
Citation: Wang, Y.-Q.; Liu, G.-M.; Hu,

L.-P.; Zhao, X.-Z.; Zhang, D.-S.; He,

H.-J. Prediction of Anthocyanidins

Content in Purple Chinese Cabbage

Based on Visible/Near Infrared

Spectroscopy. Foods 2023, 12, 1922.

https://doi.org/10.3390/

foods12091922

Academic Editors: Zhiming Guo,

Zhao Zhang and Dong Hu

Received: 22 March 2023

Revised: 4 May 2023

Accepted: 5 May 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Prediction of Anthocyanidins Content in Purple Chinese
Cabbage Based on Visible/Near Infrared Spectroscopy
Ya-Qin Wang 1,2 , Guang-Min Liu 1,2, Li-Ping Hu 1,2, Xue-Zhi Zhao 1,2, De-Shuang Zhang 3,* and Hong-Ju He 1,2,*

1 Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China; wangyaqin@iapn.org.cn (Y.-Q.W.)

2 Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas,
Beijing 100097, China

3 Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China

* Correspondence: zhangdeshuang@nercv.org (D.-S.Z.); hehongju@iapn.org.cn (H.-J.H.)

Abstract: Purple Chinese cabbage (PCC) has become a new breeding trend due to its attractive
color and high nutritional quality since it contains abundant anthocyanidins. With the aim of rapid
evaluation of PCC anthocyanidins contents and screening of breeding materials, a fast quantitative
detection method for anthocyanidins in PCC was established using Near Infrared Spectroscopy (NIR).
The PCC samples were scanned by NIR, and the spectral data combined with the chemometric results
of anthocyanidins contents obtained by high-performance liquid chromatography were processed to
establish the prediction models. The content of cyanidin varied from 93.5 mg/kg to 12,802.4 mg/kg
in PCC, while the other anthocyanidins were much lower. The developed NIR prediction models
on the basis of partial least square regression with the preprocessing of no-scattering mode and the
first-order derivative showed the best prediction performance: for cyanidin, the external correlation
coefficient (RSQ) and standard error of cross-validation (SECV) of the calibration set were 0.965 and
693.004, respectively; for total anthocyanidins, the RSQ and SECV of the calibration set were 0.966
and 685.994, respectively. The established models were effective, and this NIR method, with the
advantages of timesaving and convenience, could be applied in purple vegetable breeding practice.

Keywords: near infrared spectroscopy; vegetables; anthocyanidins; fast determination

1. Introduction

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is the most widely cultivated and
consumed vegetable in East Asia with the characteristics of high yield, good cold resistance,
long supply period, and rich nutrition. The inner leaf color of Chinese cabbage is mainly
white and yellow. Purple leaf Chinese cabbage (PCC) is mainly generated by the cross
of common green Chinese cabbage with red leaf mustard (Brassica juncea Coss.), purple
flowering Chinese cabbage, or red bok choy (Brassica rapa L. ssp. chinensis) [1,2]. It has
become increasingly popular due to its beautiful color, special flavor, and high level of
anthocyanidins [2]. Anthocyanidins, a class of flavonoid substances, exist in different
colors in fruits, flowers, and vegetables, such as purple, blue, and red. They contain a
C6-C3-C6 carbon skeleton and -OH or -OCH3 groups and specific sugar or acylated sugar
residues located at C3, C5, and C7 positions [3,4]. Based on the type and location of
the substituents, anthocyanidins are generally classified into six major groups: cyanidin,
delphinidin, petunidin, malvidin, peonidin and pelargonidin, and the main anthocyanidin
in PCC is cyanidin accumulated in the vacuoles [2,3,5]. Anthocyanidins have a wide
range of anti-inflammatory, cardioprotective, chemotherapy, and hepatoprotective effect for
human disease prevention [6]. Studies have proved that anthocyanidins have a good role
in the chemoprevention and treatment of breast cancer [7]. Blueberry anthocyanidins can
effectively improve the solubility of lipids [8], and extracted anthocyanidins from apples
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have an inhibitory effect on gastric cancer cells [9]. Due to their human health benefits,
anthocyanidins have received more and more attention from public in recent years [9,10].
Creating colorful leaf vegetables, such as PCC, which contain abundant anthocyanidins, is
of significant commercial interest and the new trend of breeding.

