrocarbon and pregnane X receptors to exert anti-inflammatory
effects, consequently impacting the functioning of the immune system [20,21]. The positive
impacts of these effects on intestinal health are substantial, and they hold immense promise
for treating inflammatory bowel disease and neurodegenerative disorders [22,23]. We and
others have also reported that, in rodent models, feeding RC or an RC extract containing the
bio-actives results in lowering blood lipids, cholesterol, cardiovascular disease risk factors,
and promoting liver health [24]. We also reported that indole-3-carbinol, a dietary digestive
derivative of GSL, can modulate the gut microbiome and is associated with attenuation
of tumor xenograft growth [25]. Nevertheless, even though the health benefits of RC are
well-known, there is still uncertainty regarding its influence on the gut microbiome as a
dietary component and its potential impact on overall well-being.

We hypothesized that consumption of RC can modulate the gut microbiome and
provide a protective effect on health. The present investigation aims to expand our prior
research on the impact of RC on health to clarify: (1) if RC intake can influence the gut
microbiome and, if it does, what modifications occur and (2) if alterations in the gut
microbiome are linked to the reduction in disease risk factors. We utilized a mice model of
obesity induced via high fat intake and implemented a factorial design of 2 × 2 (level of fat
and with or without RC). We used 16S rRNA sequencing analysis and ecological network
analysis to identify specific genera that cause alterations in gut microbiota structure and
microbial symbiosis patterns. An AI (Random Forest)-assisted algorithm was used to
elucidate the relationship between microbiome changes and obesity-related risk factors to
address the questions raised. The findings of our research offer fresh mechanistic proof that
RC has the potential to decrease the likelihood of metabolic disorders, like obesity, through
the regulation of the gut microbiota.

2. Materials and Methods
2.1. Establishment of Mice Obesity Model

A total of forty male C57BL/6NCr mice, aged around 5 weeks and weighing approx-
imately 20 g, were acquired from Charles River Laboratories (National Cancer Institute,
Frederick, MD, USA). These mice were divided randomly and equally into four groups
(n = 10 in each group), individually housed in cages with filtered lids, and subjected to a
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12 h light/dark cycle. Mice were provided with standard rodent nourishment and suffi-
cient water for one week before commencing the experiment. Each group was assigned
to a different diet: (1) LF diet (LF, 10 kcal% fat diets); (2) LF diet with the addition of RC
powder (LFRC, 10 kcal% fat diets containing 10.9 g/kg diet); (3) HF diet (HF, 45 kcal%
fat diets); and (4) HF diet with the addition of RC powder (HFRC, 45 kcal% fat diets
containing 10.9 g/kg diet). Data such as the mice’s body weight and food intake were
recorded weekly throughout the 8-week experimental cycle. The local market provided
recently purchased RC, which was subsequently frozen in liquid nitrogen for 48–72 h. After
being frozen, the RC samples were grounded and incorporated into the diet in the form
of a dry powder. The experimental diets were formulated and pelleted by Research Diets
(New Brunswick, NJ, USA). The dietary supplement for the mice was adjusted based on an
equivalent of 200 g of vegetables per day for a 60 kg human, using the appropriate dose
conversion formula suggested by Reagan-Shaw et al. [26]. The animal experiment was
conducted following established ethical guidelines and approved by the Beltsville Area
Animal Care and Use Committee of the United States Department of Agriculture (protocol
# 14-006).

2.2. Measurement of Physiological Indicators in Mice Samples

Mouse plasma lipoprotein levels were assessed through size-exclusion chromatogra-
phy (Agilent Technologies, Santa Clara, CA, USA); amounts of triacylglycerol in the liver
were tested using a commercial kit (Triglyceride-SL, Sekisui Diagnostics PEI Inc., Char-
lottetown, Canada); free cholesterol and total cholesterol in liver were determined using
the Amplex red cholesterol assay kit (Invitrogen, Carlsbad, CA, USA), and concentrations
of fecal bile acid were quantified by using a commercial kit (Cell Biolabs Inc., San Diego,
CA, USA). The data for these physiological indicators were obtained from our previous
study [24].

2.3. Fecal DNA Extraction and Quantitative PCR Analysis

Mice fecal samples were collected 24 h after different dietary treatments, homogenized
at 7500 rpm for 1 min using a Precellys (Bertin Technologies, Villeurbanne, France), and
bacterial DNA was extracted from mice feces using the QIAamp DNA Stool Mini kit.
The DNA concentration in the end solution was determined by measuring its absorbance
at 260 nm and subsequently diluted step by step to reach a concentration of 10 ng/µL.
Quantitative real-time PCR analyses were conducted using an Applied Biosystems™ 7900T
Real-Time PCR System (Forest City, CA, USA). The PCR reaction consisted of 10 µL of
SYBR® Green Real-Time PCR Master Mix, 0.25 µL of 500 nM custom primers (refer to
Table S1 in the electronic Supplementary Information), 4.5 µL of water, and 5 µL of DNA.

