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Abstract: In practical industrial-scale paddy drying production, manual empirical operation is
still widely used for process control. This often leads to poor uniformity in the moisture content
distribution of discharged grains, affecting product quality. Model Predictive Control (MPC) is
considered the most effective control method for paddy drying, but its implementation in industrial-
scale drying is hindered by its high computational cost. This study aims to address this challenge
by proposing a deep-learning-based model predictive control (DL-MPC) strategy for paddy drying.
By establishing a mapping relation between the inlet and outlet paddy moisture content and paddy
flow velocity, a DL-MPC strategy suitable for multistage counter-flow paddy drying systems is
proposed. DL-MPC systems are developed using long short-term memory (LSTM) neural networks
and trained using datasets from single-drying-stage and multistage drying systems. Simulation and
analysis are conducted, followed by verification experiments on a 5SHNH-15 multistage counter-flow
paddy dryer. The results show that the DL-MPC system significantly improves computational speed
while achieving satisfactory control performance. The predicted paddy flow velocity exhibits a
smooth variation and matches field data obtained from multiple transition points, confirming the
effectiveness of the designed DL-MPC system. The mean absolute error between the predicted and
actual paddy moisture content under the DL-MPC system is 0.190% d.b., further supporting the
effectiveness of the control system.

Keywords: paddy drying; industrial-scale drying; model predictive control; computational cost;
deep-learning

1. Introduction

China, as a major grain-producing country, primarily focuses on paddy cultivation [1].
In 2022, national paddy production reached 208.49 million tons [2]. The drying process is
crucial for post-harvest paddy processing. However, each year in China, approximately
21 billion kilograms of grains are lost due to drying issues, resulting in spoilage and
excessive fungal toxin contamination. Among these issues, the unreliable control systems
and low efficiency of dryers significantly contribute to an uneven moisture distribution
in dried products [3]. Addressing the global challenge of implementing an effective and
reliable process control in paddy drying is crucial for minimizing post-harvest losses and
ensuring food security worldwide.

Freshly harvested wet paddy often exhibits a significant variation in moisture con-
tent, causing fluctuations in grain moisture feeding in industrial-scale continuous drying
equipment and making real-time prediction challenging [4—6]. Current control methods
commonly used in practical paddy drying production still rely on manual empirical opera-
tion, which is subjective and requires specialized operators. The three main approaches
for automatic control of paddy drying are feedback control, computer simulation con-
trol, and model predictive control (MPC). Feedback control, represented by proportional,
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integral, and derivative (PID) tuning, adjusts the drying process in real-time based on
the detected grain moisture to reduce deviations [7,8], but it may not align well with the
independent events of the inlet grain, drying conditions, and outlet grain in paddy drying.
Computer simulation control involves modeling and solving nonlinear processes using
artificial intelligence (Al) algorithms [9,10], but obtaining effective coefficients is difficult
due to the randomness in field drying. Researchers have developed Boltzmann coefficient
generators [11,12] that can generate real-time coefficients based on field measurements.
However, this approach significantly increases control costs and presents challenges in
accurately measuring data online, especially in the presence of large-scale dynamic distur-
bances. MPC establishes an analytical model of the drying system, utilizes disturbance
information through online optimization, and calculates optimal future inputs based on
the current state [13,14]. It addresses time delay effects and is suitable for controlling
paddy drying that features high inertia, nonlinearity, and multiple disturbances during the
dehydration process.

Researchers have developed MPC strategies specifically for grain drying, focusing
on predicting and controlling the process based on heat and mass transfer mechanisms.
Wu et al. [15] proposed an MPC method using temperature, humidity, and other coupled
parameters represented as the equivalent moisture potential accumulation in the drying
process, based on an equivalent moisture potential accumulation model. Jin et al. [16]
used a data-driven approach with a back-propagation neural network to design an MPC
controller that predicted the moisture content of discharged grain and adjusted the grain
flow velocity to regulate the drying process. Additionally, there are hybrid MPC methods
that integrate classical control approaches with data-driven strategies [17-19]. Despite a
successful implementation in laboratory-scale drying research, applying MPC to industrial-
scale drying processes is still challenging due to the high computational cost of solving the
online optimization problem in real-time. This challenge arises from the nonlinear dynamic
models and multi-parameter coupling involved in grain drying.

The computational cost of large-scale MPC in industrial applications is a challenge
due to the need to solve nonconvex optimization problems with updated information at
each prediction step [20,21]. Despite efforts to improve computational tractability [22],
latency remains a limiting factor for MPC-based grain drying systems. The computational
overhead can also reduce the economic benefits of investing in grain drying equipment. One
potential solution to this challenge is approximating the original MPC law using function
approximation techniques like deep neural networks (DNNs) [23]. By employing DNNSs,
the online implementation of the approximated MPC law simplifies function evaluation
and significantly reduces the computational burden. Fast MPC designs using DNNs have
been successful in areas like battery management [24], vehicle dynamics [25], and chemical
technology [26]. However, to the best of our knowledge, there have been no previous
studies that specifically explore the application of fast MPC for designing control systems
in paddy deep-bed drying processes.

