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Abstract: This study combined an artificial neural network (ANN) with a genetic algorithm (GA)
to obtain the model and optimal process parameters of drying-assisted walnut breaking. Walnuts
were dried at different IR temperatures (40 ◦C, 45 ◦C, 50 ◦C, and 55 ◦C) and air velocities (1, 2, 3,
and 4 m/s) to different moisture contents (10%, 15%, 20%, and 25%) by using air-impingement
technology. Subsequently, the dried walnuts were broken in different loading directions (sutural,
longitudinal, and vertical). The drying time (DT), specific energy consumption (SEC), high kernel rate
(HR), whole kernel rate (WR), and shell-breaking rate (SR) were determined as response variables.
An ANN optimized by a GA was applied to simulate the influence of IR temperature, air velocity,
moisture content, and loading direction on the five response variables, from which the objective
functions of DT, SEC, HR, WR, and SR were developed. A GA was applied for the simultaneous
maximization of HR, WR, and SR and minimization of DT and SEC to determine the optimized
process parameters. The ANN model had a satisfactory prediction ability, with the coefficients of
determination of 0.996, 0.998, 0.990, 0.991, and 0.993 for DT, SEC, HR, WR, and SR, respectively. The
optimized process parameters were found to be 54.9 ◦C of IR temperature, 3.66 m/s of air velocity,
10.9% of moisture content, and vertical loading direction. The model combining an ANN and a GA
was proven to be an effective method for predicting and optimizing the process parameters of walnut
breaking. The predicted values under optimized process parameters fitted the experimental data
well, with a low relative error value of 2.51–3.96%. This study can help improve the quality of walnut
breaking, processing efficiency, and energy conservation. The ANN modeling and GA multiobjective
optimization method developed in this study provide references for the process optimization of
walnut and other similar commodities.

Keywords: walnut; shell breaking; drying; artificial neural network; genetic algorithm; multi-
objective optimization

1. Introduction

Walnut is the second largest nut in the world and has high edible and medicinal value.
Breaking the shell to take the kernel is the premise of deep walnut processing. The shell is
hard, and the gap between the shell and the kernel is small, leading to difficulty in breaking
the shell to procure the kernel. Therefore, new walnut breaking processes must be explored.

The moisture content of walnuts has a considerable effect on their shell breaking
characteristics [1]. At present, the research on the walnut drying process focuses on the
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drying kinetics and physicochemical qualities of walnuts [2–5], but few studies have linked
the drying process with walnut breaking. In addition, adopting the proper loading direction
can also improve the processing efficiency and quality of walnut breaking [6]. If drying is
used as a pretreatment to assist in walnut breaking, a new walnut breaking process can
be obtained through the selection of an appropriate loading direction. In addition, drying
technology can ensure the food security of walnuts by reducing their moisture content [7].

Air-impingement technology ejects pressurized hot air through a nozzle and removes
water through the impact and heating of hot air on a material. It is characterized by a high
drying rate and high heat transfer coefficient. The application of this technology in walnut
drying can increase the drying rate and reduce energy consumption.

The primary goal of walnut breaking is shell breaking and protecting the kernel. The
shell-breaking rate is used to evaluate the difficulty of shell breaking, and it is the ratio of
the number of cracked walnuts to the total number of walnuts in walnut breaking. High
kernel rate is the ratio of the weight of the walnut kernel that is not completely crushed
to the total weight of the walnut kernel. Whole kernel rate is the ratio of the weight of
the whole walnut kernel to the total weight of the walnut kernel. High kernel and whole
kernel rates are used to evaluate the integrity of the walnut kernel. At a drying temperature
of 43 ◦C, walnut drying in an industrial hot air dryer requires a long drying time (more
than 24 h) and consumes a large amount of energy (1284.6 MJ for natural gas and 85.1 MJ
for electricity consumption per ton of dried walnuts) [8]. Therefore, the drying time and
energy consumption must be minimised whilst ensuring the quality of walnut breaking.
The optimization of the walnut breaking process depends on several parameters, including
the shell-breaking rate (SR), high kernel rate (HR), whole kernel rate (WR), drying time
(DT) and specific energy consumption (SEC).

The relationship between the process parameters of drying-assisted walnut breaking
(including air velocity, temperature, moisture content, and loading direction) and the
process evaluation index is highly nonlinear. Researchers have developed mathematical
models to describe nonlinear models, such as theoretical, semitheoretical and empirical
models. However, these models can accurately predict experimental data only under
highly specific conditions, and no general equations are available to describe complete
models [9]. Artificial intelligence technologies can model nonlinear systems where the
relationships between variables are unknown [10]. An artificial neural network (ANN)
is a kind of artificial intelligence technology that can simulate the behaviour of highly
nonlinear systems dynamically [11]. ANNs have been successfully applied to the modeling
and prediction of engineering problems, especially in areas where mathematical modeling
methods fail [12]. ANN models have also been used in the moisture content prediction of
pumpkin slice drying [13], prediction of the moisture ratio and color parameters of ginkgo
biloba seed drying [14], prediction of the energy and exergy of mushroom slice drying [15]
and moisture content prediction of carrot drying [16]. However, no study has examined its
application in walnut drying and breaking. The model formula of an ANN is expressed
by weights and thresholds. The essence of the ANN training process is the optimization
of weights and thresholds. The initial weights and thresholds of the ANN are generated
randomly. When the initial weights and thresholds are unreasonable, the convergence
speed of the neural network is slow, and the training result is a local optimal value rather
than a global optimal value. The genetic algorithm (GA) first preliminarily optimizes the
initial weights and thresholds of the ANN, and then the neural network uses the optimized
weights and thresholds for training to accelerate the convergence speed of the network and
obtain the global optimal value.