2.4. Cecum DNA Extraction and 16S rRNA Sequencing

Following 8 weeks, the contents of the mice’s cecum were gathered, promptly frozen
in liquid nitrogen, and subsequently stored at −80 ◦C for preservation. The QIAamp Fast
DNA Stool Mini Kit was utilized to extract total DNA from the cecum samples, followed
by assessing the purity and concentration of the obtained DNA using a Nanodrop 8000
spectrophotometer (Thermo Scientific, Wilmington, DE, USA). PCR amplification of the
16S rRNA gene V3–V4 variable region of the samples was performed with the following
PCR primers: forward primer 341/357F, CCTACGGG-NGGCWGCAG and reverse primer
805/785R, GACTACHVGGGTATCTAATCC, for 20 cycles. The amplification products
were purified with the Agencourt AMPure XP beads kit and then quantified with the High
Sensitivity DNA kit (Agilent, USA). The amplification products from each sample were
combined in equal amounts and the library pool was sequenced using the Illumina Mi Seq
Reagent Kit v3 and Illumina Mi Seq sequencer [27,28].
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2.5. Sequence Data Analysis

The preprocessing of the sequencing data was conducted using MiSeq Control Soft-
ware version 2.4.1. The integrity of the raw sequences was assessed with FastQC soft-
ware; version 0.11.2. Trimmomatic (version 0.36) was employed to trim away low-quality
reads and to remove the first four degenerate bases, represented as “NNNN”, from the
5′ ends of the read pairs. The cleaned paired-end reads were then merged using the
join_paired_ends.py script. The sequenced sequences were bioinformatically analyzed
using the QIIME1 tool, and the similarities were merged according to the “closed reference”.
OTU is an artificially defined taxonomic unit used in phylogenetic studies to classify species
and is the basic unit that constitutes the relative abundance of a species. The biology of
each OTU was annotated using the RDP classifier tool by comparing it with the Greengene
database. The samples were analyzed to determine the community composition at various
taxonomic levels, including phylum, class, order, family, genus, and species. The majority
of the OTUs were identifiable at the genus classification, while only a small number could
be assigned to the species classification.

2.6. Statistical Analysis and Visualization

Evaluation of species diversity was conducted using the Microbiome Analyst platform
(MicrobiomeAnalyst 2.0, http://www.microbiomeanalyst.ca, accessed on 18 January 2023),
including Alpha and Beta diversity analysis, hierarchical clustering, and heat map visualiza-
tion [29]. Comparisons of the relative abundance of taxonomic units between different diet
groups were performed using GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA).
The data were presented as means ± SD and subsequently subjected to one-way ANOVA
and Tukey’s post hoc test. All findings were deemed significantly distinct at a significance
level of p ≤ 0.05. The linear discriminant analysis (LDA) effect size (LEfSe) algorithm-based
analysis of the Galaxy platform (http://huttenhower.sph.harvard.edu/galaxy/, accessed
on 26 February 2023) was used to identify genus that were statistically different within
groups (i.e., biomarker). Based on the distribution of the data, GraphPad Prism 9 and Pear-
son correlation analysis based on R (R version 3.6.1) were used to calculate the correlations
between changes in genus-level relative abundance and obesity-related risk factors (such
as weight gain, plasma lipoproteins, and lipid metabolites). The physiological data were
collected from our previous studies [24].

A microbial co-occurrence network was constructed using the network analysis plat-
form MENA (http://ieg4.rccc.ou.edu/mena/, accessed on 1 March 2023), as indicated by
the results of the OTU analysis. The co-occurrence of species in the samples was simulta-
neously obtained using the random matrix theory (RMT). The main steps are as follows:
firstly, the OTU tables were modified and uploaded according to the file format in MENA,
the uploaded data were logarithmically normalized, the Pearson correlation was calculated
and the correlation matrix was established, the system automatically generated the similar-
ity threshold according to the random matrix principle, and the network was constructed
based on this default threshold. The default threshold was used to build the network.
Afterward, by selecting MENA network analysis, Cytoscape software (version 3.9.1) could
be utilized to compute and display the network property parameters, thereby acquiring
the network configuration and associated details. These details encompassed the count
of nodes, which represented the number of species within the community (OTUs), the
interconnection between nodes (whether positive or negative correlation), the clustering
coefficient, and the count of species within the community (OTUs). The clustering coeffi-
cient measured the level of connectivity between a node and other nodes, while modularity
described the degree of modularity in the molecular ecological network. The intra-module
connectivity (Zi) and inter-module connectivity (Pi) could be used to express the roles of
nodes. The Mantel test was employed to assess the significance of OTU and node con-
nectivity in relation to the correlation between network topology and physiological traits,
based on the findings of the molecular ecological network. Subsequently, the association
between the colony network and the characteristic factors was determined [30].