Visible/near-infrared spectroscopy (NIR) is a widely used technique in the agriculture
and food industry with the advantages of fast, non-destructive, environmentally friendly,
and accurate analysis. NIR is a molecular vibrational spectrum with wavelengths ranging
from 400–750 (visible) and 750–2500 nm (near-infrared), in which the absorption signals of
the reflected chemical components are assigned mainly to overtone and octave vibrations
of hydrogen-containing groups, including C-H, N-H, O-H, and S-H [11,12]. Theoretically,
no two compounds produce the same visible/near-infrared spectra since their unique
composition of atoms [12]. It has been widely used in the field of bioactive compound
detection in vegetables and fruits, and its applicability has been proven. Prodromidis et al.
have successfully used FT-IR and UV-Vis spectroscopy to measure the onion anthocyani-
dins during heating [13]. Johnson et al. used attenuated total reflection Fourier transform
infrared spectroscopy to predict the total anthocyanidin content in ethanolic extracts of
plum with an R2 of 0.93 [14]. Additionally, using NIR spectroscopy in the prediction of
anthocyanidins content and antioxidant activity in grape juice is feasible [15]. Tian et al. es-
tablished a prediction model for the detection of water content and anthocyanidins content
in purple potatoes by visible near-infrared hyperspectroscopy [16]. With the development
of algorithms, chemometrics, and artificial intelligence, the application of NIR spectroscopy
will be extended for fast screening and quantitative analysis of anthocyanidins.

Purple leaf Chinese cabbage has become a popular breeding interest; meanwhile fast
and accurate determination of the anthocyanidins contents is an important task for improv-
ing its nutritional quality. The commonly used determination methods for anthocyanidins
are based on ultrasonic or microwave-assisted liquid extractions and high-performance
liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry
(LC-MS/MS) detection [17,18]. However, the extraction is complicated and time-consuming
while the reagents used may be harmful to the environment and human health [19], and
the equipment are more expensive and require experts for analysis. By comparing with
chemical analysis techniques, spectroscopic techniques are relatively simple and do not
require further expansion of sample preparation [20]. NIR spectroscopy could be a power-
ful tool to fulfill this task. To date, no studies have focused on the quantitative prediction
of anthocyanidins in PCC by NIR spectroscopy. It is an urgent need to build a suitable
NIR method for simple and fast prediction of anthocyanidins to help the breeders and
producers since the prediction models established by different food matrices cannot be
simply applied to PCC. Therefore, this study aims to develop an accurate quantitative
prediction method for anthocyanidin content in PCC using NIR spectroscopy, which laid a
foundation for the fast and convenient detection of the nutritional quality of agri-food and
the rapid screening of purple vegetable breeding materials.

2. Materials and Methods
2.1. Sample Preparation

The purple leaf Chinese cabbage samples from different breeding backgrounds with
distinct color phenotypes were collected from Beijing Vegetable Research Center
(Beijing, China, 116◦30′ E, 39◦94′ N). Specifically, the purple color trait was from the variety
of 15NG28, as previously described [21], and the green parents were different Chinese
cabbages with distinct shapes of leaves, holding patterns, and maturity traits. Totally
106 PCC samples were harvested and transferred to the laboratory within half an hour on
19 November 2021. Then, the vegetable leaves of each sample were cut into 2.0 cm length
pieces, uniformly mixed, and freeze-dried (BIOCOOL vacuum freeze dryer, Boyikang Co.,
Ltd., Beijing, China). The dry samples were ground into a fine powder, passed through an
80-mesh sieve, then stored at −40 ◦C for further anthocyanidins content determination and
NIR spectral profiles acquisition.
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2.2. HPLC Analysis of Anthocyanidins

Extraction and HPLC analysis of anthocyanidins in PCC were carried out according to
the Agricultural Industry Standard of the People’s Republic of China (NY/T 2640-2014, De-
termination of anthocyanidins in plant origin products-High performance liquid chromatog-
raphy). Basically, accurately weighed 0.200 g powdered samples were placed in a 15 mL
plastic tube, and 5.00 mL of extracting solution consisting of ethanol:water:hydrochloric
acid = 2:1:1 (volume) was added to extract anthocyanidins. The extraction mixture was
sonicated for 30 min at room temperature, then hydrolyzed under boiled water for one
hour. Then, the cooled extraction mixture was centrifuged using a HITACHI high-speed
refrigerated centrifuge (Katsuta, Japan) at 8000 rpm for 10 min. The supernatant was
accurately fixed to 5.00 mL volume and filtered through a 0.45 µm polyvinylidene fluoride
syringe filter before HPLC analysis.