Multistate counter-flow paddy drying is commonly used for the centralized drying of
freshly harvested wet grains [6]. It involves the grains flowing from top to bottom through
multiple stages of the dryer, undergoing drying—tempering processes until they reach
the desired moisture content and are discharged. This method offers benefits like energy
efficiency, high productivity, and low grain breakage [27]. The height of the multistage dryer
results in an extended residence time for the grains inside the drying tower. This prolonged
residence time is mainly due to the need for the grains to travel through all stages of
the drying process from top to bottom. It is important to carefully manage and optimize
this residence time to ensure that the grains reach the desired moisture content without
excessive drying or other negative impacts on their quality. When applying MPC for
process control, the system needs to predict the state of the grains entering the drying
system based on ambient conditions and drying parameters, including changes in inlet
grain moisture content. This results in a significant computational burden for the online
optimization process, which affects the real-time performance of the drying MPC system.
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To address the research gap in efficient process control for multistate counter-flow
paddy drying systems, this study introduces deep-learning-based MPC. Firstly, a dataset
generated from classical drying MPC is used to train a deep-learning neural network
that approximates the original MPC law. This approach aims to replace the optimization
process of classical MPC, reducing computational costs and improving efficiency. Secondly,
simulations are conducted to verify the performance of the designed controller for both
single-drying stages and the multistage system. Thirdly, field experiments using a SHNH-
15 multistage counter-flow dryer validate the control performance of the proposed method.
The presented paddy drying control method has practical significance for enhancing
intelligent grain drying equipment in terms of transformation and upgrading.

2. Description of Controlled Object

Due to the interaction between the initial point of the counter-flow hot air and the
final point of wet paddy, which corresponds to the interaction between the final point and
the initial point of wet paddy;, it satisfies the drying heat matching requirement where
the binding energy with the moisture content decreases. This results in a better energy
utilization efficiency and higher drying intensity. However, improper operation can lead to
product quality issues. To alleviate internal stress in the paddy kernel and prevent breakage,
a counter-flow drying process should include multiple tempering stages. Therefore, a
paddy multistage counter-flow drying process often consists of multiple drying stages and
tempering stages connected in series. The schematic diagram of the multistage counter-flow
drying process is shown in Figure 1.

Storage chamber

High-temperature @ 76.9 °C
Drying stage 1 1

ecccee|

High-temperature
Drying stage 2 2

|9 |9 | | C

Tempering stge

Low-temperature R
Drying stage 1 1 4@ 26.1°C

ecccee|

Low-temperature
Drying stage 2 2

|9 |9 | |5 |5

Discharging stage 4@ 16.9% d.b.

Paddy flow direction L« Inlet air flow direction Out air flow direction

Figure 1. Schematic diagram of multistage counter-flow drying process.

In this study, the industrial-scale multistate counter-flow paddy dryer (Model: SHNH-15),
designed by our laboratory and applied in Haina Grain Processing Center in Changsha, Hubei
Province, China, was adopted as an experimental setup. The diagram of the dryer is shown
in Figure 2. The total height and volume of the dryer are 14.32 m and 145.8 m3, respectively,
and the capacity is about 90 t. The detailed drying process is as follows: Before drying, the
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freshly harvested wet paddy was fed into multistate counter-flow dryer by the hoist. Then,
the induced fan, conveyor belt, elevator, and discharging motor were started in turn after the
drying chamber was first filled with wet paddy. Paddy flowed from top to bottom of the
dryer under gravity and sequentially passed through two high-temperature drying stages
(with a thickness of 2 m) and two low-temperature drying stages (with a thickness of 2 m),
accompanied by four tempering stages (with a thickness of 1.58 m). Finally, paddy that
reached the safe moisture content was discharged from the dryer at the discharging stage.

Hoist

Multistate counter-flow
dryer

Combustion chamber

Figure 2. Diagram of the 5SHNH-15 industrial-scale multistate counter-flow paddy dryer.

As an aspect of the drying condition, under the action of induced fans (Model: Y4-73,
Shandong Shuntong Blower Co., Ltd., Heze, China) equipped in the high- and low-temperature
drying stages, low-temperature ambient air rose to the pre-set temperature after being heated
by the heat exchanger, and was then fed into two drying stages, respectively. As the paddy
flows downwards in the dryer, the drying air comes into contact with it and removes excess
water. This moisture-laden air is then expelled from the drying system, while the partially
dried paddy continues its journey towards reaching the desired moisture content.

