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Abstract: This paper presents a systematic literature review focused on the use of inductively coupled
plasma mass spectrometry (ICP-MS) combined with PCA, a multivariate technique, for determining
the geographical origin of plant foods. Recent studies selected and applied the ICP-MS analytical
method and PCA in plant food geographical traceability. The collected results from many previous
studies indicate that ICP-MS with PCA is a useful tool and is widely used for authenticating and
certifying the geographic origin of plant food. The review encourages scientists and managers to
discuss the possibility of introducing an international standard for plant food traceability using
ICP-MS combined with PCA. The use of a standard method will reduce the time and cost of analysis
and improve the efficiency of trade and circulation of goods. Furthermore, the main steps needed
to establish the standard for this traceability method are reported, including the development of
guidelines and quality control measures, which play a pivotal role in providing authentic product
information through each stage of production, processing, and distribution for consumers and
authority agencies. This might be the basis for establishing the standards for examination and
controlling the quality of foods in the markets, ensuring safety for consumers.

Keywords: ICP-MS; multivariate statistic; principal component analysis; food geographical origin

1. Introduction

Inductively coupled plasma mass spectrometry (ICP-MS) was first introduced by
Houk et al. [1] and emerged commercially in the 1980s [2,3]. With its unique combination
of desirable features, such as multielement capability, high sensitivity, low detection limits,
wide linear dynamic range, high sample throughput, and isotopic discrimination, ICP-
MS has rapidly become a valuable instrumental method for trace element analysis [4,5],
particularly in the food industry [6]. Numerous studies have explored the use of ICP-MS
for analyzing a variety of food matrices, including pork and swine meat [7,8], beef, bovine
and veal [9,10], chicken [11,12], goat [11,13], mutton, lamb, and sheep [14,15], eggs [16,17],
milk [18,19], fish [20,21], bivalve [22,23], oyster [24–26], as well as processed foods such
as sugar, chocolate, Turkish delight, biscuits, butter, cheese, bread, pasta, vinegar, canned
food, yogurt, juice, cucumar, and rice [27–35]. For a detailed summary of ICP-MS studies
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on the multielement analysis of plant-based food matrices using the PCA statistical method,
refer to Table 1 below.

Despite the use of analytical ICP-MS methods to evaluate the content of elements
in plant-based foods, relatively few publications exist on the metal content analyzed by
ICP-MS in food. Most data analyzed by ICP-MS has been used for research on health risk
assessment, daily uptake, and the development of analytical methods. Recently, multiele-
ment analytical data combined with principal component analysis has been increasingly
applied in research on food geographical traceability [36,37]. The rapid development of
ICP-MS applications in food traceability has made it a useful tool for verifying the origin
of agricultural products and foods [38]. However, to date, no national or international
standard methods for planting food geographical origin traceability have been established.
Food traceability is still primarily conducted through the protected geographical indication
(PGI) system, which involves identifying the specific ingredients of the food. However,
analytical methods are mainly used to assess food quality rather than determine its ori-
gin. PGI is more of a commitment to agreement than a technical approach, and thus its
application is limited in many countries.

Table 1. Detected multielement in the plant-based food matrix.

Plant-Based Food Matrix Elements Range (mg.kg−1) Ref

F: Peppers, tomato
N: Wheat, corn, rice
T: Potatoes, carrots

Micro: As, Pb, Cu, Cd, Zn, Sn, Hg
F: 0.002–1.896
N: <0.001–9.327
T: <0.001–2.37

[27]

F: golden berry (Physalis peruviana), palm
(Euterpe edulis), acai (Euterpe precatoria)
N: Brazil nut (Bertholletia excels)

Macro: 44Ca, 39K, 24Mg, 31P
Micro: 59Co, 65Cu, 60Ni, 85Rb

Macro:
F: 57.9–22,382
N: 544–26,180
Micro:
F: 0.024–24
N: 1.1–191

[39]

N: Brown and white rice in South Korea
Macro: Al, Ba, Ca, Fe, K, Mg, P, S,
Micro: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb,
Se, Zn

Macro: 0.367–2103
Micro: 4 × 10−4-26 [40]