The quantification of anthocyanidins was carried out on a reversed-phase HPLC
system (LC-20AD, Shimadzu, Tokyo, Japan) coupled with a photodiode array (PDA)
detector (SPD-M20A, Shimadzu, Tokyo, Japan). The column used was a Waters C18
(3.9 × 150 mm, 5 µm) kept at 35 ◦C. The gradient elution was carried out with a binary
solvent system consisting of ultrapure water (A) and acetonitrile (B), both containing
1% formic acid, at a constant flow rate of 0.8 mL/min. The injection volume was 20 µL.
Anthocyanidin compounds were detected at the wavelength of 530 nm. Individual an-
thocyanidins were quantified via comparison of the peak areas with those of the known
standards. The anthocyanidins standards (delphinidin, cyanidin, petunidin, pelargonidin,
peonidin, and malvidin) were purchased from Sigma-Aldrich (Darmstadt, Germany).

2.3. NIR Spectral Acquisition

The NIR spectrometer used in this study was a FOSS NIR Systems model 5000 (Foss
NIRSystems Inc., Silver Spring, MD, USA). The NIR spectrometer was preheated for 30 min
before the sample scanning, and the samples were only scanned when the spectra and noise
tests were passed. The dried PCC powders were evenly spread in the sample round cups,
respectively and compacted with the lid to ensure the sample powder was covered evenly.
The spectra were scanned in the wavelength range of 400–1100 nm and 1100–2498 nm
under diffuse reflection mode. Each sample was scanned three times. The scanned spectral
curves were collected, and the data were processed using the Foss WinISI III calibration
software throughout the whole process.

2.4. Data Processing

The PCC samples were divided into two sets by systematic sampling method; 86 of them
were used as calibration sets to establish the prediction models, and 20 samples not involved
in the calibration were used as validation sets for external validation of the effectiveness
of the developed models. The chemical determination results of anthocyanidin content
obtained by HPLC of the calibration set samples were imported into the chemometric software
accompanying the instrument and processed for NIR spectroscopy to obtain a cal. file. The
spectral data were preprocessed using a partial least squares regression (PLSR) method at
three different wavelength bands. These three bands included 400–1100 nm, 1100–2498 nm
(full band); 400–800 nm (visible band); 800–1100 nm, 1100–2498 nm (near infrared band).
The pre-processing scattering model of the spectral data included no scattering processing
(None), standard normal variables transformation + de-trending processing (SNV+Detrend),
standard normal variation processing (SNV Only), de-trending processing (Detrend Only),
standard multivariate scattering correction (Standard MSC), weighted multivariate scattering
correction (Weighted MSC), and two different derivative treatments, namely, no derivative
and first-order derivative were employed. The final prediction models built under different
preprocessing methods were compared, and the model with the internal cross-validation
correlation coefficient (1-VR) close to 1 and lower standard error of cross-validation (SECV)
was selected as the best one. These two sets of data can basically reflect the prediction
performance of the calibration model for unknown samples. Subsequently, samples of the
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validation set were analyzed to test the predictive ability of the proposed model. The criterion
was that the higher the external correlation coefficient (RSQ) value and the lower the standard
deviation of prediction (SEP), the more accurate the model.

3. Results
3.1. Anthocyanidins Contents in PCC Samples

Anthocyanidins contents of the PCC samples were analyzed by the HPLC method (the
results are shown in Table S1), and the content distribution of the anthocyanidins fractions
is shown in Table 1. Four kinds of anthocyanidins were detected, with cyanidin the most
abundant one in PCC, which was a coincidence with the previous report [2]. Cyanindin
had the largest range of content variation from 93.5 to 12,802.4 mg/kg, and the average
content was 5741.2 mg/kg. In most samples, cyanidin accounted for more than 95% of the
total anthocyanidins. The content distribution range of cyanidin in the selected samples
was wide, which can well represent PCC samples with different contents of anthocyanidins;
it meant that it was a suitable sample set for establishing of NIR model.

Table 1. Distribution of anthocyanidins contents in purple leaf Chinese cabbage (mg/kg).

Compound Content Range Average Content Percentage of Total %

delphinidin nd1~193.7 159.4 2.66
cyanindin 93.5~12,802.4 5741.2 95.71

pelargonidin nd1~66.0 52.3 0.87
peonidin nd1~63.0 45.4 0.76

nd1: not detected.