Wet paddy undergoes a comprehensive drying process inside the dryer, which allows
it to reach a safe moisture content. Throughout this period, the operator adjusts the
frequency of the discharging motor in response to real-time ambient conditions, initial
paddy states, drying air parameters, and operational knowledge. This adjustment modifies
the paddy flow velocity, thereby changing the real-time moisture content of the discharged
paddy. A detailed description of sensors and instruments that measured air temperature
and humidity, paddy moisture content and temperature, and ambient state can be found in
Table 1.
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Table 1. Detailed description of the sensors and instruments.
Devices Model Precision Manufacturer
Air convection oven DHGO70B } Shanghai Anting Sc1ent1.f1C Ir}strument Factory,
Shanghai, China
Infrared thermometer 62 MAX4 1°C Fluke Testing Instrumen.ts (Shanghal) Co., Ltd.,
Shanghai, China
Temperature and humidity AM2305 03°C and 2% Guangzhou Aosong Electrc?nlcs Co., Ltd., Guangzhou,
sensor China
Anemometer AS8336 4001 m/s Guangzhou Ximarui Eleg;(i)rrgcs Co., Ltd., Guangzhou,
Electronic scale DY-718 flg Jinhua Furuisi Electronics Co., Ltd., Jinhua, China

3. Construction of Controller
3.1. Framework of Model Predictive Control

The MPC implementation process can be briefly summarized in the following three
steps: Firstly, the prediction model and current system state y,; are utilized to predict
the output yacti+1, Yacti+2, - -+ Yacttp—1, Yacttp Of the future time domain tp. Secondly,
under system constraints, a specific optimization method is adopted to determine an input
sequence Uii1, Ujs2, .- ., Ue—2, U1 that satisfies the objective function within a control
time domain, aiming to achieve an actual output that closely approximates the objective
output yep; in future time domain t,. Thirdly, the first element of the obtained input
sequence, uj1, is applied to the control system to obtain the system state at time i + 1.
Then, the current time is set as i, and the above steps are repeated. As the control system
operates, the prediction time domain continuously rolls forward to achieve control over
the entire operation process. Specifically, the above optimization problem can be illustrated
in Equation (1) [28]:

tp

tp
J = Y QWb = Yact)” + }_ RAui® M)

i=1 i=1
where Q and R are the weighting matrices.

The above description for MPC illustrates that the essence of MPC is to obtain the
future input based on a prediction model and measured system state data, wherein the
actuator is the selected optimizer. To address the computational burden of classical MPC
systems and enable their practical application in the field, the mapping relation between
measurable state variables and control inputs can be established. This approach replaces the
online optimization process in the classical MPC system, making it a more intuitive means
of implementing MPC in field applications. Based on establishing a complete and accurate
mechanistic simulation model for the drying system [6,29], a deep learning method can
establish a mapping relation from state to action using a large amount of simulation data.
This allows MPC to be implemented without the need for online optimization. The principle
and primary implementation method are shown in Figure 3. The output in typical MPC (M
in Figure 3a) is selected as the input of the deep-learning model, and the input in typical
MPC (vg in Figure 3a) is selected as the output. Finally, a deep-learning-based optimizer, as
shown in Figure 3b, can be obtained to replace the MPC in Figure 3a.



Foods 2024, 13, 43

6 of 21

Target M (M,

Target M (M,,)

1

|

1

1

1

: Controlled object
1

1

1

|

MPC (dryer)

g | +

1 1

i E Measurement disturbance
: S—— b
1

§ i Input (vy) o Output (M)

i ! ‘

! i

H i

l !

e I___,' State disturbance

State feedback
Constraint
@
Controlled object
DL-MPC (dryer)

£ 1)

Measurement disturbance

»
>

Output (M)

[ I____. State disturbance

State feedback
Constraint

(b)

Figure 3. Schematic diagram of multistage counter-flow drying process: (a) train process and
(b) application process.

3.2. Deep-Learning-Based MPC

During the paddy drying process, the moisture content of the paddy discharged from
the dryer is affected by fluctuations in the ambient state, drying air state, and machine
operation. These factors influence the paddy as it flows through the complete drying tower.
Therefore, the output, which is the moisture content of the discharged paddy, at a given
time is not solely determined by the current input factors such as the ambient or drying
air state. It also depends on past inputs that have occurred over a certain period. As a
result, modeling a paddy drying system using data-driven approaches can be considered
as modeling time series data, considering the temporal dependencies and patterns in
the system. The Recurrent Neural Network (RNN), incorporating temporal dependence
into the traditional feedforward neural network, introduces the previous output as an
input to the next hidden layer. This unique structure gives the RNN short-term memory
capabilities and preserves the relations among data, making it suitable for analyzing
time series data [30]. The long short-term memory (LSTM) model, a variant of the RNN,
addresses issues such as gradient vanishing/exploding and limited long-term memory
capacity [31].

