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Abstract: Kombucha is a functional beverage obtained through fermentation of sweetened Camellia
sinensis infusion by a symbiotic culture of bacteria and yeasts that exerts many beneficial biological
effects, mostly related to its antioxidant and anti-inflammatory effects. Alternative raw materials have
been used to create new kombucha or kombucha-like products. Coffee is the most important food
commodity worldwide and generates large amounts of by-products during harvest and post-harvest
processing. The main coffee by-product is the dried fruit skin and pulp, popularly known as cascara.
To date, no studies have evaluated the potential bioactivity of coffee cascara kombucha. In this study,
we aimed to measure and compare the effects of infusions and kombuchas made with arabica coffee
cascaras (n = 2) and black tea leaves (n = 1), fermented for 0, 3, 6, and 9 days on the intracellular
production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) in model cells. Oxidative stress
was induced in HK-2 cells with indoxyl sulfate (IS) and high glucose (G). Inflammation was induced
with lipopolysaccharide (LPS) in RAW 264.7 macrophage. The contents of phenolic compounds,
caffeine, and other physicochemical parameters were evaluated. To the best of our knowledge, this is
the first study providing information on the bioactive profile and on the potential biological effects of
coffee cascara kombucha. Fermentation caused the release of bound phenolic compounds from the
infusions, especially total chlorogenic acids, with an average increase from 5.4 to 10.7 mg/100 mL
(98%) and 2.6–3.4 mg/100 mL (30%) in coffee cascara and black tea kombucha, respectively, up to
day 9. All evaluated beverages reduced (p < 0.0001) similarly the intracellular ROS (41% reduction,
on average) and uric acid (10–55%) concentrations in HK-2 model cells, reversing the induced
oxidative stress. All beverages also reduced (p < 0.0001, 81–90%) NO formation in LPS-induced
macrophages, exhibiting an anti-inflammatory effect. These potential health benefits may be mostly
attributed to polyphenols and caffeine, whose contents were comparable in all beverages. Coffee
cascara showed similar potential to C. sinensis to produce healthy beverages and support sustainable
coffee production.

Keywords: dried coffee cherry pulp; coffee cascara; coffee byproduct; fermentation; intracellular
antioxidant capacity; anti-inflammatory effect; sustainability
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1. Introduction

According to epidemiological studies, Camellia sinensis tea consumption exerts several
beneficial biological effects, such as helping prevent cardiovascular diseases, type 2 diabetes,
and colorectal cancer [1–4]. These effects mostly relate to C. sinensis antioxidant and anti-
inflammatory activity [5,6]. Kombucha tea is defined as a beverage obtained through the
fermentation of sweetened green or black (C. sinensis) infusion by the action of a Symbiotic
Culture of Bacteria and Yeast (SCOBY) [7–9]. In vitro and animal studies showed that
C. sinensis biological activities remain in kombucha [10–17].

In recent years, there has been a global resurgence in the interest in fermented foods,
especially in Western society, where consumption levels had decreased in previous decades.
In this scenario, kombucha is an alternative to traditional soft drinks and light-alcohol
drinks because of the high amount of bioactive compounds and claims against the patho-
genesis of global chronic diseases [18,19]. The global kombucha market size was valued at
USD 2.64 billion in 2021 and is expected to expand at an annual growth rate (CAGR) of
15.6% from 2022 to 2030 [20]. Consumer awareness and popularity are the main reasons
behind the current trend of the flourishing market and active research on kombucha [21].
Along with this trend, the consumer demand for healthy flavorsome foods continuously in-
creases. Recently, raw materials different from C. sinensis tea, for example, fruit or vegetable
juices and cocktails, herbal or plant infusions, and food industry by-products, have been
used to create new kombucha (containing C. sinensis tea) and kombucha-like (containing
only alternative extracts) functional products [22].

Coffee is the most important food commodity worldwide and ranks second, after
petroleum, among all commodities [23]. In the last 20 years, global coffee production
has consistently increased [24]. According to the International Coffee Organization (ICO),
approximately 10 million tons of seeds were produced worldwide in 2021/2022 [25],
generating large amounts of by-products during harvest and post-harvest processing [26].
With the prospect that coffee can reach a totally sustainable environment, it should be noted
that the associated by-products still have not gained enough popularity to be reused.

The main coffee by-product is the dried cherry pulp, as officially named by the Eu-
ropean Food Safety Authority (EFSA) [27] and popularly known worldwide as coffee
cascara (Figure 1). It is generated by separating coffee beans from the cherry skin and
pulp [28]. The coffee pulp alone corresponds to approximately 28% of the coffee fruit on a
dry weight basis, and the skin, approximately 12% [26]. These wastes are contamination
sources and may lead to water and soil pollution and negative environmental impacts,
given the high concentrations of caffeine, tannins, and lower molecular weight polyphe-
nols [28,29]. On the other hand, cascara has the potential as a natural, sustainable source of
bioactive compounds such as chlorogenic acids, flavonoids, and caffeine, soluble fibers, and
micronutrients such as ascorbic acid and minerals [30–34]. Indeed, several potentially ben-
eficial effects of coffee cascara as a whole product, such as antioxidant, anti-inflammatory,
antibacterial, adipogenic, and lipolytic effects, have been observed in vitro [35–38].
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In Europe, coffee cascara was considered a novel food by the European Food Safety
Authority (EFSA) from 2015 until 2021, when it was authorized to be used in the Euro-
pean market [40] as a safe food ingredient for human consumption, with multifunctional
properties. It can be used in bread production as flour [31], added to food matrices like
yogurts [41], or simply for infusion preparation [26,27,36]. The fermentation of fresh coffee
pulp and cascara infusion has been recently proposed [42–44]. However, to our knowledge,
there are no reports evaluating the bioactive profile and the potential biological effects
of coffee cascara kombucha. This study aimed to evaluate the potential antioxidant and
anti-inflammatory effects of infusions and kombuchas prepared with coffee cascara tea
during fermentation, compared with plain black tea infusion and kombuchas. For this,
we used human-induced proximal tubular (HK-2) and murine macrophage (RAW 264.7)
cell models. Additionally, we provided information on the bioactive compounds of coffee
cascara kombucha.

2. Materials and Methods
2.1. Reagents

Indoxyl sulfate (IS), uric acid (UA), glucose (G), tert-butyl hydroperoxide (tBOOH),
dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazole-y)-2,5-diphenyltetrazolium bro-
mide (MTT) and 21,71-dichlorodihydro-fluorescein diacetate (DCFH-DA), sodium ni-
trite, lipopolysaccharide from E.coli O55:B5 (LPS) were purchased from Sigma Chemical
(Sigma-Aldrich, St. Louis, MO, USA). Dulbecco’s Modified Eagle’s Medium (DMEM)
was purchased from Lonza (Basel, Switzerland). L-glutamine, antibiotics (penicillin and
streptomycin), and trypsin were obtained from Gibco (Invitrogen Co., Grand Island,
NY, USA), and fetal bovine serum (FBS) was obtained from Hyclone (GE Healthcare,
Chicago, IL, USA). Catechins, including (-)-catechin (>98%), (-)-epicatechin (>98%), (-)-
gallocatechin (>98%), (-)-epigallocatechin, (-)-catechin gallate (>98%), (-)-gallocatechin gal-
late (>98%), and (-)-epigallocatechin gallate (>98%), gallic acid (≥99%), 5-caffeoylquinic
acid (≥95%) rutin (hydrate,≥94%), quercetin (hydrate, ≥95%), kaempferol (≥97%), caf-
feic acid (≥98%), ferulic acid (≥99%), p-coumaric acid (≥98%), sinapic acid (≥98%),
benzoic acid (≥99.5%), 3,4-dihydroxybenzoic acid (≥97%), hippuric acid (≥98%), 3,4-
dihydroxyphenylacetic acid (≥98%), 4-hydroxyphenylacetic acid (≥98%), vanillic acid
(≥97%), dihydrocaffeic acid (≥98%) and caffeine (≥99%) for HPLC were provided by
Sigma Chemical Co. For dicaffeoylquinic acids (diCQA), a mixture of 3,4-diCQA; 3,5-
diCQA; and 4,5-diCQA from Carl Roth (Karlsruhe, Germany) was used. Feruloylquinic
acids (FQA) were synthesized from 3-feruloylquinide and 4-feruloylquinide (FQL) by hy-
drolysis in 50% aqueous tetrahydrofuran [45]. Sucrose was provided by PROQUIMIOS
Produtos Científicos, Rio de Janeiro, Brazil; glucose and fructose were provided by
VETEC Química Fina, Rio de Janeiro, Brazil.