http://www.microbiomeanalyst.ca
http://huttenhower.sph.harvard.edu/galaxy/
http://ieg4.rccc.ou.edu/mena/
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3. Results
3.1. Effect of Consuming RC for 24 h on the Fecal Microbiota of Mice

The relative abundance of Firmicutes, Bacteroidetes, Prevotella, Ruminococcus, Enter-
obacteriaceae, Bifidobacteria, Lactobacillus, and Akkermansia muciniphila in feces was quantified
using the RT-PCR method after the mice consumed various diets for 24 h. As shown in
Figure 1, the LF group had a significantly lower abundance of Firmicutes in their feces
compared to the HF-diet-fed mice, whereas the inclusion of RC had minimal impact on
the relative abundance of Firmicutes in both the LF and HF groups. On the other hand,
there was no notable variation in Bacteroidetes between the LF and HF groups. However,
the presence of RC supplementation notably reduced the prevalence of Bacteroidetes in
the LFRC group, whereas it did not have a significant impact on the HFRC group. Fur-
thermore, the ratio of F/B was significantly increased in all other three groups compared
to the LF group. Additionally, there were no notable distinctions observed in Prevotella,
Ruminococcus, Enterobacteriaceae, Bifidobacteria, Lactobacillus, and Akkermansia muciniphila
between the LF and HF groups. The impact of RC on Prevotella and Ruminococcus was
also not significant; however, it notably decreased the prevalence in the LFRC group of
Enterobacteriaceae, Bifidobacteria, and Lactobacillus. There was no significant difference be-
tween HF and HFRC groups for these bacteria. The LFRC group showed a significantly
reduced relative abundance of Akkermansia muciniphila compared to the LF group when
supplemented with RC.
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Figure 1. The influence of RC on the intestinal bacteria of mice. Mouse fecal samples were collected
24 h after feeding, from which bacterial DNA was extracted and quantified using qRT-PCR with
specific primers. The information is displayed as mean ± SD. Statistically significant differences
between groups are denoted by distinct letters, with a p-value less than 0.05 indicating significance.
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3.2. Effect of Consuming RC for 8 Weeks on Microbial Diversity in the Mice Cecum

The long-term effects of RC on the cecal microbiota of mice were analyzed using 16S
rRNA sequencing after consuming different grouped diets for 8 weeks. Initially, the Bray–
Curtis distance algorithm was employed in OTU abundance-based principal coordinate
analysis (PCoA) to assess the variation in species diversity among samples. As shown in
Figure 2A, the gut microbial communities of mice at different dietary levels were separated
from each other, whereas when RC was added to the diet, the differences between microbial
communities of LFRC and HFRC groups were reduced as indicated by overlapping circles.
Furthermore, the alteration in species diversity can be evaluated by employing Chao1
and PD-whole-tree indices (Figure 2B,C); it was discovered that including RC in the diet
did not have a notable impact on the alteration of species diversity in either the LF or HF
groups. Also, using Shannon and Simpson indexes to indicate changes in species evenness
(Figure 2D,E), it was observed that the Shannon index exhibited a significant increase in
the LFRC group when compared to the LF group. However, no significant difference was
observed between the HF and HFRC groups. There were no significant differences in
species richness and evenness between the LF and HF diets for all indexes assessed. In
general, the inclusion of RC in the diet did not have a notable impact on the gut microbiota
diversity of mice following both the LF and HF diets.
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Figure 2. The impact of RC on the diversity of microbes in the cecum of mice that were given
an LF and HF diet. Following an 8-week treatment period, the contents of the cecum in mice
were gathered and the DNA of bacteria in the cecal contents was extracted for sequencing the
16s rRNA. (A) Nonmetric multidimensional scaling (NMDS) plot of the β diversity based on the
OTU level Bray–Curtis distance matrix. The significance of clustering patterns in two-dimensional
ordination diagrams was assessed using Permutation analysis of variance (PERMANOVA). (B–E) Box
plot of OTU-level alpha diversity index (Chao1, PD whole tree, Shannon, and Simpson). Detailed
analysis was performed by conducting statistical evaluation using one-way ANOVA followed by
Tukey’s multiple comparison test. Boxes marked with different letters indicate statistically significant
differences at a significance level of p ≤ 0.05.