The application process of the LSTM-based predictive controller is illustrated in
Figure 4. It involves taking a time-sliding window of system state variables and input
variables, £(3, N), which are collected in a preserved time sequence order and fed into an
LSTM network as inputs to predict the next moment’s system input, vg(N + 1), where
N represents the length of the time series. As the drying progresses, the sliding window
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Features

moves forward continuously, capturing f'(3, N), f/(3, N), and so on. The LSTM utilizes
the input data to calculate the output for the next moment and transfers it to the drying
system, completing the predictive control process. In this study, the selected system state
variables are the inlet moisture content (M;,) and outlet moisture content (Mqyt), while
the input variable is the paddy flow velocity (vg). In this framework, adjusting the paddy
flow velocity takes into account not only the current system state but also the historical
states and inputs within a specified time period. This approach goes beyond a simple
one-to-one correspondence between input and output at a single moment. By considering a
broader range of information, it allows for a more comprehensive, extensive, and accurate
understanding of the system dynamics.

£(3,1)

—
.

f(3,N) f'(3, N) f"(3,N)
//\/\/\'/V”\;v/\/\/v-\—\/

!
B

1 Drying time series :
e

|

. e

—

£(3,N) v, (N+1)

LSTM

Figure 4. Diagram and application process of paddy drying LSTM predictive controller.

3.3. Analytical Model for Data Generation and Collection

This study combines numerical simulation and experimental research to obtain a
comprehensive dataset for constructing DL-MPC. Specifically, an analytical model based
on heat and mass transfer mechanisms is adopted to simulate various drying conditions
in paddy drying processes. It should be noted that the predictive reliability of the math-
ematical model needs to be validated. In our previous research [6,32], we developed a
mathematical model for paddy drying based on the spatial description method, which was
successfully applied to analyze the process of the paddy multistage counter-flow dryer, the
focus of this study. For the drying stage where water removal occurs, the mathematical
model can be represented by the following set of partial differential equations:

M, M, M, — M,

oT oT M M
8 g y
Copga gy T ucgPga gy = —hte(Ty = Tg) = Agal(ds —d) pr—pe, - ()
od M;— M,
Uapagy = wyelds —d) g — )
aT,
CuPaUaJ = —hTﬁC(Ta - Tg) (5)

9Z



Foods 2024, 13, 43 8 of 21

where p, is the bulk density of absolute dry paddy, M, is the paddy moisture content, on a
dry basis, t is the drying time, v is the paddy flow velocity, Z is the bed height, i is the
interphase heat transfer coefficient, ya is the effective evaporation area of unit volume,
ds is the saturated humidity, M is the moisture content on a dry basis, ¢ is the specific
heat of paddy, v, is the drying air flow velocity, T is temperature, A is the latent heat
of vaporization of paddy, p, is the air density, / is the heat transfer coefficient, Ta is the
effective heat transfer area per unit volume, and p ¢, is the bulk density of wet paddy.

The tempering stage that facilitates the even distribution of temperature and water in
a kernel can be represented by the following mathematical model:

oM, oMy
ot 8z’ ©)

oT, T,

Ttg = UgTZg - (Tg — Tap) )

where S is the cooling coefficient.

The numerical solution method is employed to solve the aforementioned mathematical
model. The initial and boundary conditions can be represented as follows.

Initial conditions:

Mo = My
’ 8
{ Teio =Tgo ®
Boundary conditions:
doy = do
’ 9
{ Toor = Tap s ®)

where i refers to the ith layer of the mesh divided in the z-direction.

Some property values and equations used in the solving process are listed in Table 2.
We have conducted multiple model validation experiments in our previous research [32],
and the results showed that the root-mean-square error (RMSE) for predicting paddy
drying moisture content and temperature is 0.98% d.b. and 0.49 °C, respectively. The mean
relative deviation (MRD) is 5.5% for paddy moisture content and 1.42% for temperature.
These reasonable reliability indicators demonstrate the effectiveness of the mathematical
model in analyzing actual paddy processes.

Table 2. Thermodynamic equations and property values used in calculation process.