2.2. Raw Materials

A leading commercial black tea brand was purchased in a Rio de Janeiro food market;
organic arabica coffee (Coffea arabica) cascara samples were acquired from producers (dry
processed CCB from Espírito Santo, Brazil and wet processed CCN from Nicaragua).

2.3. Infusions Preparation, Kombucha Consortium, and Fermentation

The black tea (BT) and coffee cascara (CC) infusions were prepared at 3% (weight/
volume—w/v), pouring water at 95 ◦C over the raw material, letting it steep for 10 min,
and filtering the mixture using a regular paper filter (Mervilab S.A., Madrid, Spain) for
bulk tea.

• Kombucha Consortium and fermentation: The Kombucha Consortium was part of the
collection of the Microbiology Institute of the Federal University of Rio de Janeiro in
Brazil. Previously cultivated in green tea, the consortium was separately fermented
3 times in black tea and in coffee cascara tea infusion prior to experimental use in order
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to stabilize the microbial consortium in these matrixes [46]. All kombucha beverages
were prepared according to the protocol described by Nummer [47];

• Black tea kombucha (BT K): Black tea kombucha was prepared by mixing 10% (volume/
volume—v/v) of black tea starter, 80% black tea infusion (weight/volume—w/v), 10%
(w/v) sugar, and 2.5% (v/v) of a Symbiotic Culture of Bacteria and Yeast (SCOBY) and
letting the mixture ferment for 14 days at 23 ◦C (Sanyo™ MIR-154PE, Sanyo Electric
Co., Ltd., Osaka, Japan). Samples were collected before fermentation (day 0) and after
3, 6, and 9 days of fermentation;

• Coffee cascara kombucha (CCB K and CCN K): Coffee cascara kombuchas were
prepared using 80% (v/v) of the coffee cascara infusion, 10% (v/v) of the black tea
kombucha, 10% (w/v) sugar, and 2.5% (w/v) of SCOBY. The mixture was allowed to
ferment at 23 ◦C (Sanyo™ MIR-154PE, Sanyo Electric Co., Ltd., Japan). Samples were
collected before fermentation (day 0) and after 3, 6, and 9 days of fermentation.

All beverages were sterilized with a 0.22 µm membrane before chemical analyses
and biological effect evaluation. The beverages were diluted ten times prior to the cell
experiments (see Sections 2.8 and 2.9).

2.4. DNA Extraction, Amplicon Sequencing Data Analysis and Library Preparation

DNA was extracted from the liquid and the biofilm samples after 14 days of fermenta-
tion (starter culture) for black tea kombucha and after 9 days of fermentation for all other
beverages, following the protocol described by Yamanaka et al. [48].

The identification of bacteria (16S rRNA gene) and yeasts (ITS1 region) was performed
by using a high-performance DNA sequencing method using a MiSeq Sequencing System
(Illumina Inc., San Diego, CA, USA). The library preparation and DNA sequencing followed
the protocol of Neoprospecta Microbiome Technologies, Brazil. Amplification with primers
to the V3–V4 region of the rRNA 16S gene (341F-CCTACGGGRSGCAGCAG and 806R-
GGACTACHVGGGTWTCTAAT, and the ITS region (ITS1-GAACCWGCGGARGGATCA
and ITS2-GCTGCGTTCTTCATCGATGC) was performed for bacteria and yeasts, respec-
tively. The sequences were analyzed by pipeline Sentinel. In pipeline Sentinel, the archives
fastQ were evaluated for quality Phred (QP) using the software FastQC v.0.11.8 [49]. Analy-
ses were performed in triplicate.

Clusters with an abundance lower than 5 were removed according to the methodology
proposed by Smyth et al. [50]. The taxonomic identifications were carried out with BLASTN
v.2.6.0+ [51]. As for the species definition, within the 20 hits returned for each cluster, a
Python instruction evaluated whether 1 of the 3 requirements would be met by the hits:
(1) highest bit-score; (2) lowest e-value; and (3) taxonomies with greater representation.
The hits that fit 1 of the previous items were chosen as representative species. The bacteria
and yeast species were defined using 99% and 97% of identity, respectively.

2.5. Analysis of Titratable Acidity, pH, Soluble Solids, and Sugars

Total soluble solids were evaluated using a handheld refractometer (Pocket Refrac-
tometer Pal-1, ATAGO, Tokyo, Japan). Results were expressed in ◦Brix. The total titratable
acidity was determined by titration with 0.1 N NaOH and phenolphthalein as an indica-
tor, according to Adolfo Lutz Institute [52]. Results were expressed in mEq/L. pH was
measured using a pH meter (Kasvi K39-0014PA, São José dos Pinhais, Paraná, Brazil).

Sucrose was analyzed according to Wischral et al. [53], using a High-Performance
Liquid Chromatography-Refractive Index Detector (HPLC-RID)system (mod.# 2414, Wa-
ters, Milford, MA, USA), using a Hi-Plex column H 8 µm (300 × 7.7 mm; Agilent, Santa
Clara, CA, USA) at 30 ◦C with 20 µL of injection volume and H2SO40.005 mol/L as mobile
phase at 0.4 mL/min. For glucose and fructose, the column temperature was 60 ◦C, and the
mobile phase flow was 0.6 mL/min. External standards were used for sugar identification
and quantification.
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2.6. Analysis of Bioactive Compounds
2.6.1. Analysis of Catechins, Chlorogenic Acids and Free Phenolic Acids

The analyses of catechins were carried out according to Liang et al. [54], using a
High-Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) system
composed of 2Jasco PU-2080 HPLC pumps, a column heater—Model 7981—Jones Chro-
matography, an MD-2010 Plus multi-wavelength diode array detector and a Jasco As-950
intelligent sampler. The column was a reversed-phase Waters Spherisorb® C18 5 µm ODS2.
The Borwin PDA Controller Software (JMBS Developments, Le Fontanil, France) was used.
Gradient elution was performed with a mixture of 2solvents containing acetonitrile/acetic
acid/water at 1 mL/min. Detection was performed at 280 nm. An external standard
curve containing 7 catechins (catechin, catechin gallate, epicatechin, gallocatechin gallate,
epigallocatechin gallate, epigallocatechin and gallocatechin) was prepared in de-ionized
water for calibration and quantification of catechins.

The analyses of 9 chlorogenic acids (3 caffeoylquinic acids, 3 feruloylquinic acids,
and 3 dicaffeoylquinic acids) and free phenolic acids were performed using a HPLC-DAD
system, according to Farah et al. [55] and Duarte and Farah [56], with adaptations, using a
reverse-phase column (Magic C30, 150 × 2 mm × 5 µm, 100 Å, Michrom Bioresources Inc.,
Auburn, CA, USA). The 2-phase LC mobile system consisted of 0.3% formic acid (eluent
A) and methanol (eluent B). The gradient was programmed to operate with a flow rate of
1.0 mL/min, and DAD was set at 325 nm for chlorogenic acids and 280 nm for phenolic
acids. Identification and quantification were performed using external standard curves
and molar extinction coefficients. LC-MS and UV spectra were used to confirm the peaks’
identities.

2.6.2. Analysis of Caffeine

The analyses of caffeine were performed using an HPLC-DAD system set to 272 nm,
according to Farah et al. [57] with adaptations, using a reverse-phase column (Magic C30,
150 × 2 mm × 5 µm, 100 Å, Michrom Bioresources Inc., Auburn, CA, USA) and 40%
methanol as mobile phase, running at 1.0 mL/min.