The optimization of the walnut breaking process is multiobjective optimization (MOO),
which is a method of finding the optimal target within the range of constraints based on the
model. A GA is an optimization technique used to obtain the optimal value of a complex
objective function by simulating biological evolutionary processes. Winiczenko, R applies
a GA to the MOO during the apple cube drying process [17]. Raj, GVSB. used a GA to
optimize the microwave vacuum drying process of dragon fruit slices [18]. MOO problems
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involve multiple objective functions, and these functions restrict one another. Therefore,
obtaining a global optimal solution is difficult. Usually, MOO problems tend to obtain a
set of optimal solutions called Pareto optimal solutions. A Pareto optimal solution is not
dominated by other solutions in the solution space, and the improvement of one of the
objectives requires the sacrifice of others [17]. The set of Pareto optimal solutions is called
the Pareto front. The major goal of MOO is to find the Pareto front [19]. Obtaining the
global optimal solution in the Pareto front in accordance with the specific optimization
purpose is easy [20].

ANN modeling can be combined with GA MOO, which provides objective functions
for MOO, and the genetic algorithm finds the optimal solution under the given constraint.
This model is an effective method for predicting and optimizing any complex process
parameters [21]. It has been applied in other fields [22,23].

In this study, drying was used as a pretreatment for walnut breaking for the first time,
and the quality of walnut breaking and energy efficiency were utilised to evaluate the shell
breaking process. An ANN and GA were applied to the modeling and optimization of the
walnut breaking process for the first time. The objectives of this study are to: (1) analyse the
effects of IR temperature (T), air velocity (V), moisture content (MC) and loading direction
(D) on DT, SEC, HR, WR and SR; (2) develop an ANN nonlinear model with T, V, MC, and
D as input variables, and DT, SEC, HR, WR, and SR as output variables; and (3) optimize
the process parameters of drying-assisted walnut breaking by using a GA and minimize
DT and SEC whilst improving the quality of walnut breaking. This study will provides an
optimal process for drying-assisted walnut breaking.

2. Materials and Methods
2.1. Materials

Walnuts (cultivar Xinjiang Wen-185) of uniform size produced in Aksu, Xinjiang were
selected and stored in a freezer (temperature: 5 ◦C) for use. The average weight, diameter,
initial moisture content, and thickness of the walnuts were 16.52 ± 0.2 g, 36.43 ± 0.1 mm,
30.12 ± 0.65%, and 1.1 ± 0.1 mm, respectively.

2.2. Processing Equipment

Drying experiments were conducted using an air-impingement technology (Taizhou
Senttech Infrared Technology Co., Ltd., Taizhou, China; temperature accuracy of ±0.1 ◦C,
and power range of 0–2 kW). A principal diagram of the technology is shown in Figure 1.
The air velocity at the nozzle was measured using an anemometer (AT816, SMART SENSOR,
Thincol, Guangzhou, China; accuracy of±0.1 m/s). Prior to the experiment, the technology
was run for 30 min to stabilize the equipment. The walnut drying characteristics were
used to predict when the walnuts reached the target moisture content. An electronic
balance (BSM-5200.2, Shanghai Zhuojing Electronic Technology Co., Ltd., Shanghai, China;
accuracy of 0.01 g) was adopted to weigh the walnuts and judge whether the walnuts
reached the target moisture content. Drying was stopped when the walnuts reached the
target moisture content, and continued otherwise. The drying experiments were performed
at IR temperatures of 40 ◦C, 45 ◦C, 50 ◦C, and 55 ◦C; air velocities of 1, 2, 3, and 4 m/s, and
moisture contents of 10%, 15%, 20%, and 25%. The dried walnuts were broken in three
loading directions: sutural, longitudinal, and vertical.
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Figure 1. The principal diagram of the air-impingement technology. (1) air velocity adjustment knob;
(2) Temperature transducer; (3) temperature control touch panel; (4) centrifugal fan; (5) wet discharge
valve; (6) drying outer chamber; (7) drying inner chamber; (8) infrared heating tube; (9) weephole;
(10) air nozzle; (11) air outlet; (12) drying tray; (13) door.

2.3. Drying Experiments

The drying process parameters included IR temperature, air velocity and moisture
content. IR temperature refers to the temperature of the hot air ejected from the nozzle, and
air velocity refers to the velocity of the hot air ejected from the nozzle. The inner diameter
of the nozzle was 10 mm, and the number of nozzles was 18. The distribution of the nozzles
is shown in Figure 1. Moisture content refers to the moisture content (dry basis) of the
walnut at the end of drying.

The IR temperature range was set to be 40–55 ◦C to ensure drying efficiency and
product quality [5]. The maximum air velocity of the equipment was 4 m/s. To sufficiently
study the influence of air velocity on walnut breaking, the range of air velocity was set to
1–4 m/s. To prevent production reduction caused by walnuts with a moisture content below
the safe storage moisture content of 8%, the minimum moisture content of the walnuts was
set to 10%. The range of moisture content was 10–25% [1]. The drying experiments were
conducted at IR temperatures of 40 ◦C, 45 ◦C, 50 ◦C, and 55 ◦C; air velocities of 1, 2, 3, and
4 m/s, and moisture contents of 10%, 15%, 20%, and 25%. The dried walnuts were broken
in three loading directions: sutural, longitudinal and vertical. A total of 192 experimental
groups (4 × 4 × 4 × 3) were established.