Meters Equations/Values Units
4075.16
p P, = 133.322exp(18.751 — -——————— Pa
’ s = 133.322exp(18 SRH 236516+ T,
d = . el kg/k
d =0.622 P, — RH - P, 8/ K8
M, M, = | —In(1 - RH) }m g water/g dry matter
©711.919 x 1075(T, + 51.161)
0a 1.293 kg/m3
Ca 1.005 kJ/(kg-°C)
= kg/m3
Og Ps =11 M, (2.073M[,l;I 508.5) &
c -1, ! d kJ/(kg-°C)
g cg = 111+ 0,045 g
Ag Ag = [2500 — 2.386( T, 4 273)][1 + 2.556 exp(—20.176 My)] KJ/kg
oy iy = psr (Mg — Me) kg/(h-m?)
(ds —d)
r r = 0.0153T,;, — 0215 1/h
hta hta = Vycapq 71"“”“7_ Tﬂ”t KJ/(h-m3-°C)
Z(T, — Tg)

Note: The atmospheric pressure P}, is 101,325 Pa in this study. R is drying constant. The equation for calculating r
is quoted from the research by Motohashi and Hosokawa [33].
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3.4. Statistical Analysis

In this study, the mean absolute error (MAE), defined in Equation (10), was adopted
to evaluate the predictive accuracy of DL-MPC to paddy flow velocity when applied in the
multistate counter-flow dryer:

1—n
MAE = ;Zi:l ‘ypre — Yobsj (10)
where ypre and y,p,j are the predicted and experimental values, respectively, and n is the
number of measurements for each experiment.

4. Simulation
4.1. Simulation of Single-Drying Stage

The drying stage is the key phase in a multistage counter-flow dryer, where the primary
focus is reducing moisture content during the paddy drying process. The tempering stage
primarily regulates the paddy kernel temperature and does not involve moisture removal;
it functions as an auxiliary stage. In this section, we focus on studying a single drying
stage. We simulate the paddy drying process in a single-core counter-flow drying stage.
The objective is to observe the response capability of the DL-MPC system when there
are changes in the inlet paddy moisture content. States of the ambient conditions, drying
system, wet paddy, and drying air are listed in Table 3. It should be noted that the variations
in process parameters occur after the system reaches a steady state, i.e., after the wet paddy
that has not undergone the complete drying process in the first tower has been discharged
from the drying system.

Table 3. Parameters of drying system.

Parameters Values Units
Thickness of drying stage 0.5 m
Thickness of tempering stage (air outlet) 0.5 m
Target moisture content 14.61 % d.b.
Paddy initial temperature 20 °C
Ambient temperature 20 °C
Ambient relative humidity 50 %
Drying air temperature 60 °C
Drying air flow velocity 2300 m/h
Controllable range of paddy flow velocity 1-5 m/h

The variation in inlet paddy moisture content is the crucial factor affecting the drying
efficiency of multistage counter-flow dryers. To provide sufficient information for training
a neural network controller, this study defines an inlet moisture content signal sequence
based on actual drying experimental data and past field operation experience, as shown
in Figure 5. The defined inlet moisture content signal sequence (Mj,) has a duration of
100 h with a sampling period of 0.01 h, generating 10,000 data points within the range of
19-23% d.b. It thoroughly analyzes practical process disturbances, including step changes,
sinusoidal variations, and noise, to deliver valuable identification information. Under
the designed classic MPC system (Figure 3a), the discharging paddy moisture content is
controlled to approach the target moisture content by continuously adjusting the paddy
flow velocity (Figure 5b). As shown in Figure 5a, compared with the uncontrolled mois-
ture content curve (Myc), the MPC-controlled moisture content curve (Mmpc) is primarily
distributed around the target moisture content curve (M), with an MAE of 0.132% d.b.
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Figure 5. Dataset for building DL-MPC: (a) Paddy moisture content and (b) flow velocity.

After standardizing the dataset obtained from the classical MPC system, the data con-
sisting of 10,000 samples were divided into training and test sets in an 8:2 ratio. The training
set was employed to fit a neural network, while the test set was used for evaluating the
model’s generalization capability. The input for the LSTM model, developed using the
Keras library in Python’s TensorFlow 2.0 deep-learning framework, consisted of the inlet
paddy moisture content, paddy flow velocity, and outlet paddy moisture content in the
preceding 10 time steps (N = 10). The model output was the predicted paddy flow velocity
for the subsequent time step. Specifically, the LSTM architecture for forecasting paddy
flow velocity in a single counter-flow drying stage comprised two layers, with each layer
comprising 50 units. During the model training process, the Adam optimization algorithm
was utilized with a batch size of 20, a dropout rate of 0.2, and a time step length of 30.

Upon reaching 11 epochs, the neural network prediction model exhibited a stable mean
square error (MSE) and determination coefficient (R?) values. After completing 30 epochs,
training concluded with an MSE below 0.0005 and an R? exceeding 0.98. Utilizing this
trained model, predictions were made on the test set and compared to actual values of
paddy flow velocity in Figure 6. The curves of predicted and actual values closely aligned,
indicating a strong resemblance. The mean absolute error (MAE) was 0.006 m/h, while
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R? was 0.937, showcasing the LSTM neural network’s high accuracy in forecasting and its
generalizability.