Delphinidin was detected in most PCC samples, with a content up to 193.7 mg/kg, and
the average content was 159.4 mg/kg. Compared to cyaniding, pelargonidin and peonidin
were much lower in PCC, whose average contents were 52.3 mg/kg and 45.5 mg/kg,
respectively, accounted for less than 1% content to the total anthocyanidins in PCC.

3.2. Visible/NIR Spectral Analysis of PCC Samples

Using the software WinISS III, the chemically determined values were input to the
corresponding spectral positions, and the spectral data were analyzed in combination with
chemical analysis data. The raw spectra of the PCC samples obtained after visible/NIR
spectroscopy scan (Figure 1A), in which the horizontal coordinate was the wavelength,
and the vertical coordinate was the absorbance expressed as log 1/R, showed that several
samples of PCC had a clear trend of decreasing absorption peaks in the wavelength range of
400 to 800 nm, which indicated that different samples had specific absorption characteristics
in the visible wavelength band. The large variation in their spectrograms also indirectly
indicated the different contents of each sample composition.

The raw NIR spectra contained comprehensive information on all chemical structures
and a lot of irrelevant information and noise, so mathematical data pretreatment methods
were applied to remove noise, compensate for baseline shifting, reduce the influence of
non-target variation, and assist in smoothing the spectrum. The derivative transformation
could partially compensate for baseline offset between samples and reduce instrument drift
effects [22]. Figure 1B shows the spectral curve of the original spectrum after SNV+Detrend
and first-order derivative pretreatment. The pretreated spectrum had more obvious un-
dulations, the peaks became more and sharper, and the absorption peaks appeared in the
originally smooth part. Figure 1C shows the spectral profile of the original spectrum after
the SNV only and first-order derivative pretreatment, and the fitting phenomenon could be
observed. On the processed spectrograms, we observed more clearly several characteristic
peaks of the spectrum, with the peak at 672 nm associated with chlorophyll [23]. The peak
at about 760 nm corresponds to the third overtone of the O-H vibration [24].
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Figure 1. Visible/Near infrared spectra of purple leaf Chinese cabbages. (A): original spectra;
(B): spectrum after SNV+Detrend and first derivative processing; (C) spectrum after SNV only and
first derivative processing.

3.3. Establishment of Quantitative Models for Anthocyanidins Content in PPC
3.3.1. Model for Cyanidin Content Prediction

The spectral curves obtained from the scanned samples and the chemical analysis data
were processed using PLSR to establish calibration models, and the calibration equation
results are shown in Table 2. All spectral pre-treatment models performed well, with RSQ
all above 0.91. Successful calibrations usually had a correlation coefficient of determination
above 0.9. The 1-VR value of cyanidin in the full spectral band from 400 to 1100 nm and 1100
to 2498 nm after no scattering processing and first-order derivative pretreatment was 0.942
at the maximum, the SECV value was 693.004 at the smaller value, and the RSQ was 0.965.
Figure 2A shows the cross-validation result of the prediction model established, the linear
regression relationships between the NIR predicted values, and the chemically determined
results (reference value). The slope of the line was 0.976, which is closed to 1; the samples
were irregularly distributed on both sides of the line with the overall trend of discrete. The
model fits well and can achieve the purpose of good quantitative prediction. So, the model
after no scattering processing (None) and first-order derivative pretreatment was chosen to
be used in the rapid screening of high-quality PCC breeding materials. The highest 1-VR of
delphinidin prediction models was 0.172, and the SECV was 12.030, obtained by SNV only
(first-order derivative) in the 400–800 nm band. The values of correlation coefficients were
small and could not accurately predict the content of delphinidin fraction in PCC. After
no scattering processing and first-order derivative preprocessing in 400–800 nm visible
light of pelargonidin, the 1-VR value was 0.467 at maximum, and SECV value was 3.887 at
minimum, so its detection model was poorly predictive and could not accurately predict
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the content of pelargonidin. After the Detrend only and first-order derivative pretreatment
under 400–800 nm visible light, the 1-VR value was 0.652 at maximum, and the SECV value
was 3.557 for peonidin, so its detection model prediction was weakly correlated and could
not accurately predict the content of peonidin fraction in PCC, which need further study.
Considering that the contents of delphinidin, pelargonidin, and peonidin were relatively
low, which accounted for less than 5% of the total anthocyanidins, it is negligible of their
contribution to the quality of PCC.

Table 2. Calibration equations of cyanidin content in purple leaf Chinese cabbage using different
pretreatment models.