3.3. Effect of Consuming RC for 8 Weeks on the Composition of Cecal Microbiota in Mice

To elucidate the effect of four different diets, the structure of the mouse gut micro-
biome was further analyzed. In all samples, a total of six phyla were detected, with the
top four phyla making up over 99% of the bacterial sequences. The dominant phylum was
Bacteroidetes (60%), followed by Firmicutes (34%), Proteobacteria (3%), and Deferribacteres
(2%) (as shown in Table S2). As shown in Figure 3A,B, at the phylum level, the inclusion
of RC in the diet led to a higher abundance of Firmicutes and a lower abundance of Bac-
teroidetes in the high-fat (HF) diet, which was not observed in the LF diet. In comparison,
the HFRC group exhibited a notable increase in the F/B ratio when compared to both
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the LF and HF groups (Figure 3C). In addition, the inclusion of RC in the diet decreased
the abundance of Proteobacteria in the HF diet but not in the LF diet (Figure 3D). The
abundance of Deferribacteres was significantly greater in the LFRC group compared to the
LF group, but there was no significant difference between the HF group and the HFRC
group (Figure 3E). Figure 3F displays a heat map illustrating the distribution of species
composition within the gut microbial phylum as an alternative illustration of bacterial
differences. The main groups detected were Bacteroidetes, Firmicutes, Proteobacteria, De-
ferribacteres, TM7, Actinobacteria, and Verrucomicrobia. The specific differences mirrored
Figure 3A–D.
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Figure 3. The cecal microbiota profile at the phylum level in mice under different dietary regimes
shows variations. The relative percentage abundance of the predominant phyla (A,B,D,E) represents
each group, where the four most abundant phyla make up at least 99% of all identified OTUs in
each sample. Additionally, the ratio of Firmicutes to Bacteroidetes is provided for each group (C).
The data are displayed as mean ± SD. Bars containing unique letters indicate statistically significant
distinctions, with a p ≤ 0.05. Additionally, (F) exhibits a heatmap illustrating the relative prevalence of
16S rRNA gene sequences classified by phylum, employing hierarchical clustering analysis conducted
via Microbiome Analyst utilizing the Ward clustering algorithm and the Euclidean distance metric.

A total of 65 bacterial taxa at the level of the family were detected. To compare the
variations in species composition between samples, a cumulative bar chart was utilized,
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and only the top 15 families account for over 99% of the bacterial sequences (Figure 4A).
This chart also includes two families that are not classified, namely Clostridiales and RF32
(Figure 4A). Among the first 15 families, the abundance of six families was more signifi-
cantly affected by different diets (Figure 4B–F). After adding RC to the diet, the HF group
exhibited significantly higher levels of Ruminococcaceae and Desulfovibrionaceae compared to
the LF group, while the LFRC group showed significantly lower levels of S24-7 compared
to the LF group. In contrast, Deferribacteraceae was significantly higher. In the meantime, the
prevalence of the LFRC and HFRC categories of Unclassifed Clostridiales was considerably
greater in comparison to the LF and HF categories. In addition, in other HF groups, the
addition of RC did not cause any significant change in abundance.
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3.4. Identification of Microbial Biomarkers Associated with a Diet

The abundance data of the microbiome taxa were additionally examined through linear
discriminant analysis with effect size (LEfSe), a method that identifies distinct bacterial
taxa based on their statistical significance and biological relevance [31]. As shown in
Figure 5, in the four diet groups, a total of 31 distinct bacterial taxa were identified, of
which eight genera were identified as potential biomarkers with significant statistical and
biological importance, based on their LDA scores (log10) > 3 (Table 1). Specifically, as
shown in Figure 6, the most discriminative genera among the diet groups were unclassified
S24-7 in the LF group; AF12, unclassified Ruminococcaceae, and Bilophila in the HF group;
Odoribacter, unclassifed Clostridiales, and Coprococcus in the LFRC group; and Oscillospira in
the HFRC group. The abundance of unclassified S24-7 decreased in the LF supplemented
with RC (LFRC) group, while AF12 decreased in the HFRC group compared to the HF
group. Adding RC to the diet resulted in a higher presence of unclassified Clostridiales in
both LF- and HF-diet compositions.