Predicted value
1.62 4| Actual value ——

Paddy flow velocity (m/h)
Z
o)

0 250 500 750 1000 1250 1500 1750 2000
Sample point

T T

Figure 6. Prediction results of model on the test set of single-drying stage simulation.

The obtained LSTM neural network model was imported into the MATLAB 2017b
environment to replace the optimization process of the classical MPC and to construct a
DL-MPC simulation system. This system was used to observe the response capability of
the DL-MPC system to variations in paddy initial moisture content. The basic parameters
for the ambient state, drying system, paddy, and initial state of drying air were taken
from Table 2. The simulation results are presented in Figure 7. It can be observed that the
DL-MPC system made corresponding adjustments whenever there was a sudden change
in the inlet paddy moisture content. The simulation time for the DL-MPC system, running
on the simulation software and hardware platform (Intel(R) Core CPU i5-11320 running
at 3.2 GHz) under the drying conditions corresponding to a drying time of 10 h, was
7.245 s. In contrast, the simulation time for the classical MPC system under the same drying
conditions was 144.889 s. This demonstrates that compared with the classical MPC, the DL-
MPC system significantly improves computational speed while ensuring the completion of
control tasks, making it more suitable for online processes.

4.2. Simulation of Multiple-Drying Stage

Based on the construction and simulation of the single-stage DL-MPC system, a
similar approach can be used to build a multistage counter-flow drying DL-MPC system.
By extending the methodology to multiple stages, we can develop a comprehensive control
system that optimizes the drying process across all stages in the counter-flow dryer. This
allows for improved control and efficiency throughout the entire drying operation. In this
section, the response capability of the DL-MPC system to variations in the inlet paddy
moisture content is observed during the paddy drying process in the multistage counter-
flow drying system shown in Figure 1. Table 4 presents the fundamental parameters of the
ambient state, drying system, paddy, and initial state of the drying air. Similarly, changes
in process parameters occur after the system reaches a steady state.

In the multistage counter-flow drying system, the paddy drying process is more
complex and influenced by numerous factors. Thus, compared with a single drying stage,
more data are required to construct a training set with abundant features. As shown in
Figure 8a, a fluctuating signal sequence of inlet paddy moisture content was defined for
200 h with a sampling interval of 0.01 h, resulting in 20,000 data points within the range of
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25-29% d.b. amplitude. From Figure 8b, it can be observed that the classical MPC system,
when faced with variations in the inlet paddy moisture content, can continuously adjust
the paddy flow velocity to maintain the outlet paddy moisture content around the target
value, with an MAE of 0.161% d.b.
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Figure 7. Test result of DL-MPC of single drying stage: (a) Paddy moisture content and (b) flow velocity.
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Table 4. Parameters of multistage counter-flow drying system.

Parameters Values Units

Thickness of drying stage 0.5 m

Thickness of tempering stage (air outlet) 0.5 m

Thickness of tempering stage 1.58 m
Target moisture content 14.01 % d.b.

Paddy initial temperature 20 °C

Ambient temperature 20 °C

Ambient relative humidity 50 %

Drying air temperature in high-temperature drying stage 70 °C

Drying air temperature in low-temperature drying stage 50 °C
Drying air flow velocity in high-temperature drying stage 1924.5 m/h
Drying air flow velocity in low-temperature drying stage 1154.2 m/h
Controllable range of paddy flow velocity 1-5 m/h
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Figure 8. Dataset for constructing DL-MPC of multistage counter-flow drying system: (a) Paddy

moisture content and (b) flow velocity.
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After standardizing the database obtained from the classical MPC system, a similar
approach as the single drying stage was used to train an LSTM network. In the model
training process, N was set to 70. The LSTM network consisted of two layers, each with
50 units. The Adam optimization algorithm was utilized for model training, with a batch
size of 20, a dropout rate of 0.2, and a time step length of 30. After reaching 13 epochs,
the neural network prediction model’s MSE and R? tended to stabilize. By the time the
training reached 30 epochs, the training was completed, with an MSE below 0.0005 and
an R? exceeding 0.98. The trained neural network model was then used to predict the
data on the test set, and the predicted paddy flow velocity was compared with the actual
values, as shown in Figure 9. It can be seen that the predicted and actual curves of the
paddy flow velocity closely overlap. The MAE was found to be 0.0058 m/h, and the R? was
0.9980, indicating that the established LSTM neural network demonstrated high prediction
accuracy and good generalization capability.

Predicted value
Actual value S

W
J—
!

291

2.81

Paddy flow velocity (m/h)

2.7 1

2.6 1

0 500 1000 1500 2000 2500 3000 4000 4500
Sample point

Figure 9. Prediction results of model on the test set of multiple-drying stage simulation.