2.4. Loading Direction(L)

Breaking experiments were performed using a DF-9000 dynamic and static universal
material testing machine, and the loading rate was set to 10 mm/min. The walnuts’ loading
direction is shown in Figure 2.
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Figure 2. Walnuts’ loading direction.

2.5. High Kernel Rate (HR), Whole Kernel Rate (WR) and Shell-Breaking Rate (SR)

The integrity of walnut kernels was evaluated with the high kernel and whole kernel
rates. The walnut kernels were divided into Classes A, B, C, and D according to their
integrity. Whole walnut kernels belonged to Class A, half walnut kernels belonged to Class
B, quarter walnut kernels were classified as Class C and the rest of the crushed walnut
kernels belonged to Class D.

High kernel rate was calculated using Equation (1), and whole kernel rate was calcu-
lated with Equation (2).

HR =
MA + MB + MC

MA + MB + MC + MD
× 100% (1)

WR =
MA

MA + MB + MC + MD
× 100% (2)

The difficulty of shell breaking was evaluated by the shell-breaking rate (SR). SR is the
ratio of the number of walnuts that are cracked by more than 3/4 to the total number of
walnuts in the experiment. SR was calculated with Equation (3).

SR =
L
N
× 100% (3)

where L is the number of walnuts that are cracked by more than 3/4; N is the total number
of walnuts, MA is the weight of Class A walnut kernels, MB is the weight of class B walnut
kernels; MC is the weight of Class C walnut kernels and MD is the weight of Class D walnut
kernels.

2.6. Drying Time and Specific Energy Consumption

The walnuts were dried in a hot-air dryer at 105 ◦C for 24 h to measure the dry weight,
Wd [24]. The moisture content of the walnuts at time T was calculated by Equation (4) [25].
The time required for the walnuts to dry to the target moisture content was the drying time.

Mt =
WT −Wd

Wd
× 100% (4)

The energy required to dry 1 kg of walnuts was defined as the specific energy con-
sumption, which was calculated with Equation (5).

SEC =
E

mwalnut
(5)
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where E is the electrical energy consumed during drying and mwalnut is the total walnut
mass during drying.

2.7. Shell Kernel Clearance (SKC)

Shell kernel clearance refers to the distance between the walnut shell and the walnut
kernel, and it was calculated using Equation (6) [26].

SKC =
A + B + C− a− b− c− 6d

6
(6)

where A is the maximum longitudinal dimension of the inner wall of the walnut shell (mm),
B is the maximum vertical dimension of the inner wall of the walnut shell, (mm), C is the
maximum sutural dimension of the inner wall of the walnut shell (mm), a is the maximum
longitudinal dimension of the walnut kernel (mm), b is the maximum vertical dimension of
walnut kernel, (mm), c is the maximum sutural dimension of the walnut kernel (mm) and d
is the thickness of the walnut shell (mm).

2.8. Walnut Shell Hardness

Hardness is one of the important factors that affect walnut breaking. A DF-9000
dynamic and static universal material testing machine was used for the walnut breaking
experiment, and the loading rate was set to 10 mm/min. Hardness H was calculated using
Equation (7) [27].

H =
Fr

Dr
(7)

where Fr is the maximum breaking force and Dr is the deformation when the maximum
breaking force is reached. Dr can be obtained from the DF-9000 dynamic and static universal
material testing machine.

2.9. Artificial Neural Network (ANN) Model

Back propagation ANN (BP-ANN) is a feed-forward network-trained model in accor-
dance with the error-back propagation algorithm, and it is one of the most widely used
ANN models. The model of the process of drying-assisted walnut breaking was established
using BP-ANN. The topology of the ANN model consisted of three layers (input layer,
hidden layer and output layer) and two transfer functions between the three layers, as
shown in Figure 3. The input layer had four factors: IR temperature (T), air velocity (V),
moisture content (MC), and loading direction (D). The output layer had five factors: drying
time (DT), specific energy consumption (SEC), high kernel rate (HR), whole kernel rate
(WR), and shell-breaking rate (SR). The range of the number of neurons in the hidden
layer was determined with the Equations (8)–(11). The optimal number of neurons in the
hidden layer was obtained by trial and error. Nonlinear transfer functions, including tansig
sigmoidal and logsig sigmoidal functions, were used in the input and hidden layers, and a
linear transfer function (Pureline) was employed in the hidden layers and output layers.
The topology of neural networks influences two of the most important evaluation criteria
of neural network training: generalization and training time [28]. Improper topology of the
neural network causes many redundancies, which makes the neural network fall into local
optimization and considerably prolongs the training time [29]. Therefore, determining the
optimal neural network topology is important.
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Figure 3. Topology of ANN model.

The range of the number of neurons in the hidden layer was determined using the
following equations [30]:

j < n− 1 (8)

j <
√

m + n + a (9)

j = log2 n (10)

j = 2n + 1 (11)

where j is the number of neurons in the hidden layer, n is the number of factors in the input
layer, m is the number of factors in the output layer and a is a constant between 0 and 10.

The union of Equations (8)–(11) was determined as the range of the number of neurons
in the hidden layer to ensure that the optimal number of neurons in the hidden layer could
be achieved. Generally, the number of neurons in the hidden layer should be more than
one; then, the range is as follows: 1 < j < 13. To obtain the variation in neural network
performance beyond the range, the range of the number of neurons in the hidden layer was
determined as 1 < j ≤ 13 in this study.

The coefficient of determination (R2) and root mean square error (RMSE) were cal-
culated to determine the optimal number of neurons in the hidden layer and the transfer
function in the input and hidden layers by using Equations (12) and (13), respectively [31,32].