3.5. Relationship between Gut Microbiota Communities and Biochemical Indices in Mice

The strength of the linear relationship between two variables can be measured using
Pearson’s correlation analysis. In this work, this method was employed to evaluate the
correlation between the gut microbiota communities and biochemical indices influenced
by RC in mice. To represent the communities of gut microbiota, the selection was made
for the top 15 genera, which made up around 98% of the bacterial sequence. Other factors
that contributed to diet-induced obesity, including weight gain, plasma lipoprotein levels,
hepatic cholesterol ester, and triglycerides, as well as bile acid in the feces, were used.
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As shown in Figure 7, to begin with, there was a negative correlation between S24-7 and
the index of body weight gain. In contrast, Ruminococcaceae, AF12, and Bilophila were
positively correlated with body weight index and fecal bile acid. In addition, low-density
lipoprotein levels (LDL) were negatively correlated with S24-7 and positively correlated
with AF12. Hepatic cholesterol ester was negatively correlated with unclassified Clostridiales
and positively correlated with RF32. Also, none of the selected groups of bacteria correlated
with either high-density lipoprotein levels (HDL) or hepatic triglycerides.
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Table 1. Percentage relative abundance of key biomarkers as determined with LEfSe analysis.

Phylum/Class; Order; Family Genus
Diet

LF HF LFRC HFRC

Bacteroidetes
Bacteroidia; Bacteroidales; S24-7 Other 23.24 ± 5.32 a 15.74 ± 6.01 ab 14.23 ± 6.49 b 11.59 ± 2.87 b

Bacteroidia; Bacteroidales; Rikenellaceae AF12 4.08 ± 0.62 b 7.29 ± 1.33 a 3.05 ± 1.48 b 4.61 ± 1.15 b

Bacteroidia; Bacteroidales; [Odoribacteraceae] Odoribacter 7.60 ± 2.26 ab 6.52 ± 1.88 b 9.73 ± 2.49 a 6.22 ± 1.60 b

Firmicutes
Clostridia; Clostridiales; Ruminococcaceae Oscillospira 10.17 ± 1.97 b 14.01 ± 2.74 ab 9.45 ± 2.99 b 16.80 ± 4.34 a

Clostridia; Clostridiales; Ruminococcaceae Other 5.17 ± 1.52 b 8.70 ± 1.80 a 4.19 ± 1.57 b 7.61 ± 1.66 a

Clostridia; Clostridiales; Other Other 10.10 ± 3.87 b 8.36 ± 3.78 b 19.04 ± 7.16 a 18.62 ± 5.36 a

Clostridia; Clostridiales; Lachnospiraceae Coprococcus 0.24 ± 0.05 a 0.34 ± 0.26 a 0.55 ± 0.22 a 0.53 ± 0.22 b

Proteobacteria
Deltaproteobacteria; Desulfovibrionales;

Desulfovibrionaceae Bilophila 2.52 ± 0.60 a 4.03 ± 0.47 a 1.81 ± 0.66 b 3.39 ± 0.64 b

a gray highlight shows the biomarkers assigned to the corresponding group. b Tukey’s multiple comparisons
test was used to determine the differences between the two groups. The data are displayed as mean ± SD, with
distinct letters indicating significant variations, signifying a significant distinction at p ≤ 0.05.
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3.6. Effect of RC on the Gut Microbial Ecological Network

Furthermore, aside from alterations in species prevalence, the impact of various
dietary interventions on the gut microbiota can be investigated using Molecular Ecological
Network Analysis (MENA) to uncover co-occurrence patterns among species in microbial
communities and their reaction to environmental changes. This is achieved by constructing
networks based on the random matrix theory (RMT). As shown in Table S3, the LF group
network consisted of 247 nodes (individual OUT/bacteria), 416 links (interactions), and
23 modules (community); the HF group network consisted of 245 nodes, 483 links, and
23 modules; the LFRC group network consisted of 233 nodes, 314 links, and 38 modules;
and the HFRC group network consisted of 217 nodes, 406 links, and 27 modules. Hence,
the addition of RC in the diet alters the number of interactions and communities in the
ecological network. Modules with more than 5 nodes in each diet group were numbered,
and the network diagrams are shown in Figure 8. The inclusion of RC changes the number
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of participating OUT, the interaction, and the communities. Modules 12, 10, 7, and 9 in LF,
HF, LFRC, and HFRC groups, respectively, with a higher proportion of positive correlation
among nodes supporting the taxa were more complementary or cooperative.
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Figure 8. The depiction of the molecular ecological network of the gut microbiota is shown for
different dietary regimes, including LF, HF, LFRC, and HFRC. Each node symbolizes an OTU, with
the node’s color signifying different phyla. A positive interaction between two nodes is represented
by a red line; whereas a negative interaction is indicated by a blue line. Modules are numbered in a
certain order.