2.7. Cell Viability Assay

The effect of the test beverages on cell viability was measured using the MTT assay [58].
HK-2 and RAW 264.7 cells were cultured at a density of 1.0 × 104 and 8.0 × 104 cells per
well of a 96-well plate, respectively. After 24 h culture (at 37 ◦C, 5% CO2, in a humidified
incubator—BINDER CB series 2010, Tuttlingen, Germany), HK-2 cells were treated with the
beverages diluted in DMEM culture medium without FBS (beverages with IS at 2.5 mM and
glucose at 25 mM were diluted in PBS for 3 h). RAW 264.7 cells were also treated with the
beverages diluted in DMEM culture medium without FBS but with 1 µg/mL LPS. DMSO
(50%) was used as death control. Subsequently, cells were incubated in MTT solution
(0.5 mg/mL) for 1 h at 37 ◦C and 5%CO2. The supernatant was removed, 100 µL of DMSO
was added, and the optical density at 570 nm was measured using a microplate reader
(BioTek Synergy HT Multi-Mode Microplate Reader, Winooski, VT, USA). Experiments
were carried out 3 times in triplicate.

2.8. Indoxyl Sulfate-Induced Oxidative Stress in HK-2 Diabetic Nephropathy Cell Model

To evaluate the potential antioxidant capacity of the studied beverages, we induced
the diabetic nephropathy stress condition and production of Reactive Oxygen Species (ROS)
in HK-2 cells using IS and high G solution. The analysis was performed by measuring the
fluorescence intensity of the DCFH-DA probe, which was proportional to the amount of
ROS formed [59,60].

Human kidney proximal cell line HK-2 cells (ATCC, Manassas, VA, USA, accession
# CRL-2190) were part of the collection of Instituto de Investigaciones Biomédicas Alberto
Sols (Madrid, Spain). The cells were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM), with 1.0 g of glucose and supplemented with 10% fetal bovine serum (FBS), 1% L-
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glutamine and 1% penicillin/streptomycin. Following this, they were incubated in a 96-well
plate at a density of 1.0 × 104 cells per well for 24 h at 37 ◦C and 5% CO2 in a humidified
incubator. A solution containing IS 2.5 mM and G 25 mM was prepared in phosphate buffer
saline (PBS) and sterilized with a membrane with 0.22 µm pore before the experiments.
The cells were then treated with 100 µL of the following solution: test beverage (100 µL),
25 µL of IS solution and 25 µL of G solution, and 850 µL DMEM culture medium without
FBS. Then, they were incubated for 3 h. 100 µL of the aforementioned solution containing
PBS instead of the test beverage was used as a control for the nephropathic oxidative
stress condition.

A 10 mM solution of DCFH-DA probe was prepared (5 mg in 1 mL DMSO). Then,
800 µL of DMSO was added to 50 µL of this solution. After 3 h of beverage extract
incubation, cells were pre-loaded with 2.5 µL/well of this last solution for 30 min at
37 ◦C and 5% CO2. After incubation, DCFH becomes dichlorofluorescein (DCF) due to
intracellular oxidants and will emit fluorescence. Next, the culture medium was removed,
and cells were washed with 100 µL phosphate-buffered saline (PBS). The cells were then
treated again with 100 µL of the same test beverages with IS and G. tBOOH 1 mM (100 µL)
was used as a positive control for ROS formation in 1 of the wells, while ascorbic acid
(100 µL of 3 µg/mL solution) was used as an antioxidant control. The plate was incubated
for 45 min as previously. Fluorescence was measured at 485 nm/528 nm (BioTek Synergy
HT Multi-Mode Microplate Reader). Experiments were carried out 3 times in triplicate.

To determine cell functionality, the content of uric acid was estimated in HK-2 cells
supernatant after treatments with IS + G and beverages using a commercial kit (Spinreact,
Girona, Spain). In a microplate, 5 µL of the cell supernatant was mixed with 200 µL of the
commercial reagent. The mixture was incubated at 15–25 ◦C for 10 min. Finally, absorbance
was measured at 520 nm using an Epoch 2 Microplate spectrophotometer (BioTek, Winooski,
VT, USA). A uric acid standard solution (357 µmol/L) was used for quantification and
reaction control. Analyses were carried out 3 times in triplicate, and the results were
expressed in µmol/L.

2.9. Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophages

The anti-inflammatory properties of black tea and coffee cascara infusions and kom-
buchas were determined by quantifying the nitric oxide (NO) production in macrophages
(RAW 264.7), as described by Benayad et al. [61].

RAW 264.7 macrophage cells from murine (ATCC, accession number TIB-71) were
part of the BAT Unit collection of Instituto de Investigación en Ciencias de la Alimentación
(CIAL, CSIC-UAM, Madrid, Spain). Cells were cultured in DMEM with 4.5 g of glucose
and supplemented with 10% FBS, 1% L-glutamine, and 1% penicillin/streptomycin. The
cells were incubated in standard conditions (37 ◦C, 5% CO2, in a humidified incubator
(BINDER CB series 2010, Tuttlingen, Germany). They were then seeded on a 96-well plate
(8 × 104 cell/well) and cultured in complete medium (DMEM with 4.5 g/L of glucose,
10% v/v of Fetal Bovine Serum (FBS), 1% v/v of L-glutamine and 1% v/v of antibiotics)
for 24 h (37 ◦C, 5% CO2). Following, cells were treated with 150 µL of FBS-free medium
containing 1 µg/mL lipopolysaccharide (LPS) from Escherichia coli O55:B5 and the test
beverages (100 µL). Then, cells were incubated for 24 h (37 ◦C, 5% CO2). Negative and
positive controls consisted of an FBS-free medium and 1 µg/mL of LPS in an FBS-free
medium, respectively. After the incubation period, 100 µL of supernatants from the wells
were removed and combined with 100 µL of Griess reagent (1% w/v sulfanilamide and 0.1%
w/v N-1-(naphthyl)-ethylenediaminedihydrochloride in 2.5% v/v H3PO4). The mixtures
were incubated at room temperature in the dark for 15 min, and absorbance was measured
at 550 nm in a BioTek Epoch 2 Microplate spectrophotometer (Winooski, VT, USA). A
calibration curve with NO in FBS-free DMEM was used for quantification (0–10 µg/mL).
Experiments were carried out 3 times in triplicate.
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2.10. Statistics

Data are reported as means ± standard deviations. An analysis of variance (ANOVA),
followed by Tukey’s test, was performed using GraphPad Prism (Version 8.4.2, Informer
Technologies, Los Angeles, CA, USA) to determine significant differences between samples
at p ≤ 0.05.

3. Results and Discussion
3.1. Microbial Taxonomy

This analysis was performed to characterize the consortium and allow reproducibility,
considering that the SCOBY composition may differ worldwide and that microorganisms
may contribute differently to the changes in the chemical composition and physiological
effects of kombucha, although all SCOBYs contain mainly acetic acid bacteria and yeasts,
in addition to minor components [46,62]. The microbial community of the starter culture
and the final liquid and biofilms from coffee cascara kombuchas (at day 9) were evaluated
(Figure 2). Data analysis of the 16S rRNA gene sequence revealed two bacterial phyla in
all samples, Proteobacteria and Firmicutes. Proteobacteria (members of this phylum are
Komagataeibacter and Gluconacetobacter) was the most abundant phyla, especially in coffee
cascara kombuchas, with a percentage higher than 90%. These results agree with previous
studies that analyzed the microbial composition of kombucha beverages [18,63,64].
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Figure 2. Bacterial composition of the solid and liquid phases of the black tea kombucha starter and
coffee cascara kombuchas (9 days of fermentation) consortia. Note: BT K: black tea kombucha; CCB
K: kombucha made with coffee cascara from Brazil; CCN K: Kombucha made with coffee cascara
from Nicaragua.

In all kombucha beverages, the most abundant genus observed in the liquid and
biofilm was Komagataeibacter, a genus of acetic acid bacteria and the most efficient bacte-
rial cellulose producer. This is also in accordance with previous studies characterizing
kombucha cultures [18]. In the starter culture (black tea kombucha), only the specie Koma-
gataeibacter rhaeticus was identified, representing about 40% of the total bacteria. These are
known to be some of the most abundant bacterial members among the kombucha ferment-
ing agents [46,65]. Still, in black tea kombucha, high percentages of Staphylococcus (24%),
Enterobacteriaceae (18%), Latilactobacillus sakei (15%), and a low percentage of Pediococcus
pentosaceus (0.4%) were observed.