Wave Band Spectral Pre-Treatment Model RSQ 1 SEC 2 1-VR 3 SECV 4

400~1100 nm
1100~2498 nm

None (no derivative) 0.922 808.339 0.908 887.788
SNV+Detrend (no derivative) 0.928 772.348 0.894 948.462

SNV only (no derivative) 0.913 852.994 0.866 1063.419
Detrend only (no derivative) 0.942 685.539 0.923 801.505

Standard MSC (no derivative) 0.923 784.604 0.896 924.328
Weighted MSC (no derivative) 0.937 748.514 0.908 909.465
None (first-order derivative) 0.965 531.591 0.942 693.004

SNV+Detrend (first-order
derivative) 0.959 576.934 0.931 754.230

SNV only (first-order derivative) 0.956 602.184 0.924 799.911
Detrend only (first-order

derivative) 0.955 592.659 0.941 684.969

Standard MSC (first-order
derivative) 0.955 603.501 0.924 796.853

Weighted MSC (first-order
derivative) 0.952 622.972 0.917 825.123

1 RSQ: external correlation coefficient; 2 SEC: standard error of calibration set; 3 1-VR: internal cross-validation
correlation coefficient; 4 SECV: standard error of cross-validation.
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3.3.2. Model for Total Anthocyanidins Content Prediction

The performances of total anthocyanidin content prediction models were parallel with
the models for cyanidin content prediction because cyaniding was the vast majority of
anthocyanidin in PCC. As shown in Table 3, the 1-VR value of the total anthocyanidins in
the visible/NIR spectral bands from 400 to 1100 nm and 1100 to 2498 nm after no scattering
processing and first-order derivative preprocessing was 0.944, the minimum SECV value
was 685.994, and the external correlation coefficient RSQ was 0.968, which meant that the
cross-test effect was very satisfying. Combined with the cross-validation result shown in
Figure 2B, the line slope was 0.990, and the samples scattered with no big deviation. The
content of total anthocyanidins in PCC can be accurately predicted using the model after
pretreatment of no scattering processing and first-order derivative.

Table 3. Calibration equations of total anthocyanidins content in purple leaf Chinese cabbage using
different pretreatment models.

Wave Band Spectral Pre-Treatment Model RSQ 1 SEC 2 1-VR 3 SECV 4

400~1100 nm
1100~2498 nm

None (no derivative) 0.925 801.928 0.911 881.019
SNV+Detrend (no derivative) 0.929 773.686 0.896 950.028

SNV only (no derivative) 0.915 854.883 0.869 1062.558
Detrend only (no derivative) 0.939 710.771 0.916 846.407

Standard MSC (no derivative) 0.924 787.616 0.898 926.614
Weighted MSC (no derivative) 0.938 749.215 0.910 910.829
None (first-order derivative) 0.966 532.072 0.944 685.994

SNV+Detrend (first-order
derivative) 0.959 576.751 0.932 751.574

SNV only (first-order derivative) 0.956 602.713 0.925 802.668
Detrend only (first-order

derivative) 0.956 592.196 0.941 691.249

Standard MSC (first-order
derivative) 0.956 595.245 0.930 761.400

Weighted MSC (first-order
derivative) 0.953 620.968 0.920 819.108

1 RSQ: external correlation coefficient; 2 SEC: standard error of calibration set; 3 1-VR: internal cross-validation
correlation coefficient; 4 SECV: standard error of cross-validation.

3.3.3. External Validation of the Calibration Models

Using the mathematical model developed by WinISI III software, the samples not
involved in the calibration were analyzed for external validation of the effectiveness of
the developed model. The effectiveness of the validation was indicated by RSQ, SEP, and
Bias. After validation, the RSQ were 0.947 and 0.951, respectively, for cyanindin and total
anthocyanidins models at 400 to 1100 nm and 1100 to 2498 nm visible/NIR spectra, after
no scattering processing and first-order derivative pretreatment (Figure 2C,D). The test
deviation biases were small, which were −234.079 and −222.0, respectively. The slopes of
the external validation prediction plots (the linear regression between the NIR predicted
values and the chemically determined results) were 0.917 for cyanidin and 0.913 for total
anthocyanidins. The validation samples were irregularly distributed on both sides of the
line, and there was no big deviation, which meant that the models worked well; they could
output accurate results for efficient and rapid screening of high anthocyanidins content
materials. In addition, the validation results of delphinidin, pelargonidin, and peonidin
prediction models showed very poor performance, as we could expect.