Bacteria (nodes) assume different roles in the network topology and vary in importance.
Typically, determining the intra-module connectivity (Zi) and inter-module connectivity
(Pi) of the network nodes is useful for identifying important nodes in the network. As
shown in Figure S1, several nodes that act as connectors to connect different modules were
identified. The LF group consists of six OTUs: OTU 380534, OTU 1108453, OTU 341713,
OTU 387615, OTU 340853, and OTU 1517779. These OTUs belong to the genera S24-7,
Clostridiales, Ruminococcaceae, Oscillospira, Lachnospiraceae, and Rikenellaceae. Additionally,
OTU 390633 of the S24-7 genus serves as the module center. Four OTUs in the HF group,
namely OTU 2315700, OTU 404691, OTU 264657, and OTU 346804, belong to Ruminococcus,
S24-7, and Ruminococcaceae, respectively, with OTU 340853 of Lachnospiraceae being used as
module center. The LFRC group had one OTU, OTU 421792, which belonged to the genus
S24-7, and OTU 263705 of Peptococcaceae was used as the module center. There were five
OTUs in the HFRC group, OTU 268043, OTU 265940, OTU 268971, OTU 343906, and OTU
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1109539. They belong to Ruminococcus, Ruminococcaceae, Lachnospiraceae, and Lachnospiraceae,
respectively. OTU 278753 of Clostridiales was used as the module center. Also, no OTU
appeared to serve as a network center (Figure S1).

The significant correlation between node connectivity and physiological traits based
on OTU significance (GS) in the microbial coexistence network is shown in Table 2. The
connectivity of nodes in the molecular ecological networks (MENs) of these four dietary
groups correlated with weight gain, low-density lipoprotein (LDL), high-density lipopro-
tein (HDL), very-low-density lipoprotein (VLDL), hepatic cholesterol ester, hepatic free
cholesterol, hepatic triglycerides, and fecal bile acid. There is a clear correlation between GS
levels in physiological traits. Furthermore, within the MENs of the LF and HF groups, the
OTUs originated from Bacteroidaceae and Bacteroides. These OTUs were strongly associated
with cholesterol metabolism, including fecal bile acid and hepatic free cholesterol. Notably,
Bacteroides exhibited the lowest p-value. The inclusion of RC could potentially enhance
the population of advantageous microorganisms. The LFRC group consisted of OTUs
originating from Oscillospira, Ruminococcus, and Gnavus, which had a strong correlation
with hepatic free cholesterol and LDL. In contrast, the HFRC diet group was significantly
different from the LFRC diet group, in which Lachnospiraceae, S24-7, Coprococcus, and
Oscillospira were all closely associated with hepatic triglycerides.

Table 2. The correlation between physiological traits and OTU significance in microbial symbiosis network.

Diet Group Physiological Traits Bacterial Taxa (Rank) r a p-Value b

LF
Fecal bile acid Bacteroidaceae (Family) 0.741 0.004
Fecal bile acid Bacteroides (Genus) 0.741 0.002

HF
Hepatic free cholesterol Bacteroidaceae (Family) 0.684 0.003
Hepatic free cholesterol Bacteroides (Genus) 0.684 0.001

LFRC
Hepatic. free. cholesterol Oscillospira (Genus) 0.316 0.046

LDL [Ruminococcus] (Genus) 0.790 0.017
LDL Gnavus (Species) 0.790 0.017

HFRC

Hepatic triglycerides Lachnospiraceae (Family) 0.269 0.003
Hepatic triglycerides S24-7 (Family) 0.243 0.036
Hepatic triglycerides Coprococcus (Genus) 0.718 0.017
Hepatic triglycerides Oscillospira (Genus) 0.134 0.048

a Correlation coefficient based on the Mantel test. b Significance (probability) of the Mantel test.

The response of each module to a physiological trait was further evaluated and listed
in Table 3. Three modules in the LF group displayed a positive correlation with the
augmentation of body weight, hepatic levels of free cholesterol, and concentrations of bile
acid in feces, whereas one module demonstrated a negative correlation with free cholesterol
levels in the liver. Within the HF group, two modules showed a negative correlation
with weight gain and hepatic free cholesterol, while four modules exhibited a negative
correlation with VLDL, hepatic free cholesterol, and hepatic triglycerides, but a positive
correlation with VLDL and hepatic triglycerides. The relationship between modules and
physiological characteristics underwent significant changes in the LFRC and HFRC dietary
groups. In both LFRC and HFRC groups, hepatic free cholesterol, HDL, and hepatic
triglycerides showed a negative correlation with four modules.
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Table 3. Associations between node interconnectivity within modules and physiological traits
in microbial co-occurrence networks. (a Correlation coefficient based on the Mantel test. b The
significance (probability) of the Mantel test).