K. xylinus was identified only in both types of coffee cascara kombuchas (0.02%). This
species was previously identified in C. sinensis kombuchas [65]. Lavasani et al. [66] isolated
K. xylinus from apple vinegar, and this strain survived in acid and bile environments,
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demonstrating a potential probiotic effect. Two lactic acid bacteria were identified in
black tea kombucha and CCB kombucha, Latilactobacillus sakei and P. pentosaceus. The
Lactobacillae genus was previously identified in kombucha liquid and pellicle [64,65].
These strains are potentially probiotic bacteria [67,68].

In the present study, members of the Enterobacteriaceae family were identified in
liquid and pellicle samples, with a higher percentage in black tea kombucha (18%) and a
very low percentage in coffee cascara kombuchas (<0.6%). This family has been previously
identified in C. sinensis kombucha liquid or pellicle [46]. They are important; while some of
these organisms are involved in food spoilage, some are indicators of fecal contamination
of food products, and others are food-borne pathogens [69]. These bacteria were not viable
since pre-boiling water was used to prepare the infusion to make kombucha [26].

Regarding yeasts, data analysis of ITS1 identified that the most abundant phyla was
Ascomycota (Figure 3). Pichia (the predominant yeast genera with an abundance higher
than 70%), followed by Saccharomyces (>2%). Brettanomyces bruxellensis (5%) strain was
present in all kombuchas. Another non-saccharomyces strain comprised 0.4% of the total
yeasts. Saccharomyces cerevisiae is invariably the dominant species in the winemaking
and fermentation process [70]. Non-saccharomyces yeasts from Pichia genera are also
potential probiotics strains [71], and Saccharomycodes ludwigi can be a spoilage yeast in wine,
conferring to it undesirable flavors [72]. Brettanomyces bruxellensis is the most common
yeast identified in kombucha tea and SCOBY [65,73]. It has also been identified in the
starter and C. sinensis kombuchas. In kombuchas, B. bruxellensis can stimulate acetic acid
bacteria biofilm production [65].
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cascara kombuchas after 9 days of fermentation. Note: BT K: black tea kombucha; CCB K: kombucha
made with coffee cascara from Brazil; CCN K: kombucha made with coffee cascara from Nicaragua.

Many kombucha benefits are attributed to the interaction of microorganisms with
phenolic compounds in tea composition. The metabolism of microorganisms during
kombucha fermentation is complex. It has yet to be fully elucidated due to the large number
of microorganisms involved and the interactions that occur among them [8]. Infusions
fermentation by the kombucha consortium tends to increase their bioactive potential and
promote the synergy between the fermentation metabolites and the microorganisms [15].
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3.2. Beverages Characterization
3.2.1. pH, Total Acidity, Soluble Solids, and Sugars

The pH, total acidity, and content of soluble solids in all infusions and fermented
beverages are presented in Table 1. An increase in soluble solids values occurred from
infusions to day 0 because of the addition of other kombucha components. Acidity also
increased, and pH decreased on day 0 because of the addition of the starter culture to
promote the adequate pH for the symbiotic culture to develop and ferment. As fermentation
proceeded from day 0 to day 9, soluble solids values decreased (11.6–9.3 ◦Brix, Table 1). Such
a decrease is mostly associated with changes in sugar concentration in the culture medium
overtime (Figure 4) [74]. During fermentation, part of the sucrose was degraded, with an
initial concentration of 10 g/100 mL on day 0 and 8–8.2 g/100 mL on day 9 (Figure 4). Such
a decrease in sugar content was not remarkable, probably because of the sugar content in the
cascara infusion (about 1% by weight). In this process, yeast and bacteria produce invertase
which cleaves the disaccharide sucrose to its monosaccharide components, glucose and
fructose [75]. The activity of this enzyme increases along fermentation [76]. No significant
difference was found in glucose (0.62–1.14 g/100 mL) and fructose (0.25–0.93 g/100 mL)
concentrations in the fermented medium because both monosaccharides were consumed,
with no accumulation, given the multiple microorganisms and biochemical pathways co-
occurring [15], including the formation of organic acids, mainly acetic acid [77]. The values
of soluble solids, titratable acidity, and pH are within the range previously observed in
kombucha beverages in general [17,78] and higher than the pH found by Muzaifa et al. [44]
for a fermented cascara infusion (2.6–3.1).

Table 1. Physicochemical characteristics of infusions and kombuchas made with black tea and coffee
cascara tea.

Samples Days of
Fermentation

Titratable
Acidity (mEq/L) pH Soluble Solids

(◦Brix)

Black tea

Infusion 0.02 ± 0.01 a 5.5 ± 0.01 a 1.1 ± 0.12 a

0 0.1 ± 0.00 b 3.8 ± 0.07 b 10.4 ± 0.07 b

3 0.2 ± 0.05 b 3.5 ± 0.00 b 10.8 ± 0.14 b

6 0.3 ± 0.06 b 3.5 ± 0.00 b 9.7 ± 0.00 c

9 0.3 ± 0.06 b 3.4 ± 0.00 b 9.3 ± 0.28 c

CCB

Infusion 0.04 ± 0.00 a 4.4 ± 0.05 a 1.3 ± 0.12 a

0 0.1 ± 0.00 a 3.7 ± 0.07 b 11.5 ± 0.63 b

3 0.2 ± 0.00 b 3.6 ± 0.07 b 11.3 ± 0.00 b

6 0.2 ± 0.00 b 3.6 ± 0.07 b 10.4 ± 0.14 c

9 0.2 ± 0.00 b 3.5 ± 0.00 b 10.0 ± 0.42 c

CCN

Infusion 0.04 ± 0.00 a 4.3 ± 0.15 a 1.2 ± 0.15 a

0 0.04 ± 0.00 a 3.8 ± 0.21 b 11.6 ± 0.14 b

3 0.2 ± 0.00 b 3.6 ± 0.07 b 10.9 ± 0.14 b

6 0.2 ± 0.05 b 3.5 ± 0.00 b 10.6 ± 0.49 b

9 0.4 ± 0.08 b 3.5 ± 0.00 b 9.9 ± 0.56 c

Results are expressed as mean ± standard deviation for three replicate analyses; different letters on the same
column for the same beverage indicate a significant difference (p < 0.05); CCB: coffee cascara from Brazil; CCN:
coffee cascara from Nicaragua.

It is worth noting that the amount of sugar used in this study was classically used
worldwide, and it was chosen because Brazilians still like sweet foods, although there is a
joint effort to try to change this habit due to the new world trends aligned with scientific
advancements in public health. The current average sugar content in kombuchas found
in the American and European markets is within the range of 2–6% (by weight). This is
a great alternative to traditional soft drinks, which usually contain more than 10% sugar
(by weight) and no nutrients or bioactive compounds ([21], unpublished market research).
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This alternative could be especially beneficial to young adults and teenagers, who are the
greatest soft drink/soda consumers worldwide [79–81].

Foods 2023, 12, x FOR PEER REVIEW 10 of 25 
 

 

and higher than the pH found by Muzaifa et al. [44] for a fermented cascara infusion 

(2.6–3.1). 

Table 1. Physicochemical characteristics of infusions and kombuchas made with black tea and 

coffee cascara tea. 