RMSE =

√√√√√ N
∑

i=1

(
yact,i − ypre,i

)2

N
(12)

where yact,i is the actual value and ypre,i is the predicted value of the sample. In general, the
smaller the RMSE value is, the higher the model accuracy is.

R2 = 1−

N
∑

i=0
(yi − ŷi)

2

N
∑

i=0
(yi − yi)

2
(13)
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where yi is the actual value of the sample, ŷ is the predicted value of the sample, y is the
average of the actual values, and N is the number of test samples. The larger the R2 value
is, the better the predictive ability of the model is.

After determining the optimal topology structure of the neural network, the neural
network was trained. A total of 192 groups of experimental data (4 × 4 × 4 × 3) were
established. One group consisted of four input variables and five output variables. To
ensure the effectiveness of neural network training and the accuracy of the test data, 80%
of the experimental data (154 groups) were randomly selected as training data, and 20%
(38 groups) were adopted as test data [33]. The algorithm flow of the neural network is
shown in the Figure 4.

Figure 4. Flow of ANN algorithm.

The weights and thresholds of the neural network were obtained after the training
was completed, and the neural network model was established. The neural network model
had four parts: the input variables were normalized; the weight, threshold, and transfer
function of the hidden layer were inputted into Equations (15) and (16) to obtain the output
of the hidden layer; the weight, threshold, and transfer function of the output layer were
inputted into Equation (17) to obtain the output of the output layer and the output of the
output layer was reversely normalized to obtain the output variables.

The input variables were normalized, and the normalized range was (−1, 1).

xg
i =

2(xi − xi,min)

xi,max − xi,min
− 1 (14)

where xg
i (i = 1, 2, 3, 4) is the normalized input variable, xi is the input variable; x1 is T, x2 is

V, x3 is MC, x4 is D, xi,min is the minimum of the training data for the input variable xi and
xi,max is the maximum of the training data for input variable xi.

The output in the hidden layer is:

hj = log sig(∑ wh
ijx

g
i + bh

j ) (15)

log sig(x) =
1

1 + exp(−x)
(16)

where hj (j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) refers to the outputs of each neuron in the
hidden layer, wh

ij is the weight between the input layer and the hidden layer, and bh
j is
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the threshold in the hidden layer. The values of weights wh
ij and threshold bh

j are used in
Equation (15).

The output in the output layer is:

yg
k = purelin(∑ wo

jkhj + bo
k) = ∑ wo

jkhj + bo
k (17)

where yg
k (k = 1, 2, 3, 4, and 5) refers to the outputs of each neuron in the output layer, wo

jk is
the weight between the hidden layer and the output layer, and bo

k is the threshold in the
output layer. The values of weights wo

jk and threshold bo
k are used in Equation (17).

Reverse normalization of the output in the layer output was implemented as follows:

DT =
(y1,max − y1,min)(y

g
1 + 1)

2
+ y1,min (18)

SEC =
(y2,max − y2,min)(y

g
2 + 1)

2
+ y2,min (19)

HR =
(y3,max − y3,min)(y

g
3 + 1)

2
+ y3,min (20)

WR =
(y4,max − y4,min)(y

g
4 + 1)

2
+ y4,min (21)

SR =
(y5,max − y5,min)(y

g
5 + 1)

2
+ y5,min (22)

where yk,min is the minimum of the training data for output variable yk and yk,max is the
maximum of the training data for the output variable yk.

2.10. Optimization of Artificial Neural Network Using Genetic Algorithm

The neural network is sensitive to the initial weights and thresholds. Therefore, the
training results are greatly affected by the initial weights and thresholds, and they easily
fall into the local minimum [34]. GA is a global optimization method based on the principle
of biological evolution, namely, survival of the fittest [35]. By optimizing the initial weights
and thresholds, GA can move the neural network training process from the local optimal
domain to the global optimal domain [36]. Therefore, for the walnut breaking process
model, the initial weights and thresholds of the ANN can be optimized by the GA first,
followed by ANN training with the optimized initial weights and thresholds, resulting in
global optimal weights and thresholds. The parameters of the GA are shown in Table 1.

Table 1. Parameters of genetic algorithm.

Population Type Double Vector

variable range (−3, 3)
Population size 200

Number of generations 1000
Crossover rate 90%
Mutation rate 10%

The GA assisted by ANN modeling was divided Into three parts. First, by analyzing
R2 and RMSE, the optimal topology of the neural network was selected, and then the
structure of the initial weights and thresholds was obtained. Second, the weights and
thresholds of the neural network were adopted as the optimization object, the error of
the neural network model was used as the fitness function, and the initial weights and
thresholds were optimized using the GA. Lastly, the optimized weights and thresholds
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were used for neural network training, and the global optimal weights and thresholds were
obtained. The algorithm flow is shown in Figure 5.

Figure 5. Flow of GA-ANN algorithm.

2.11. Multiobjective Optimization

The MOO of the walnut breaking process was applied to reduce the energy consump-
tion and drying time while improving the quality of walnut breaking. The optimization
goal was to minimize DT and SEC and maximize HR, WR, and SR. The upper and lower
limits of the input variables were the upper and lower limits of the experimental conditions
in the walnut breaking experiment, respectively, as shown in Equation (23). In terms of the
loading direction, 1 was the sutural direction, 2 was the Longitudinal direction, and 3 was
the Vertical direction.