The LSTM neural network model was imported into the MATLAB environment to
replace the optimization process of classical MPC, creating a DL-MPC simulation system
for paddy multistage counter-flow drying. The DL-MPC system'’s response to variations
in the inlet paddy moisture content was observed using the basic parameters provided
in Table 3 for the ambient state, drying system, paddy, and initial state of the drying air.
Figure 10 presents the simulation results which demonstrate that the DL-MPC system
made appropriate adjustments whenever there was a sudden change in the inlet paddy
moisture content. The simulation period for the DL-MPC system was 22.499 s for a drying
time of 30 h, while the classical MPC took 15,120 s under the same drying conditions. This
significant improvement in computational speed enables the DL-MPC system to effectively
accomplish control tasks in online processes, making it more suitable for such applications.

Furthermore, from Figure 10a, it can be observed that, due to the single adjustment
control method used in this study and the larger height of the multistage counter-flow
drying system, the system’s adjustment time is longer. When the drying air parameters and
paddy flow rate are adjusted simultaneously, the system’s adjustment time might be shorter.
Therefore, in future research, the utilization of multiple adjustment control variables will be
explored. This includes simultaneously adjusting variables such as drying air temperature,
drying air flow velocity, and paddy flow velocity, with the aim of constructing a multi-
variable DL-MPC controller.
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Figure 10. Test result of DL-MPC of multistate drying: (a) paddy moisture content and (b) flow velocity.

5. Experiment

In this section, the performance of the designed DL-MPC system was analyzed through
experiments using the 5SHNH-15 laboratory-designed multistage counter-flow dryer shown
in Figure 2. The structural parameters of the 5HNH-15 dryer, as well as the data acquisition
system and sensor parameters, are provided in Section 2. The experimental paddy sample
used was Guangliangyouxiang 66. During the data collection period, the average ambient
temperature and relative humidity were 9.6 °C and 66.6%, respectively. The average inlet
air temperature in high- and low-temperature stages were 76.9 °C and 56.1 °C, respectively.
Over the 40 h test period, real-time measurements of the inlet paddy moisture content,
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outlet paddy moisture content (Mout), and frequency of the grain discharging motor (fg)
are shown in Figure 11.

36 ] ] ] ] ] ] : 40

Moisture content (% d.b.)

Frequency of discharging motor (HZ)

T i i N e e
——t—t————{20

Drying time (h)

Figure 11. Real-time moisture content of inlet and outlet grain and frequency of grain discharging
motor during drying process.

During the construction of the training dataset for the DL-MPC system, to reduce
data quantity and facilitate the feasibility testing of the proposed method, it was assumed
that the ambient state and ventilation parameters remained constant (taken as the average
measured values). Based on field experimental data, the inlet paddy moisture content
dataset was generated. The DL-MPC system was then constructed using the controller
design method described in Section 3, followed by simulation. The predicted paddy flow
velocity was compared with the actual frequency of the discharging motor. The results
are shown in Figure 12. It can be observed that compared with the actual frequency of
the discharging motor obtained from the field, the predicted paddy flow velocity exhibits
a smooth variation and shows the same changing trend as the actual frequency of the
discharging motor at multiple transition points (highlighted in blue boxes in Figure 12),
indicating the effectiveness of the designed DL-MPC system. However, since the DL-MPC
system ignores the variations in the ambient state and fluctuations in the inlet drying air
conditions, the paddy flow velocity under DL-MPC strictly follows the changes in inlet
paddy moisture content, resulting in some differences between the predicted data trends
and the field data.

The predicted outlet paddy moisture content (Mout,mpc) obtained from the DL-MPC
system is compared with the actual values (Mout,act), and the results are shown in Figure 13.
It can be observed that compared with the actual outlet paddy moisture content, the
predicted values are distributed more consistently around the target moisture content,
with smaller variations as the inlet paddy moisture content changes. This is because
the DL-MPC system has a higher adjustment frequency and more precise control than
manual adjustments. The MAE between the predicted and actual values of the outlet paddy
moisture content is 0.19% d.b.
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Figure 13. Comparison between predicted and actual moisture content.