Diet Group Module Physiological Traits r a p-Value b

LF

9 Body weight 0.84 0.02
7 Hepatic cholesterol ester 0.88 0.008
7 Hepatic free cholesterol −0.92 0.003
1 Fecal bile acid 0.81 0.03

HF

10 Body weight −0.81 0.03
2 VLDL 0.83 0.02
9 VLDL 0.89 0.007
8 Hepatic cholesterol ester −0.79 0.04
6 Hepatic free cholesterol 0.84 0.02
7 Fecal bile acid 0.79 0.03

LFRC 7 Hepatic free cholesterol −0.72 0.05

HFRC
6 HDL −0.74 0.04
8 Hepatic triglycerides −0.80 0.02
5 Hepatic free cholesterol −0.73 0.04

4. Discussion

In the current research, various new findings were discovered regarding the consump-
tion of red cabbage and its impact on the gut microbiome in a rodent model. Firstly, we
found that dominant bacteria in the mouse feces responded rapidly to diet change 24 h after
the introduction of experimental diets, similar to previous literature examining responses
of the gut microbiome in humans [15]. These results support the utility of the mouse model
to emulate human responses toward a short-term dietary intervention. Interestingly, short-
term supplements of RC caused alterations in fecal bacteria in the LF matrix but not in the
HF diet. The relative abundance of important genera, including Bifidobacteria, Lactobacillus,
and Akkermansia muciniphila, was decreased in the feces of mice supplemented with RC in
the LF-diet matrix; however, these alterations in fecal microbiota were not found in the cecal
microbiota of mice fed red cabbage for 8 weeks. Bifidobacteria and Lactobacillus are common
probiotic strains that are enriched by dietary sources such as fruits and vegetables [32–34].
The bacterium A. muciniphila has been known to reduce the risk of obesity by regulating
metabolism and energy hemostasis. Moreover, Enterobacteriaceae, which contains many
familiar pathogens, was also found to be reduced in the LFRC group. It is unclear how the
above short-term changes of gut microbiota induced by RC consumption occurred. There
are many phytochemicals, such as glucosinolates, in the RC. We have shown previously
that glucosinolate-derived compounds can inhibit bacterial growth. The presence of those
compounds may be sufficient to prevent specific bacterial growth. Alternatively, other
bacteria may have been stimulated, therefore altering the bacterial profile in the feces. The
lack of effect in the HF group may be explained by the presence of fat which may serve as
the dominant factor in maintaining the bacterial profile, and the presence of phytochemicals
may not be sufficient to alter that. Further studies are necessary to test these hypotheses.

The second interesting observation is the relatively muted effect of RC on the micro-
biome diversities in the cecal samples, i.e., longer-term exposure as compared to short-term
analysis. The principal component analysis (PCoA) visualized significant differences in
cecal microbial diversity between the LF and HF groups, while RC consumption resulted
in an overlap between the LFRC and HFRC groups, suggesting that RC reduced the dif-
ferences in the microbial community between the LF and HF groups. However, we found
that RC caused only a slight, though not significant, increase in microbial species richness
and evenness. Hence, the general profiles of the gut microbiome were not dramatically
affected by supplementation with RC as seen in the short-term analysis. It would appear
that the animal’s microbiome adapted from the initial short-term changes after 8 weeks on
the RC diet.

Thirdly, at the phylum level, the effect of RC on the composition of cecal microbiota in
mice was slightly different from that of fecal microbiota in mice following the 24 h meal. In
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addition to the increased F/B ratio, the RC consumption resulted in a significant suppres-
sion of the HF-diet-induced increase in Proteobacteria. It is well known that Proteobacteria
is the phylum most affected by diets rich in fat, sugar, and animal protein, and is associated
with the metabolic and inflammatory state of the body [35,36]. Moreover, specific bacterial
families, such as S24-7, an unclassified family in Clostridiates and Deferribacteraceae, were
affected by RC both in the LF diet and HF diet, further indicating the regulatory role of
RC on the gut microbiota. However, it is worth noting that the effect of RC on microbial
composition at the phylum level seems to be related to the dietary matrices. For instance,
the increase in Firmicutes and the decrease in Bacteroidetes as a result of RC were signif-
icant in the HF matrix but not the LF matrix. Thus, the effect of food on gut microbial
composition is complex and may be influenced by the interactions of other dietary elements
ingested together.