4. Discussion

As an osmoregulatory substance, anthocyanins are one of the most important pigments
in plant leaves. It has an irreplaceable role in improving the cold, drought, and disease
resistance of plants, and, therefore, monitoring the content of anthocyanidins in plants can
help to understand the physiological state of plants [3]. Meanwhile, the benefits for human
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health of anthocyanidins have drawn a great deal of people’s attention. At present, the
detection of anthocyanidins contents in plants and plant products mainly uses HPLC or
HPLC-MS method; the application of rapid and non-destructive detection using NIR is
still in its initial stage, but high throughput, convenient operation, and no use of organic
solvents will make NIR a powerful support tool in horticulture practice and agri-food
industry. Huang et al. [25] proposed a NIR spectroscopic detection method based on an
ant colony algorithm (ACO) combined with interval partial least squares (iPLS) in order
to detect anthocyanidins content in flower tea quickly and accurately, indicating that NIR
spectroscopy has promising applications in measuring total anthocyanidins in plants. NIR
spectroscopy can be used to determine the anthocyanidin content of berries in completely
satisfied results without breaking the composition of the berries [26]. In this study, we
successfully developed suitable prediction models for cyanidin and total anthocyanin
content in PCC, and they could be applied in the breeding practice of PCC to realize rapid
and efficient screening of high-quality breeding materials.

NIR spectroscopy belongs to an indirect analysis technology; the accuracy of the
prediction result relies on the quality of the calibration models. So, the establishment of a
high-quality model, with accurate chemical analysis and spectrum scanning data, strong
anti-interference capability, and broad enough representation, is vitally important. A large
number and representative sample sets are essential factors for model building. Addition-
ally, an appropriate algorithm to divide sample subsets is also critical [27]. In order to
expand the application scope of our established models, further improvement using a larger
number of PCC samples with different breeding backgrounds and distinct phenotypes is
required. In terms of algorithms for NIR model establishment, there are several regression
methods frequently used for the prediction/quantification of chemical content, including
multiple linear regression (MLR), principal component analysis (PCA) for the exploration
of the data, and partial least squares regression (PLSR) analysis to obtain a quantitative
prediction of the parameters of interest [12,28]. Among them, PLSR is the most widely used
multivariate statistical data analysis method for quantitative analysis of the NIR spectrum,
with strong anti-interference ability. In this study, we used a PLSR method to process the
spectral data, and the quantitative prediction results were satisfied.

Compared to chemical analysis methods, the sensitivity of NIR spectroscopy is rel-
atively low and cannot be used for trace analysis, but its modeling is suitable for the
detection of components with high content and a wide range of variation. In a previous
report, a satisfied NIR prediction model was established to detect anthocyanidin content
in flower teas with a content range of 0.17 to 1.60 mg/g [25]. In this study, the model
prediction performance of cyanidin content and total anthocyanidin content with a wide
range of variation was relatively good, which could be used for rapid screening of breeding
materials and prediction of anthocyanidin content in PCC breeding practice. Meanwhile,
the prediction model performance of delphinidin, pelargonidin, and petunidin with less
abundant contents in PCC was very poor. Considering the contents of these three antho-
cyanidins were relatively low, their contribution to the phenotype and nutritional quality
of PCC could be neglected. However, in other plant materials which contain a much higher
proportion of these anthocyanidins, much more samples with a wide range of contents
need to be included, and further optimization of their model-building methods is needed.

There are still some parts of NIR spectroscopy detection technology that need to be
improved, but with the development of algorithm, spectroscopy, and artificial intelligence,
the predictive ability, accuracy, and operability of this technology will continue to be
improved on the original basis. With its obvious time-saving, high throughput, and non-
destructive advantages, NIR spectroscopy will certainly have a broader development
prospect in the agricultural, food industry, and market inspection.

5. Conclusions

Cyanidin was the most abundant anthocyanidin in purple leaf Chinese cabbage, with
an average content of 5741.20 mg/kg, accounting for 95.7% of the total anthocyanidins. The



Foods 2023, 12, 1922 9 of 10

prediction models established using visible/NIR spectroscopy on the basis of PLSR after
no scattering processing and first-order derivative pretreatment method were suitable and
effective for accurate and fast quantification of cyanidin and total anthocyanidin contents
in PCC. The result laid a foundation for the application of NIR, with its obvious timesaving,
convenience, and organic solvents free advantages, in the fast prediction of anthocyanidins
in vegetables and rapid screening of purple vegetable breeding materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12091922/s1, Table S1: Contents of anthocyanidins in
purple Chinese cabbage analyzed by high-performance liquid chromatography (mg/kg).
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