Samples Days of Fermentation Titratable Acidity (mEq/L) pH Soluble Solids (°Brix) 

Black tea 

Infusion 0.02 ± 0.01 a 5.5 ± 0.01 a 1.1 ± 0.12 a 

0 0.1 ± 0.00 b 3.8 ± 0.07 b 10.4 ± 0.07 b 

3 0.2 ± 0.05 b 3.5 ± 0.00 b 10.8 ± 0.14 b 

6 0.3 ± 0.06 b 3.5 ± 0.00 b 9.7 ± 0.00 c 

9 0.3 ± 0.06 b 3.4 ± 0.00 b 9.3 ± 0.28 c 

CCB 

Infusion 0.04 ± 0.00 a 4.4 ± 0.05 a 1.3 ± 0.12 a 

0 0.1 ± 0.00 a 3.7 ± 0.07 b 11.5 ± 0.63 b 

3 0.2 ± 0.00 b 3.6 ± 0.07 b 11.3 ± 0.00 b 

6 0.2 ± 0.00 b 3.6 ± 0.07 b 10.4 ± 0.14 c 

9 0.2 ± 0.00 b 3.5 ± 0.00 b 10.0 ± 0.42 c 

CCN 

Infusion 0.04 ± 0.00 a 4.3 ± 0.15 a 1.2 ± 0.15 a 

0 0.04 ± 0.00 a 3.8 ± 0.21 b 11.6 ± 0.14 b 

3 0.2 ± 0.00 b 3.6 ± 0.07 b 10.9 ± 0.14 b 

6 0.2 ± 0.05 b 3.5 ± 0.00 b 10.6 ± 0.49 b 

9 0.4 ± 0.08 b 3.5 ± 0.00 b 9.9 ± 0.56 c 

Results are expressed as mean ± standard deviation for three replicate analyses; different letters on 

the same column for the same beverage indicate a significant difference (p < 0.05); CCB: coffee 

cascara from Brazil; CCN: coffee cascara from Nicaragua. 

 

Figure 4. Content of sucrose, glucose, and fructose (g/100 mL) in BT K (A), CCB K (B) and CCN K 

(C) from day 0 to day 9 of fermentation. Data are presented as the means of triplicate analysis ± 

standard deviation. BT: Black tea; CCB: Coffee cascara from Brazil; CCN: Coffee cascara from Nic-

aragua. K: kombucha. Different letters on the same line indicate statistical differences by ANOVA 

followed by Tukey’s test (p < 0.05). 

It is worth noting that the amount of sugar used in this study was classically used 

worldwide, and it was chosen because Brazilians still like sweet foods, although there is a 

joint effort to try to change this habit due to the new world trends aligned with scientific 

advancements in public health. The current average sugar content in kombuchas found 

in the American and European markets is within the range of 2–6% (by weight). This is a 

great alternative to traditional soft drinks, which usually contain more than 10% sugar 

(by weight) and no nutrients or bioactive compounds ([21], unpublished market re-

search). This alternative could be especially beneficial to young adults and teenagers, 

who are the greatest soft drink/soda consumers worldwide [79–81]. 

Figure 4. Content of sucrose, glucose, and fructose (g/100 mL) in BT K (A), CCB K (B) and CCN
K (C) from day 0 to day 9 of fermentation. Data are presented as the means of triplicate analysis
± standard deviation. BT: Black tea; CCB: Coffee cascara from Brazil; CCN: Coffee cascara from
Nicaragua. K: kombucha. Different letters on the same line indicate statistical differences by ANOVA
followed by Tukey’s test (p < 0.05).

3.2.2. Bioactive Compounds
Black Tea

Three major catechins were identified in the black tea infusions and kombuchas: epi-
gallocatechin gallate, epicatechin, and epigallocatechin, with the latter being the most abun-
dant. Four corresponding minor stereoisomers were identified, including gallocatechin
gallate, gallocatechin, catechin gallate, and catechin. The concentrations of total catechins
in the beverages are presented in Figure 5A. Catechin gallate and gallocatechin gallate were
not detected in black tea samples. The content of total catechins in black tea infusion is
within the range found by Koch et al. [82] (2.69–35.1 mg/100 mL), for different black teas,
according to brewing time. Along fermentation, the content of catechins decreased by 1%,
17%, and 21% after 3, 6, and 9 days, respectively, compared to day 0. Gaggia et al. [83] also
observed decreased catechins content during black tea kombucha fermentation.

The total chlorogenic acid concentrations in black tea infusion and kombuchas are
presented in Figure 5B. An 18% decrease was observed in total chlorogenic acids from
infusion to day 0 because of the dilution with other kombucha components. Then, a 30%
increase up to day 9 occurred. Villarreal-Soto et al. [15,46] identified the main chlorogenic
acid, 5-caffeoylquinic acid (1.97–1.97 mg/100 mL), in black tea infusion and kombuchas. In
the present study, additional chlorogenic acids were identified from day 0 to 9. They were 3-
caffeoylquinic acid (0.51–0.86 mg/100 mL) and 4-caffeoylquinic acid (0.60–0.55 mg/100 mL).
The compounds 3-feruloylquinic acid, 4-feruloylquinic acid, 5-feruloylquinic acid, 3,4-
dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid were not
identified in black tea beverages.

Rutin and quercetin were additional flavonoids identified in black tea beverages, as
reported in previous studies [15,46]. Their concentration increased as fermentation pro-
gressed (a 56–61% increase from day 0 to day 9, respectively; Figure 5C). This increase is
mainly attributed to the breakage between aglycones and glucosides by esterases [84] pro-
duced by the symbiotic consortium and by the degradation of other flavonoids, including
catechins, in the case of rutin [15,46].
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Figure 5. Content of bioactive compounds (mg/100 mL) in black tea infusion and kombuchas. Results
are the means of duplicate analysis. Different letters over the bars for each bioactive compound
indicate statistical difference (p < 0.05) by ANOVA, followed by Tukey’s test. Inf: infusion; K d0:
kombucha on day 0; K d3: kombucha on day 3; K d6: kombucha on day 6; K d9: kombucha on
day 9. (A) Total catechins—sum of the catechins epigallocatechin gallate; gallocatechin; epigal-
locatechin gallate; gallocatechin gallate; and epicatechin; (B) Total CGA—sum of3-caffeoylquinic
acid; 4-caffeoylquinic acid; 5-caffeoylquinic acid; (C) rutin and quercetin; (D) sum of all phenolic
acids—caffeic acid, gallic acid; 3,4-dihydroxybenzoic acid; hippuric acid; 3,4-dihydroxyphenylacetic
acid; 4-hydroxyphenylacetic acid, vanillic acid; dihydrocaffeic acid; (E) sum of all quantified phenolic
compounds; (F) caffeine.

The content of free phenolic acids increased by 353% in black tea kombucha beverages
from day 0 to 9 (Figure 5D). Gallic acid, a microbial metabolite of catechins and chlorogenic
acids [85,86], was identified in black tea infusion. Then, the concentration increased with
fermentation (0.55–0.88 mg/100 mL). Gallic acid has previously been identified in black tea
infusion and kombuchas [15,46]. It derives from the degradation of catechins and other phe-
nolic compounds like chlorogenic acids. The concentration of caffeic acid (identified from
day 3) increased on day 6 (0.08–0.12 mg/100 mL) and decreased on day 9 (0.10 mg/100 mL).
Other phenolic acids were identified on day 3 and increased up to day 9; for example,
dihydrocaffeic acid (0.12–0.46 mg/100 mL), vanillic acid (0.21–0.30 mg/100 mL), hippuric
acid (0.31–0.44 mg/100 mL), 4-hydroxyphenylacetic acid (0.11–0.15 mg/100 mL), and 3,4-
dihydroxyphenylacetic acid (0.15–0.17 mg/100 mL).These compounds are known as colonic
metabolites of chlorogenic acids and other phenolic compounds [86]. The main colonic
metabolites from catechins, epigallocatechin and epicatechin are supposedly (-)-5-(3′,4′,5′-
trihydroxyphenyl)-γ-valerolactone and (-)-5-(3′,4′-dihydroxyphenyl)-γ-valerolactone [87],
but they were not quantified in this study due to the lack of standards. Despite the in-
crease in free aglycones and metabolites, there was a 38% decrease in the major phenolic
compound’s concentration by the end of fermentation (Figure 5E), as also observed by
Villarreal-Soto et al. [15]. However, some oxidized compounds, like the theaflavins con-
tained in black tea [88], were not quantified.

In the present study, the concentration of caffeine (Figure 5F) increased during kom-
bucha fermentation (51% from day 0 to day 9), probably due to the release from complexes
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with phenolic compounds and other biomolecules, for example, 5-caffeoylquinic acid [89],
during fermentation. To our knowledge, this is the first time that an increase in total
chlorogenic acids has been reported during kombucha fermentation [15,46].