Five objective functions and four constraints were entered in MATLAB, and the
GAMULTIOBJ function was used to obtain the Pareto optimal solution. The parameters of
the GAMULTIOBJ function are listed in Table 2.

objectives =



Min DT(T, V, MC, D)

Min SEC(T, V, MC, D)

Max HR(T, V, MC, D)

Max WR(T, V, MC, D)

Max SR(T, V, MC, D)

40 ≤ T ≤ 55 ◦C

1 ≤ V ≤ 4m·x−1

10 ≤ MC ≤ 25%

D = (1, 2, 3)

(23)
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Table 2. The parameters of GAMULTIOBJ function.

Population Type Double Vector

Pareto front population fraction 0.3
Population size 120

Number of generations 1000
Crossover rate 90%
Mutation rate 10%

2.12. Statistical Analysis

The experimental data were processed with Microsoft Excel 2019, and drawing was
performed with Origin 2019b. ANN modeling and GA MOO were implemented in MAT-
LAB R2021a.

3. Results and Discussion
3.1. Drying Time and Specific Energy Consumption

The effect of IR temperature on DT and SEC under a constant air velocity of 3 m/s
and moisture content of 15% is shown in Figure 6a. DT was greatly influenced (p < 0.01)
by the IR temperature. DT decreased with increasing IR temperature due to increments in
heat and moisture transfer rates and thermal radiation intensity [37]. With increasing IR
temperature, DT decreased considerably, but SEC did not decrease rapidly. The increase in
IR temperature led to an increase in equipment power, and thus increased the equipment’s
energy consumption [38]. Figure 6b shows the effect of air velocity on DT and SEC under a
constant IR temperature of 50 ◦C and moisture content of 15%. DT decreased considerably
with increasing air velocity due to the accelerated discharge of water vapor from the drying
chamber caused by an increase in the heat convection rate [39]. SEC decreased considerably
with increased air velocity. First, the increase in air velocity reduced the drying time,
which refers to the time for the equipment to operate. Second, fan power consumed a
small portion of the total power of the equipment, and the increase in air velocity did not
greatly improve the total power of the equipment. Thus, the energy consumption did not
increase much. As shown in Figure 6c, DT and SEC decreased greatly with increasing
moisture content under an IR temperature of 50 ◦C and air velocity of 3 m/s. Notably, the
DT and SEC of the sample with 15% moisture content decreased by 45.11% and 47.79%,
respectively, compared with that of the sample with 10% moisture content. This result
was obtained because the drying rate decreased substantially at the last stage of drying,
resulting in a large increase in drying time [40]. The energy consumption of equipment
was directly related to the length of drying time, so SEC decreased rapidly with increasing
moisture content [20]. Among the three drying parameters, moisture content had the
greatest influence on drying time and SEC. Thus, increasing the moisture content is the
best approach for minimizing drying time and SEC, provided that the quality of walnut
breaking is not reduced.
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Figure 6. Effects of T, V and MC on DT and SEC. (a) Air velocity was 3 m/s and moisture content was
15%. (b) IR temperature was 50 ◦C and moisture content was 15%. (c) IR temperature was 50 ◦C and
air velocity was 3 m/s. Note: different letters of columns of same color indicate significant differences
between the mean values (p < 0.01).

3.2. High Kernel Rate and Whole Kernel Rate

As shown in Figure 7a, at a constant air velocity of 3 m/s, moisture content of 15% and
longitudinal loading direction, IR temperature had no notable influence on the high kernel
and whole kernel rates. No remarkable difference in shell kernel clearance was observed
among the four groups. The effect of air velocity on the high kernel rate was not substantial
at a constant IR temperature of 50 ◦C, moisture content of 15% and in the longitudinal
loading direction, as shown in Figure 7b. With the increase in air velocity, the whole kernel
rates of Groups 3 and 4 decreased compared with those of Groups 1 and 2. The whole
kernel rate is related to shell kernel clearance, and it can only be guaranteed when the
deformation of shell breaking is smaller than the shell kernel clearance [26]. Therefore,
the decrease in whole kernel rate may be due to the decrease in shell kernel clearance.
Figure 7c shows that the high kernel rate and whole kernel rate decreased significantly with
an increase in the moisture content from 10% to 25% at a fixed IR temperature of 50 ◦C, an
air velocity of 3 m/s, and longitudinal loading direction. Wang Jiannan et al. had the same
finding [1]. As presented in Figure 7d, under a constant IR temperature of 50 ◦C, air velocity
of 3 m/s and moisture content of 15%, the high kernel and whole kernel rates of sutural
direction were the highest, followed by those of the longitudinal and vertical directions in
turn. Under the same drying conditions, the shell kernel clearance of the three groups was
almost undifferentiated. “Shell kernel clearance” refers to overall shell kernel clearance
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and is the mean value of shell kernel clearance in three directions of the walnut. However,
the shell kernel clearance in different directions obviously differed, which resulted in a
great difference in the high kernel and the whole kernel rates of different loading directions.
In conclusion, moisture content had the greatest influence on the high kernel and whole
kernel rates, and reducing the moisture content helped improve the high kernel and whole
kernel rates. However, this result is contradictory to the minimization of drying time and
SEC. The optimization of the walnut breaking process needs to achieve balance between
energy efficiency and quality of walnut breaking.

Figure 7. Effects of T, V, MC and DT on HR and WR. (a) Air velocity was 3 m/s, moisture content was
15% and loading direction was Longitudinal. (b) IR temperature was 50 ◦C, moisture content was
15% and loading direction was Longitudinal. (c) IR temperature was 50 ◦C, air velocity was 3 m/s
and loading direction was Longitudinal. (d) IR temperature was 50 ◦C, air velocity was 3 m/s and
moisture content was 15%. Note: different letters of columns of the same color indicate significant
differences between the mean values (p < 0.01).