Fourthly, specific genera that distinguished between different dietary groups were
pinpointed as predictive biomarkers for 8-week treatment outcomes using LEfSe analysis.
We found that the reductions of important genera such as Bifidobacteria, Lactobacillus, and
Akkermansia muciniphila in fecal microbiota of the LFRC group were no longer significant in
cecal microbiota of mice after 8 weeks of treatment. The differences in fecal and cecal micro-
biota in mice might be a consequence of mouse adaptation to food intake and environment,
which warrants further elucidation. Furthermore, the link between these microbial markers
and obesity-associated risk factors was reinforced by Pearson’s correlation analysis. As an
example, Genus AF12, which was recognized as a biomarker in the HF-diet group, exhibited
a favorable association with the increase in body weight, levels of LDL, and fecal bile acid
in mice. The increased relative abundance of AF12 prompted by an HF diet was notably
reduced by the addition of RC. Additionally, an unclassified genus within the Clostridiales
order, which was augmented by RC supplementation, displayed a negative correlation with
hepatic cholesterol ester concentrations in mice. These observations suggest that RC may
counteract the rise in markers linked to gut inflammation and obesity-related conditions,
including body weight, LDL, fecal bile acid, and hepatic free cholesterol, via alterations
in gut microbiota composition. RC reduced the presence of an unclassified genus in the
S24-7 family, which was found to be a biomarker in the LF diet and showed an inverse
relationship with weight gain and LDL levels, in both LF and HF diets. This indicates that
this bacterium could serve as an indicator of RC consumption and may contribute to the
health-promoting effects of RC.

Ultimately, the analysis of the correlations within microbial co-occurrence networks
provided greater clarity on how the topology of microbial networks is related to physiolog-
ical features. Selected bacterial taxa in the microbial network of each dietary group were
found to be closely associated with specific physiological characteristics. Bacteroidaceae and
Bacteroides identified in the LF- and HF-diet groups were found to be associated with choles-
terol metabolism. These bacteria are likely involved in the uptake of dietary fat, which in
turn regulates the metabolism of fecal bile acid and hepatic free cholesterol. Specifically, the
OTUs from Bacteroides were linked with fecal bile acid and hepatic free cholesterol levels
in both the LF- and HF-diet groups, suggesting their role in dietary fat processing and
cholesterol metabolism. The addition of RC seemed to diversify the bacterial involvement
in cholesterol metabolism, as bacteria other than Bacteroides were also correlated with these
metabolic indicators in the LFRC and HFRC groups. The correlation analysis between
eigengenes based on modules and physiological characteristics in microbial co-occurrence
networks provided additional support for this concept. The phylogenetic MEN for the
four experimental groups all exhibited strong correlations between their submodules and
physiological parameters, with notable differences in submodule responses to cholesterol
metabolism when comparing diets with and without RC. Overall, our results show that RC
could alter microbial interaction networks but the exact mechanisms of how these changes
can modulate biological endpoints need further exploration.

We recently reported an effect of red cabbage microgreen, a young version of red
cabbage, on the gut microbiome [36]. Although RC microgreens and mature RC represent



Foods 2024, 13, 85 15 of 17

different growing stages of RC [23], their effect on the microbiome appears to be different.
RC microgreen seemed to elicit more robust changes in alpha diversity as more indices
were found to be changed when animals consumed RC microgreen rather than the mature
RC [36]. Additionally, mature RC consumption led to changes in Deferribacteraceae but not
for the consumption of RC microgreens. Given the composition of RC microgreens and
mature RC are different [23], these differences in the gut microbiome may be reflective of
composition differences in the RC growing stages. However, there are also similarities in
the gut microbiome in the animals, elicited by consuming RC microgreens and mature
RC. The abundance of the bacteria family S24-7 was reduced when animals consumed RC
microgreens [36] or mature RC. In contrast, the unclassified Clostridiales abundance was
increased when animals consumed RC microgreen [36] or mature RC. These data suggest
common composition; for example, fiber may determine the phenotype displayed. How-
ever, further experiments are needed to elucidate the precise component and substantiate
the utilities of these bacteria changes as biomarkers of intake.

5. Conclusions

In conclusion, our hypothesis was confirmed that RC can modulate the gut microbiome
of mice fed in both LF and HF diets, and the effect appeared to involve specific microbial
compositions as well as microbial interaction. This work additionally underscores that
certain bacteria could act as dietary biomarkers, exemplified by unclassified S24-7 for the
LF diet, AF12 for the HF diet, and an unclassified member of Clostridiales for diets inclusive
of RC. These bacteria were associated with obesity-related risk factors and were affected
by RC supplementation. However, further studies with more comprehensive microbiome
and metabolome data are needed to elucidate the causal biological pathways by which RC
alleviates diet-induced obesity through the modulation of gut microbiota. Additionally,
components of the dietary matrix, such as fat, may influence the effect of dietary RC on gut
microbiota and warrant further validation.
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the network pipeline based on random matrix theory (RMT) under various experimental conditions.
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