Coffee Cascara

Eight chlorogenic acids were identified in coffee cascara infusions and kombuchas
(Figure 6A). Higher chlorogenic acids content in CCN infusion (7.6 mg/100 mL) was
observed compared to CCB (5.6 mg/100 mL) for different reasons, including plant variety,
edapho-climatic conditions, and agricultural practices, such as post-harvest processing
methods. While CCN went through wet-processing, which includes a fermentative phase
that can release bound chlorogenic acids [90], CCB was dry-processed.
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Figure 6. Concentrations (mg/100 mL) of bioactive compounds in coffee cascara infusions and
kombuchas (CCB: Coffee cascara from Brazil; CCN: Coffee cascara from Nicaragua). Results are the
means of duplicate analysis. Different letters between samples for each bioactive compound indicate
significant differences (p ≤ 0.05) by ANOVA followed by Tukey’s test. Inf: infusion; K d0: kombucha
on day 0; K d3: kombucha on day 3; K d6: kombucha on day 6; K d9: kombucha on day 9 (A) total
chlorogenic acids: 3-caffeoylquinic acid; 4-caffeoylquinic acid; 5-caffeoylquinic acid; 4-feruloylquinic
acid; 5-feruloylquinic acid; 3,4-dicaffeoylquinic acid; 3,5-dicaffeoylquinic acid; 4,5-dicaffeoylquinic
acid; (B) total phenolic acids: caffeic acid, gallic acid; ferulic acid; p-coumaric acid; benzoic acid;
3,4-dihidroxybenzoic acid; hippuric acid; 3,4-dihidroxyphenylacetic acid; 4-hidroxyphenylacetic
acid, vanillic acid; dihydrocaffeic acid; (C) rutin and quercetin; (D) sum of all quantified phenolic
compounds; (E) caffeine.

The total chlorogenic acids concentration decreased by 19% (the average of CCB
and CCN) from infusions to day 0 because of dilution caused by the addition of other
ingredients. In general, there was a considerable increase in total concentrations along
fermentation, especially in 4-feruloylquinic acid (0.08–0.53 mg/100 mL), 4-caffeoylquinic
acid (0.25–1.16 mg/100 mL), and 3-caffeoylquinic acid (0.34–1.27 mg/100 mL) from day
0 to 9. The concentration of 5-caffeoylquinic acid increased in both cascara kombuchas
(3.63–6.06 mg/100 mL, on average) from day 0 to 9. Slight decreases in 3,4-dicaffeoylquinic
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acid (0.12–0.10 mg/100 mL), 4,5-dicaffeoylquinic acid (0.19–0.17 mg/100 mL), and 3,5-
dicaffeoylquinic acid (0.58–0.54 mg/100 mL) were observed. The total mean concentration
of chlorogenic acids increased 98% along fermentation, up to day 9, with a higher increase
in CCB. This increase is probably derived from the action of enzymes from the symbiotic
consortium on chlorogenic acids molecules, given that some species of microorganisms
contain esterases capable of hydrolyzing chlorogenic acid to caffeic and quinic acids [91,92].

The main phenolic acids identified in coffee cascara kombuchas were gallic acid (0.29–
0.52 mg/100 mL), caffeic acid (0.14–0.29 mg/100 mL), ferulic acid (0.13–0.29 mg/100 mL),
3,4-dihydroxybenzoic acid (0.21–0.37 mg/100 mL), benzoic acid (0.11 –0.16 mg/100 mL), p-
coumaric acid (0.11–0.16 mg/100 mL), hippuric acid (0.20–0.39 mg/100 mL), 3,4-dihydroxy
phenylacetic acid (0.16–0.28 mg/100 mL), vanillic acid (0.28–0.42 mg/100 mL), and dihy-
drocaffeic acid (0.21–0.40 mg/100 mL), with the latest five compounds identified only from
day 3 to 9. These compounds are known as colonic metabolites of chlorogenic acids [89].
They were identified in urine and plasma samples after coffee consumption [56]. The
content of phenolic acids (Figure 6B) increased by 218%, on average, from day 0 to 9, due
to the degradation of chlorogenic acids and other phenolic compounds.

Rutin (Figure 6C) was also identified in coffee cascara beverages, with a higher concen-
tration in kombuchas (50% average increase from day 0 to 9, on average), although the content
in cascara beverages was lower than in black tea infusion and kombuchas. Heeger et al. [36]
have also identified rutin in cascara teas. Although rutin can be metabolized to quercetin by
microorganisms [93], only traces of quercetin (<0.001–<0.003 mg/100 mL) were identified in
fermented coffee cascara beverages.

In coffee cascara beverages, trace concentrations of seven catechins (epigallocatechin,
gallocatechin, epigallocatechin gallate, gallocatechin gallate, epicatechin, catechin) were
identified (<0.02 mg/100 g-LOQ). Ramirez–Martinez et al. [94] and Mullen et al. [95] found
2–26 mg/100 g of catechin and 1–264 mg/100 g of epicatechin in the fresh coffee pulp. On
the other hand, Heeger et al. [36] did not detect catechin or epicatechin in coffee cascara
and pulp. According to the authors, epicatechin may be degraded during processing and
storage, which could have been the case in this study. The total free phenolic compounds
content in coffee cascara kombuchas increased 116% in CCB and 86% in CCN from day 0 to
9 (Figure 6D). These are higher percentages compared to black tea.

Caffeine was identified in all coffee cascara beverages (10–18 mg/100 mL; Figure 6E),
increasing, on average, 44% from day 0 to 9. Heeger et al. [36] found 22.6 mg/100 mL
in a cascara infusion. As aforementioned, the caffeine-chlorogenic acid complex, mainly
with 5-caffeoylquinic acid [89], was probably hydrolyzed by kombucha consortia and can
explain the caffeine increase, in addition to chlorogenic acid’s increase.

3.3. Potential Antioxidant Effect of Black Tea and Coffee Cascara Beverages in Indoxyl
Sulfate-Induced HK-2 Cells

HK-2 cells were treated with IS and high G to increase oxidative stress (ROS produc-
tion) and simulate the condition of diabetic nephropathy. IS is known as a gut-derived
uremic toxin, which induces free radical production in renal tubular and glomerular mesan-
gial cells [96,97]. In normal kidney proximal tubular epithelial cells, IS has been shown to
reduce proliferation leading to cellular senescence. It adversely affects redox control and
mitochondrial metabolism and promotes pro-fibrotic/inflammatory gene expression [98],
leading the cells to apoptosis, hypertrophy, mitochondrial dysfunction, and pro-fibrotic
and inflammatory molecules [99]. Coffee cascara extract has previously reduced (p < 0.05)
the expression of TNFα, NLRP 3, and CCL 2 when induced by IS associated with G or
fructose 25 mM [60].

Cells viability measurement was performed to evaluate the cytotoxicity of the tested
solutions and beverages and to normalize the results considering the viable cells. DMSO
(50%; positive death control) caused death in 94% of the cells, as expected [100], compared
to DMEM (life control). The administration of IS + G decreased cell viability by 30%.
The association of IS + G with black tea beverages increased viability by 80%, while the
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association with coffee cascara did not increase viability significantly. The present results
showed that the cells treated with the test beverages were viable during the experiment,
with higher viability for black tea cells. The detailed results are presented as Supplementary
material (Figure S1).