3.3. Shell-Breaking Rate

Figure 8a shows the effects of different IR temperatures on the shell-breaking rate when
the air velocity, moisture content and loading direction were 3 m/s, 15%, and longitudinal,
respectively. The shell-breaking rate and hardness of Groups 3 and 4 increased compared
with those of Groups 1 and 2 when the IR temperature continued to increase to 55 ◦C.
The water loss rate of the walnut shells increased with the increasing IR temperature,
which accelerated the change in porosity and rapidly increased the density of walnut shells,
leading to an increase in walnut shell hardness [41]. With high walnut shell hardness, high
breaking force would need be exerted under the same deformation, and walnut shells are
more likely to be broken. Feizollah Shahbazi also believed that the shell-breaking rate
was related to the hardness of walnut shell [42]. As shown in Figure 8b, at a constant IR
temperature of 50 ◦C, moisture content of 15%, and longitudinal loading direction, air
velocity had no notable influence on the shell-breaking rate. No remarkable difference in
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the hardness was observed among the four groups of experiments. As shown in Figure 8c,
at a constant IR temperature of 50 ◦C, air velocity of 3 m/s, and longitudinal loading
direction, the shell-breaking rate decreased significantly with increasing moisture content.
The increase in walnut moisture content reduced the walnut shell hardness, indicating
a small shell-breaking force was required to achieve the same deformation. Feizollah
Shahbazi found that the decrease in the shell-breaking rate is due to the softening of
walnuts at higher moisture contents [42]. At the same time, as the moisture content of
walnuts decreases, the hygrothermal stress in the drying process causes the shell to produce
microcracks and other damage, and the shell becomes prone to fracture and breakage [43].
Figure 8d show that the shell-breaking rate was the highest in the vertical direction when
the IR temperature was fixed at 50 ◦C, the air velocity was 3 m/s, and the moisture content
was 15%. The thickness and structure of the walnut shells in different directions varied,
resulting in different shell-breaking rates in different loading directions. Liu Kui et al. also
found that walnuts are likely to be broken in the vertical direction [44]. In conclusion, the
influence law of moisture content on the shell-breaking rate is similar to that of the high
kernel and whole kernel rates. In addition, the shell-breaking rate can be optimized by
selecting an appropriate IR temperature and loading direction.

Figure 8. Effects of T, V, MC and DT on SR. (a) Air velocity was 3 m/s, moisture content was 15% and
loading direction was Longitudinal. (b) IR temperature was 50 ◦C, moisture content was 15% and
loading direction was Longitudinal. (c) IR temperature was 50 ◦C, air velocity was 3 m/s and loading
direction was Longitudinal. (d) IR temperature was 50 ◦C, air velocity was 3 m/s and moisture
content was 15%. Note: different letters of columns of the same color indicate significant differences
between the mean values (p < 0.01).
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3.4. Construction of Artificial Neural Network Model

The construction of the ANN model proceeded through three steps. The first step
was to determine the optimal topology of the ANN. The second step was to optimize the
initial weight and threshold of the ANN by using a GA. In the third step, the ANN used
the optimized weights and thresholds for network training.

To obtain the optimal topology of the neural network, the transfer function (‘transig’
sigmoidal or ‘logsig’ sigmoidal) between the input layer and the hidden layer and the
number of neurons in the hidden layer (2–13) needed to be determined. Nonoptimized
weights and thresholds for network training can cause a large deviation in R2 and RMSE
under the same topology structure. Therefore, the results of the same topology structure
were adopted as the mean value of 10 simulations. The simulation results of different ANN
topologies is shown in Table 3.

Table 3. Simulation results of different ANN topologies (shaded group is the optimal topology; bold
font indicates the optimal solution).

Group
Transfer Function

of the Hidden
Layer

Number of
Neurons in the
Hidden Layer

DT SEC HR WR SR

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1

Tansig

2 0.6101 87 0.9170 0.7809 0.7262 3.6053 0.8348 2.4655 0.7695 3.4578
2 3 0.7330 70 0.9430 0.6930 0.8490 2.7626 0.9029 1.9311 0.8680 2.9473
3 4 0.8053 62 0.9290 0.5373 0.8953 2.2088 0.9284 1.6161 0.9034 2.6510
4 5 0.8455 50 0.9113 0.5288 0.9198 2.2477 0.9377 1.5535 0.9231 2.5961
5 6 0.8688 42 0.9172 0.4820 0.9331 2.0987 0.9411 1.3893 0.9231 2.8564
6 7 0.8858 38 0.9234 0.4868 0.9430 1.9751 0.9474 1.3514 0.9245 2.5263
7 8 0.8965 36 0.9204 0.4876 0.9509 1.9454 0.9522 1.3170 0.9246 2.6684
8 9 0.9030 37 0.9261 0.4557 0.9561 1.8920 0.9560 1.2482 0.9214 2.3708
9 10 0.9113 36 0.9256 0.4839 0.9589 1.9481 0.9556 1.3308 0.9207 2.4248

10 11 0.9176 34 0.9276 0.4794 0.9619 1.7221 0.9570 1.1531 0.9158 2.3483
11 12 0.9207 37 0.9296 0.4642 0.9633 1.7937 0.9573 1.2995 0.898 2.4721
12 13 0.9018 38 0.9248 0.4782 0.9610 1.8238 0.9568 1.3210 0.9103 2.5131