6. Discussions

When the goal is to maintain a safe moisture content in paddy drying systems, the
control problem can be addressed by rejecting disturbances and ensuring zero steady-state
error in the system output. However, the significant lag response characteristics of drying
systems limit the effectiveness of relying solely on output feedback control [34,35]. By con-
sidering the overall system state and incorporating modern control techniques like state
observation, optimal state estimation, and system model parameter identification, it is
possible to achieve disturbance rejection control in drying systems using model predictive
control principles. Our DL-MPC control system stands out for its ability to provide a rapid
response by replacing the optimization process in MPC with a deep-learning-based data
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mapping function. Through simulation experiments, we demonstrate that the calculation
of input parameters for drying processes lasting over 10 h can be completed within 10 s.
In contrast to previous approaches primarily using data-driven models instead of mecha-
nistic models for controller optimization, which still rely on iterative processes [36,37], our
method offers a different perspective. Jin et al. [38] proposed an approach integrating LSTM
neural networks to approximate the actual drying process and constructed an LSTM-MPC
controller for dryer control, with a response time of 1150 s. Dai et al. also attempted to
design grain drying controllers using machine learning methods, such as genetic opti-
mization algorithms [39] and support vector machines [40]. While these small-sample
modeling approaches improve computational speed to some extent, their control precision
heavily relies on the accuracy of the data-driven model. In contrast, our DL-MPC system
achieves an acceptable accuracy in controlling the target moisture content, with a MAE of
0.19% d.b. Another study conducted by Li et al. [14] proposed an NARX-based PSO-MPC
controller for counter-current flow grain dryers, achieving an acceptable control accuracy
of 0.52%, but this approach also faces challenges related to high data dependency. Similar
results have been reported in MPC drying experiments with agricultural products like
sawdust [41], corn [42], and red maple [43].

On the other hand, the unique material properties of paddy make its deep-bed drying
process different from that of vegetables, fruits, and other agricultural products. It should
be noted that the significant time delay characteristic of drying systems poses an important
challenge in designing a paddy drying controller [6,44]. Although the controller designed
for the multistage counter-flow dryer can achieve accurate process regulation, the adjust-
ment time is excessively long, possibly exceeding 6 h. Figure 14 illustrates the transient
response characteristics of paddy drying with step changes in grain moisture content at
different paddy flow velocities, focusing on a single drying stage mentioned in Section 4.1.
The figure shows that when the drying time is 0.2 h, the paddy moisture content jumps
from 35% d.b. to 40% d.b., and the system transitions from one steady-state point to
another, with a delay before the output begins to respond. For a paddy flow velocity of
1 m/h, the delay time is 0.4 h, the time for paddy to flow within the layer is 0.5 h, and
the transition time is 0.6 h. Increasing the paddy flow velocity to 2 m/h reduces the delay
time to 0.2 h, the flow time within the layer to 0.25 h, and the transition time to 0.3 h.
Similarly, a paddy flow velocity of 4 m/h further decreases the delay time to 0.1 h, the
flow time within the layer to 0.125 h, and the transition time to 0.15 h. In the step change
process of grain moisture input, the transition time is greater than the flow time, which
in turn is greater than the delay time. Additionally, higher paddy flow velocities require
shorter delay and transition times. This analysis reveals that the flow-layer drying system
exhibits pure lag characteristics, where information propagation is influenced by the time
it takes for paddy to pass through the drying layer. Slower paddy flow velocities result
in slower information propagation and longer system output delays. Relying solely on
output feedback control for a system with pure lag characteristics leads to a significant
overshoot, longer adjustment time, and poor control performance [45]. These findings align
with previous studies that concluded that output feedback PID controllers [46,47] are not
suitable for deep-bed flow-layer drying systems.
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Figure 14. Transient response of counter-flow drying system with inlet paddy moisture content
step change.

7. Conclusions

This study addresses the high computational cost challenge of applying classical MPC
to industrial-scale paddy drying. A deep-learning-based model predictive control strategy
suitable for paddy multistage counter-flow drying systems is proposed and designed
through numerical simulation and optimization design. The controller’s performance is
validated through online and field experiments, leading to the following conclusions:

(1) For a single-drying stage, the DL-MPC system achieves a simulation time of 7.245 s,
significantly improving computational speed compared to classical MPC (144.889 s).
This makes DL-MPC more suitable for online processes while ensuring effective
control.

(2) Inmultistage combined continuous drying, DL-MPC reduces the control time from
15,120 s to 22.499 s. However, due to the tall height of the control object, the adjustment
time is longer compared to a single-drying stage, indicating the pure lag characteristics
of the paddy deep-bed drying system.

(3) Field validation experiments demonstrate that the predicted paddy flow velocity fol-
lows the discharge motor frequency trend and exhibits a smoother variation. This in-
dicates that the designed DL-MPC controller offers a higher adjustment frequency
and more precise control compared to manual adjustments. The MAE between the
predicted and actual outlet paddy moisture content is 0.19% d.b., confirming the
effectiveness of the DL-MPC controller.

Considering the significant time delay characteristics in multistage counter-flow dry-
ing systems, future research will explore the utilization of multiple adjustment control
variables, such as simultaneously adjusting the drying air temperature, drying air tem-
perature flow velocity, and paddy flow velocity, to construct a multi-variable DL-MPC
controller.
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