The induced (nephropathic) cells were submitted to the test infusions and kombuchas.
The results are presented in Figure 7. tBOOH 1 mM, an oxidative agent used as a positive
control, induced ROS production compared to DMEM (negative control). As expected, IS
+ G treatment also induced ROS production. Treating HK-2 cells with black tea infusion
and kombuchas associated with IS + high G suppressed (p < 0.0001) ROS production in
32–42%. Coffee cascara tea infusions and kombuchas were also able to reverse (p < 0.0001)
the effect of oxidative damage caused by the combined addition of IS and high G, with a
43% reduction in ROS production, on average, with no statistical difference when compared
to black tea beverages. Although sugar could potentially antagonize the antioxidant effect
of the beverage due to its ability to induce ROS generation [101], the results were similar
for the infusions and kombuchas, which means that possibly the kombucha compounds
have also reversed the effect of sugar. No difference was observed in the results during the
period of fermentation.
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Figure 7. Effect of BT (A), CCB (B) or CCN (C) beverages, associated with IS and G, on ROS formation,
determined by fluorescence, in nephropaticHK2 cells. tBOOH: tert-Butyl hydroperoxide (oxidant
control); Vit C: ascorbic acid (antioxidant control); IS: indoxyl sulfate; G: culture media with high
glucose (25 mM) solution; d0, d3, d6, and d9: days 0, 3, 6, and 9 of fermentation, respectively. BT:
black tea; Inf: plain infusion; K: kombucha; CCB: Coffee cascara from Brazil; CCN: Coffee cascara
from Nicaragua. Different letters over the bars indicate statistical differences among treatments by
ANOVA followed by Tukey’s test (p < 0.05).

Black tea kombucha decreased ROS generation in a mouse hepatocyte after the induc-
tion of oxidative stress with tertiary butyl hydroperoxide [12]. Bhattacharya et al. [102]
have also demonstrated the protective effect of black tea kombucha against oxidative stress-
mediated damage in different tissues of diabetic rats. The suppression of ROS production
in HK-2 cells by green C. sinensis tea has also been previously reported by Sun et al. [103].
To date, this appears to be the first study evaluating the effect of black tea and cascara tea
infusions and kombuchas in the HK-2 cell model of oxidative stress.

We can attribute the reduction in intracellular ROS formation mainly to the polyphe-
nols in black tea and coffee cascara tea. These compounds and their primary metabolites ex-
ert antioxidant activity suppressing ROS formation by either inhibiting enzymes involved in
their production, scavenging a wide range of ROS in vitro and in vivo, upregulating antioxi-
dant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase [104,105]
or reducing the catalytic activity of enzymes involved in ROS generation [86,106,107]. Cat-
echins are constituents of green and black C. sinensis tea. These compounds can inhibit
prooxidant enzymes, e.g., NADPH (nicotinamide adenine dinucleotide phosphate)-oxidase,
or modulate interactions of ligands with receptors, e.g., tumor necrosis factor-alpha (TNF-
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α). They can also suppress many oxidative stress-related pathways responsible for the
inflammation processes. For example, catechins modulate the activities of redox-sensitive
transcription factors such as nuclear factor kappabeta (NF-κB) and activator protein-1
(AP-1), which are very important in response to pathogenesis-related oxidative stress [107].
Several cell culture experiments have also shown the antioxidative properties of chlorogenic
acids at both cellular and molecular levels [86]. As a source of chlorogenic acid, coffee
cascara has previously prevented intracellular ROS formation in HepG2 cells [27], in RAW
264.7 cells [108,109], and in 3T3-L1 adipocytes [109].

Caffeine might contribute to the overall antioxidant capacity of coffee, as well as
its metabolites, especially 1-methylxanthine and 1-methylurate. Previous studies have
demonstrated the protective effect of caffeine and/or its metabolites in cell membranes
against oxidative damage and LDL peroxidation, in addition to plasma iron-reducing
capacity in human subjects after regular coffee consumption [110,111]. Uric acid (UA)
production and metabolism are complex processes involving various factors that regulate
hepatic production and renal and gut excretion of this compound. UA is the end product
of an exogenous pool of purines and endogenous purine metabolism. The exogenous
pool varies significantly with diet; animal proteins contribute significantly to this purine
pool. The endogenous production of uric acid is mainly from the liver, intestines, and
other tissues like muscles, kidneys, and the vascular endothelium [112]. In the present
experiment, we used UA as a marker for cell damage. UA is also a urine biomarker
for oxidative stress and plays an important role in diabetic nephropathy development.
In patients diagnosed with type 2 diabetes, increased UA levels may be an important
predictor of nephropathy in diabetic patients [113,114]. In the same way, reducing UA
levels in diabetic patients can also reduce the progression of chronic kidney disease [114].

When cells were treated with IS, an increase in the concentration of supernatant UA
was observed, as expected (Figure 8), given that IS and other uremic toxins concentrations
correlate inversely with renal function [115]. DMEM treatment did not affect UA concen-
trations in the supernatant of the cells. Black tea and cascara infusions reduced 24–45% UA
in cell supernatant, with a higher decrease in CCB infusion. Black tea kombuchas reduced
in 13–26% the concentration of UA in the supernatants, from day 0 to 9, compared to the
cells treated with IS, while cascara beverages reduced the UA concentration by 10–55%.
UA concentrations in the supernatant are higher than those found by Hou et al. [116], who
used cultured HK-2 cells to establish a stable model of hyperuricemia for long-term studies.
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Figure 8. Effect of BT (A), CCB (B) or CCN (C) beverages, associated with IS and G, on uric acid
concentration in nephropathicHK-2 cells. Results are the averages of triplicate experiments performed
three times. Different letters over the bars indicate significant differences among treatments by
ANOVA, followed by Tukey’s test (p < 0.05).DMEM: Dulbecco’s Modified Eagle Media; IS: indoxyl
sulfate; G: culture media with high glucose solution; d0, d3, d6 and d9: days 0, 3, 6 and 9 of
fermentation, respectively; BT: black tea; Inf: plain infusion; K: kombucha; CCB: coffee cascara from
Brazil; CCN: coffee cascara from Nicaragua.



Foods 2023, 12, 1905 16 of 24

In an in vitro test using xanthine oxidase to increase UA and ROS production, Jaya-
balan et al. [11] observed that green and black tea infusions and kombuchas could scavenge
superoxide radicals, showing significant antioxidant activity. The combined effect of cate-
chins and other polyphenols in black tea infusion and kombuchas can explain the reduction
in UA levels compared with cells treated with IS + G.

Polyphenols such as epigallocatechin gallate, quercetin, gallic acid, caffeic acid, chloro-
genic acids, and sinapic acid, among others, exert benefit in hyperuricemia, inhibiting the
UA enzymes producers (xanthine oxidase and adenosine deaminase) and increasing the
excretion of UA [117].Using a murine hyperuricemic model, Zhou et al. [118] observed a de-
crease in serum UA concentration after administration of 30 or 60 mg/kg of 5-caffeoylquinic
acid, the main chlorogenic acid compound in coffee cascara, suggesting that supplemen-
tation with this compound could effectively prevent hyperuricemia and mitigate kidney
impairment. The high content of chlorogenic acids in coffee cascara kombuchas can explain
the decrease in uric acid concentration in cell supernatant. Additionally, caffeine intake
through food has been negatively associated with uric acid concentration [119].

3.4. Effect of Black Tea and Coffee Cascara Beverages on Anti-Inflammatory Activity in
Lipopolysaccharide-Induced RAW 264.7 Cell Line

Regarding cell viability, treating the cells with DMSO (50%; death control) caused
death in 95% of cells, compared to DMEM, as expected [100]. In all treatments, plain LPS
did not affect the viability of cells significantly. Likewise, the association of black tea with
LPS did not affect viability. A slight (9%) decrease in viability of cells treated with coffee
cascara infusions and LPS was observed compared to plain LPS, which is negligible. The
results are presented as supplementary material (Figure S2).

The effect of the test beverages on NO production in RAW 264.7 cells induced by
LPS is shown in Figure 9. Inflammation is an overactive immune response to harmful cell
stimuli. In the inflammatory response, activated macrophages produce large amounts of
inflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α),
and nitric oxide (NO) to induce tissue injury at the inflammatory site [120]. Although
macrophages are essential for the effective control and clearance of infections, removal of
derbies and dead cells, promotions of tissue repair, and wound healing, they also contribute
to tissue damage and pathology during infections and inflammatory diseases [121], result-
ing in a causal association of macrophages with disease states, such as fibrosis, obesity, and
cancer [122].Also, macrophages are key inflammatory cells mediating kidney inflammation
in experimental and human diabetes [123].