13

Logsig

2 0.8142 68 0.9584 0.8237 0.8740 4.2739 0.8135 3.1225 0.8150 4.1104
14 3 0.8468 58 0.9197 0.8994 0.8915 3.0264 0.8413 2.4166 0.8564 3.9061
15 4 0.8762 48 0.9328 0.5449 0.9127 2.4617 0.8734 1.9124 0.8643 3.3415
16 5 0.9010 44 0.9385 0.5140 0.9338 2.1232 0.8980 1.6816 0.8876 3.0413
17 6 0.9170 43 0.9478 0.4458 0.9457 2.0833 0.9198 1.6132 0.9120 3.0922
18 7 0.9271 36 0.9539 0.4363 0.9600 1.8385 0.9384 1.4448 0.9320 2.9298
19 8 0.9338 38 0.9582 0.3943 0.9620 2.0749 0.9411 1.4663 0.9359 2.8583
20 9 0.9363 36 0.9620 0.3795 0.9682 1.6762 0.9519 1.2627 0.9409 2.6781
21 10 0.9412 30 0.9650 0.4118 0.9720 1.7408 0.9604 1.3396 0.9468 2.7705
22 11 0.9459 34 0.9665 0.3551 0.9760 1.6523 0.9651 1.2436 0.9490 2.7766
23 12 0.9500 33 0.9682 0.3631 0.9786 1.6521 0.9695 1.1869 0.9555 2.5246
24 13 0.9432 35 0.9641 0.3728 0.9731 1.7239 0.9543 1.2165 0.9461 2.6987

Types of activation functions Tansig(x) = 2
1+exp(−2x) logsig(x) = 1

1+exp(−x)

The highest R2 values of DT, SEC, HR, WR, and SR were achieved in Group 23 (‘logsig’
sigmoidal + 12 neurons). The minimum RMSEs of DT, SEC, HR, WR, and SR were achieved
in Groups 21, 22, 23, 10 and 10, respectively. The subminimum RMSEs of DT, SEC and WR
appeared in the Group 23, with a deviation of 10%, 2.25% and 2.93% from the minimum
RMSE, respectively. The RMSE of SR in Group 23 differed by 7.51% from the minimum
RMSE of SR. In summary, the topology of Group 23 (‘logsig’ sigmoidal + 12 neurons) was
the optimal topology.

The results showed that different topologies had a great influence on R2 and RMSE.
The ‘logsig’ sigmoidal function between the input layer and hidden layer was much better
than the ‘transig’ sigmoidal function. The larger the number of neurons in the hidden
layer was, the better the prediction ability of the model was. However, having too many
neurons can lead to overfitting, resulting in reduced model accuracy. Therefore, the number
of neurons in the hidden layer was set as 12 based on the optimal topology and GA to
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optimize the initial weights and thresholds of the neural network. The parameters of the
GA are shown in Table 1.

The neural network was trained with the optimized weights and thresholds. A
comparison of the results of the BP neural network model and the GA neural network
model (GA-ANN) is shown in Table 4.

Table 4. Comparison results between BP model and GA-ANN model.

Algorithm
DT SEC HR WR SR

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

BP 0.950 33 0.968 0.363 0.979 1.652 0.970 1.187 0.956 2.525
GA-ANN 0.996 22.176 0.998 0.279 0.990 1.471 0.991 0.926 0.993 1.250
Error (%) 32.8 23.14 10.96 21.99 50.5

In the GA-ANN model, the R2 values of DT, SEC, HR, WR and SR were all above 0.990;
RMSE decreased by 32.8%, 23.14%, 10.96%, 21.99%, and 50.5% compared with the BP model,
respectively. The GA-ANN model had a remarkable optimization effect, indicating that the
GA-ANN model removed the local optimal value and obtained the global optimal value.

The experimental data and predicted values of the GA-ANN model are shown in
Figure 9. The GA-ANN model demonstrated a sufficient prediction ability and can be
further applied to the MOO of the process of drying-assisted walnut breaking.

Figure 9. Cont.
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Figure 9. Experimental data and predicted values of the GA-ANN model: (a) drying time; (b) specific
energy consumption; (c) high kernel rate; (d) whole kernel rate, and (e) shell-breaking rate.

3.5. Multi-Objective Optimization

The Pareto optimal set, which included 30 optimal solutions, was obtained using the
GAMULTIOBJ function, as shown in Table 5. The selection of specific optimal solutions
depended on the primary purpose of the process. For example, Group 1 was selected
as the optimal process for the highest HR of 89%. Group 3 was a slightly worse process
because HR and SR decreased by 0.2% and 3.6%, respectively, and DT increased by 12.9%.
Moreover, it had a similar SEC of 16.78 MJ/kg relative to Group 1, but WR increased by
0.6%. In addition, the lowest DT of 87.3 min (90.9% lower than that of Group 1) and the
lowest SEC of 0.81 MJ/kg (95.2% lower than that of Group 1) were obtained in Group
30. Under this processing condition, HR was 46.1% (48.2% lower than that of Group 1),
WR was 22.4% (56% lower than that of Group 1) and the SR was 61.8% (33.4% lower than
that of Group 1). Given that the primary purpose of MOO was to ensure the quality of
walnut breaking, Group 30 was not be selected as the optimal solution. Group 7 had
the highest SR of 99.8% (7.5% higher than that of Group 1), HR of 81.7% that of (8.2%
lower than that of Group 1), and WR of 43.7% (14.1% lower than that of Group 1). DT
decreased by 39.0%, and SEC decreased by 23.3%, relative to Group 1. The reason was
that Group 7 adopted the highest possible values of IR temperature and air velocity to
reduce the drying time and energy consumption. In addition, the drying rate of walnuts
at the last stage of drying was extremely low. Group 7 slightly increased the moisture
content, which considerably reduced the drying time and energy consumption. Group 7
reduced the drying time and energy consumption as much as possible without notably
reducing the quality of walnut breaking. In conclusion, Group 7’s parameters (T = 54.9,
V = 3.66, MC = 10.9, vertical loading direction) were selected as the optimal parameters for
the process of drying-assisted walnut breaking.

Verification experiments were conducted under the optimal parameters to verify the
optimization results. As shown in Table 6, the errors between the predicted values and
the experimental data were 3.56%, 3.88%, 2.51%, 3.32%, and 3.96% for DT, SEC, HR, WR,
and SR, respectively, indicating good accuracy. The ANN model optimized by the GA
could accurately predict the process parameters of drying-assisted walnut breaking, and
the MOO results of the GA were effective.
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Table 5. Pareto optimal set (shaded groups are the optimum sets in the Pareto front).

Pareto ID T (◦C) V (m/s) MC D DT (min) SEC (MJ/kg) HR WR SR
1 51.5 1.04 10.0 2 958.4 16.77 89.0 50.9 92.8
2 53.3 1.20 10.1 2 888.5 16.49 88.9 50.4 93.6
3 47.0 1.01 10.0 2 1082.2 16.78 88.8 51.2 89.5
4 44.7 1.50 11.1 2 974.0 14.77 86.2 48.4 86.8
5 52.5 3.59 23.2 2 137.9 1.84 48.8 24.9 68.2
6 43.1 1.02 10.0 2 1193.4 16.78 88.7 51.2 85.3
7 54.9 3.66 10.9 3 585.1 12.86 81.7 43.7 99.8
8 54.9 3.98 20.3 3 181.4 2.78 58.6 32.1 84.8
9 54.7 3.97 21.3 2 157.2 2.33 54.1 28.8 75.7

10 49.6 1.01 10.0 2 1012.0 16.79 88.9 51.0 91.6
11 53.4 3.83 17.4 2 264.8 4.70 69.2 38.3 85.3
12 54.7 3.85 23.9 2 109.6 1.29 47.8 23.8 66.1
13 54.2 3.25 25.0 3 103.9 1.08 56.8 29.3 69.3
14 52.5 2.27 16.0 2 407.9 7.45 75.9 41.6 87.3
15 54.9 3.13 17.0 2 299.7 5.65 72.3 39.5 87.0
16 50.6 2.16 10.2 2 847.7 15.48 87.5 49.1 92.9
17 47.7 1.97 12.8 2 696.3 11.68 82.5 45.4 88.3
18 54.9 3.82 24.2 2 102.8 1.15 47.3 23.3 64.6
19 52.5 2.92 12.9 2 535.3 10.54 82.1 44.9 91.9
20 43.6 1.39 14.2 2 729.8 10.64 80.2 44.0 82.1
21 49.8 3.38 12.4 2 573.7 10.85 82.0 44.6 91.3
22 43.6 1.02 10.1 2 1169.3 16.65 88.6 51.0 85.8
23 47.3 1.75 10.9 2 901.0 14.80 86.4 48.5 89.7
24 50.4 3.71 17.2 2 299.8 5.11 69.5 38.4 84.0
25 52.9 3.65 20.4 3 200.6 3.06 58.6 32.2 83.5
26 52.5 2.74 16.6 2 353.5 6.39 73.3 40.3 86.3
27 52.7 2.03 15.7 2 436.6 8.03 77.2 42.3 87.9
28 55.0 3.98 23.3 2 116.8 1.45 48.7 24.7 68.5
29 54.9 3.93 23.0 2 123.3 1.60 49.4 25.2 69.6
30 55.0 3.99 25.0 2 87.3 0.81 46.1 22.4 61.8

Table 6. Prediction and validation results of five response variables under the optimal parameters.

Results
Operating Conditions Response Variables

T (◦C) V (m/s) MC D DT (min) SEC (MJ/kg) HR WR SR

Prediction 54.9 3.66 10.9 3 585.1 12.86 81.7 43.7 99.8

validation 54.9 3.66 10.9 3 565 12.38 83.8 45.2 96

Error (%) 3.56 3.88 2.51 3.32 3.96

4. Conclusions

A process of drying-assisted walnut breaking was developed in this study. An ANN
model optimized by a GA (GA-ANN) was established to simulate the effects of input
variables (T, V, MC, and D) on output variables (DT, SEC, HR, WR, and SR). The GA-ANN
model demonstrated sufficient prediction ability, with coefficients of determination of 0.996,
0.998, 0.990, 0.991, and 0.993 for DT, SEC, HR, WR, and SR, respectively. RMSE decreased
by 32.8%, 23.14%, 10.96%, 21.99%, and 50.5% compared with those in the ANN model.
On the basis of the GA-ANN model, the GA was applied to MOO of the walnut breaking
process with the aim of minimizing DT and SEC and maximizing HR, WR and SR. The
optimal process parameters were determined to be T = 54.9, V = 3.66, MC = 10.9, and
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vertical loading direction, which led to DT = 585.1 min, SEC = 12.86 MJ/kg, HR = 81.7%,
WR = 43.7%, and SR = 99.8%. The model that combines ANN and GA was proven to be
effective in predicting and optimizing the process parameters of walnut breaking. The
predicted values under the optimized process parameters fitted the experimental data well,
with low relative error values of 3.56%, 3.88%, 2.51%, 3.32%, and 3.96% for DT, SEC, HR,
WR, and SR, respectively. The process of drying-assisted walnut breaking considerably
improved the quality of walnut breaking and reduced the energy consumption and drying
time. The ANN modeling and the method of GA MOO developed in this study could be
applied to other similar commodities.
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