NO, the smallest cell signaling molecule, participates in diverse physiological func-
tions, such as vasodilation, neural transmission, and immune responses [124]. LPS is
a component of the cell wall of Gram-negative bacteria. It is a potent activator of the
inflammatory response and has a marked stimulatory effect on the immune system. Conse-
quently, small amounts of LPS in the blood due to bacterial infection are sufficient to elicit
an inflammatory response through the interaction with toll-like receptors [125].

In this experiment, LPS (positive control) showed the highest (p < 0.0001) NO pro-
duction among the studied samples, as expected (Figure 9). In cells treated with coffee
cascara infusions and kombuchas + LPS, NO production was similar (5% higher, with
p > 0.05) to DMEM control cells, while in cells treated with black tea infusion and kom-
buchas + LPS, it was 24% higher than in DMEM cells (p < 0.0001). Compared to plain LPS,
NO production was 81% and 90% lower for black tea beverages and cascara beverages,
respectively, suggesting a potential anti-inflammatory effect. Comparing all treatments, no
difference was found between infusions and kombuchas made with the same food material.
(Figure 9). Slightly but significantly (p < 0.0001) lower NO production was observed in
cascara beverages compared to black tea beverages.
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Figure 9. Effect of treatment with BT (A), CCB (B) or CCN (C) beverages, associated with LPS
on NO production in RAW 264.7 cells, determined by Griess Reagent. Results are the means of
triplicates of experiments performed three times. DMEM: Dubecco’s Modified Eagle Media; LPS:
lipopolysaccharide (nitric oxide production control); d0, d3, d6, and d9: days 0, 3, 6, and 9 of
fermentation, respectively; BT: black tea; Inf: plain infusion; K: kombucha; CCB: coffee cascara
from Brazil; CCN: coffee cascara from Nicaragua. Different letters over the bars indicate statistical
differences among treatments by ANOVA followed by Tukey’s test (p ≤ 0.05).

NO plays a key role in the development of inflammatory diseases involved in the
immune response produced by cytokine-activated macrophages [126]. Several in vitro
and animal studies have used NO production associated or not with other inflamma-
tion biomarkers to evaluate the potential anti-inflammatory activity of different plant
foods, including C. sinensis beverages. In a study by Lin et al. [127], different types of
C. sinensis leaf tea extracts strongly inhibited NO production in LPS-induced RAW 264.7.
Villarreal-Soto et al. [15] evaluated the anti-inflammatory potential of black tea infusion
and kombucha against the enzyme 5-LOX and suggested that kombucha improved the
anti-inflammatory effect of the infusion. Novilla et al. [128] evaluated the effect of oolong
C. sinensis infusion and kombucha on NO production, also using LPS-induced RAW 264.7,
and reported NO reduction, similar to the present study. They also observed the reduction
of the production of COX-2 and the pro-inflammatory cytokines IL-6, IL-1β and TNF-α.
In the study by Wang et al. [129], a traditional black tea kombucha improved the survival
status in LPS-treated mice, effectively inhibiting the release of IL-6, IL-1β, and TNF-α,
restoring the levels of T cells and macrophages, and down-regulating the signaling path-
way of NF-κB transcription factor in mice with LPS-induced sepsis, exhibiting a potential
effect against the development of systemic inflammatory responses associated with sepsis.

Studies investigating the potential anti-inflammatory effect of coffee cascara infusion
and extract using LPS-induced RAW 264.7 macrophage have also been performed. In
two studies by Rebollo-Hernanz et al. [108,109], coffee cascara aqueous extract reduced NO
production and the expression of the inflammatory enzymes iNOS and COX-2. Using the
human gastric epithelial cells CRL-1739, Magoni et al. [37] studied the anti-inflammatory
activity of hydro-alcoholic and aqueous coffee pulp extracts by measurement of IL-8, one of
the most important chemokines involved in gastric inflammation release in human gastric
epithelial cells. All coffee pulp extracts similarly inhibited IL-8 release. As aforementioned,
no study using fermented or unfermented coffee cascara tea was found.

The results obtained in the present study confirm the previous reports on the anti-
inflammatory properties of black tea and coffee cascara tea infusions and black tea kombucha
and indicate that despite the chemical changes in those food matrices during fermentation,
the effect of NO production suppression was preserved, as it did for the ROS production.

The study by Vázquez–Cabral et al. [130] and several other studies using LPS-induced
RAW 264.7 cells attributed the anti-inflammatory effect of kombuchas to their polyphenols
content. Quercetin and quercetrin, for example, were able to decrease the production
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of NO and downregulate TNF-α, IL-1β, and IL-6 [131]. 3-OH Flavone, kaempferol, and
quercetin were effective in preventing NO production, even when LPS was combined
with a heme oxygenase inducer, and did not increase the expression of COX-2 [132].
Novilla et al. [128] reported similar effects of epigallocatechin gallate on NO production,
COX-2, IL-6, IL-1b, and TNF-α. Several other studies reported that polyphenols from pulp
extracts, by-products, and beers derived from cranberry, black raspberry, red raspberry,
strawberry, blueberry, blackberry, cocoa, and citrus inhibited NO production [109,133–136].
Caffeine has also shown anti-inflammatory effects in LPS-induced RAW 264.7 cells, in a
dose-dependent manner, suppressing the level of NO production, inhibiting the release
of COX-2 and IL-6, IL-3 and IL-12, and suppressing NF-kβ activation and p38MAPK
phosphorylation [137].

4. Conclusions

In summary, coffee cascara and black tea infusions and kombuchas suppressed the
oxidative stress in HK-2 cells treated with IS and high G concentration and reduced UA
concentration in the cell supernatant, similarly. Comparable anti-inflammatory effect was
also observed in LPS-treated RAW 264.7 cells after incubation with all tested beverages.
The phenolic compounds, including catechins, rutin, quercetin and chlorogenic acids, with
the possible support of caffeine, were most likely to be the main compounds responsible
for the beneficial effects of these beverages.

It is worth noting that independently of being free, bound, or partly metabolized,
all phenolic compounds seem to have exerted a joint effect in the cell models, with no
distinction of molecular structures. The health outcomes of this fact should be investigated
in future studies, as well as the effect of the different test beverages against clinically
relevant proinflammatory cytokines.

Overall, the present results suggest that coffee cascara is a novel promising ingredient
for kombucha elaboration with potential health benefits. In addition to supporting sustain-
able coffee production, coffee cascara kombucha is an alternative functional beverage for
consumers to choose over traditional soft drinks, especially for young adults and teenagers,
who are the main consumers of this type of beverage. It contains bioactive compounds
and nutrients along with a basic hydration purpose and can also be produced with a lower
amount of sugar than traditional soft drinks.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12091905/s1, Figure S1: Effect of treatment with BT (A), CCB (B)
and CCN (C) beverages, associated with IS and high G on HK-2 cells viability, determined by MTT
assay. Results are the average of triplicates of experiments performed three times. Different letters
over the bars indicate statistical differences among treatments by ANOVA followed by Tukey’s test
(p < 0.05). DMEM: Dulbecco’s Modified Eagle Media (life control); DMSO: Dimethyl Sulphoxide
(death control). IS: indoxyl sulfate; G: culture media with high glucose solution; d0, d3, d6, and
d9: days 0, 3, 6, and 9 of fermentation, respectively; BT: black tea; Inf: plain infusion (no starter
and sugar); K: kombucha; CCB: coffee cascara from Brazil; CCN: coffee cascara from Nicaragua.
Different letters over the bars indicate statistical differences among treatments by ANOVA followed
by Tukey’s test (p < 0.05); Figure S2: Effect of treatment with BT (A), CCB (B) or CCN (C) beverages
associated with LPS, on RAW 264.7 cells viability, determined by MTT assay. Results are the means
of triplicates of experiments performed three times. DMEM: Dulbecco’s Modified Eagle Media (life
control); DMSO: Dimethyl Sulphoxide (death control). d0, d3, d6 and d9: days 0, 3, 6, and 9 of
fermentation, respectively.BT: black tea; Inf: infusion; K: kombucha CCB: Coffee cascara from Brazil;
CCN: Coffee cascara from Nicaragua. Different letters over the bars indicate statistical differences
among treatments by ANOVA followed by Tukey’s test (p < 0.05).
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