F: Black Pepper
Macro: K, Ca, Mg, Fe, Ba
Micro: Mn, Cr, Ni, Ti, Cu, Se, Mo, Co, Sr,
Pb, Pt, Sb, Y

Macro: 12.13–2774
Micro: 0.04–99.89 [1]

N: Cocoa
Macro: Na, Ba, Fe, Mg, Al
Micro: Cr, La, Ce, Mo, Cs, Ga, Ti, Y, Cu, Cd,
Mn, Ni, As, Pb, V, Co, Rb, Zn, Sr,

Macro: 5.4–3200
Micro: 0.01–25 [41]

N: Peanuts (Arachis hypogaea L.)
Macro: 11B, 23Na, 54Fe, 56Fe
Micro: 59Co, 52Cr, 53Cr, 58Ni, 60Ni, 61Ni,
62Ni, 82Se, 63Cu, 65Cu, 98Mo, 66Zn

Macro: 16.9–7440
Micro: 0.0206–28.3 [42]

F: Tomato (Lycopersicon esculentum)
Macro: Al, Ba, Fe,
Micro: Cd, Co, Cr, Cu, Hg, Mn, Ni, Se, Sn,
Sr, V, Zn

Macro: <0.025–57.8
Micro: <0.008–29.5 [43]

N: Wheat, millet, corn, soybean Macro: Li, K, Mg, Ca, Fe
Micro: Zn, Mn, Cu, Mo, Se

Macro: 0.012–2285
Micro: 0.0–15.11 [44]

N: Rice Macro: 23Na, 25Mg, 44Ca, 56Fe,
Micro: 65Cu, 66Zn, 75As, 111Cd, 55Mn,

Macro: 0.049–28
Micro: 0.02–9.4 [45]

N: Cocoa Micro: Cd, Sb, Pb, As, Cr, Se, V 0.026–1.315 [46]

F: Passion (Passiflora edulis), star anise
(Illicium verum)

Micro: 75As, 112Cd, 59Co, 53Cr, 65Cu, 55Mn,
60Ni, 208Pb, 88Sr, 51V, 64Zn

0.034–276 [47]

F: Cape gooseberry (Physalis peruviana L.) Micro: Co, Cu, Se 0.03–6.7 [48]
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Table 1. Cont.

Plant-Based Food Matrix Elements Range (mg.kg−1) Ref

V: Tea Macro: Fe, K, Br, Ca
Micro: Cu, Cr, Si

Macro: 86–6785
Micro: 2–124 [49]

T: Alpinia oxyphylla and Morinda officinalis
Macro: Mg, K, Ca, Na, Fe, Al, Ba,
Micro: Zn, Mn, Cu, Mo, Cr, Ni, As, Se, Cd,
Hg, Tl, Pb, V

Macro: 26.18–24,890
Micro: 0.66–186 [50]

F: Capsicum annuum, C. chinense and C.
frutescens

Macro: Mg, P, K, Ca, B, Fe,
Micro: Cu, Zn Mn,

Macro: 30–75,600
Micro: 2–185 [51]

N: Pea (Pisum sativum L., cv. Bohun) Micro: Cd, Cu, Pb, Zn 3.3–425 [52]

F: Black, green olive Macro: Mg, Fe
Micro: Cr, Co, Ni, Cu, Zn, Sn, Cd, Pb

Macro: 7.08–79.28
Micro: 0.06–39.06 [53]

F: Blueberry, Strawberry

Macro: 11B, 23Na, 24Mg, 27Al, 31P, 39K,
43Ca, 57Fe
Micro: 53Cr, 55Mn, 60Ni, 63Cu, 66Zn, 72Ge,
75As, 82Se, 111Cd, 208Pb

Macro: 1.54–5960
Micro: 0.0057–142 [54]

N: Macadamia, lotus, pistachios, sunflower,
pine, almond, walnut, chestnut, hazelnut,
cashew, ginkgo

Macro: Li, Ba
Micro: Cr, Mn, Co, Cu, Zn, As, Se, Rb, Sr,
Mo, Cd, Cs, Pb, Th, U

Macro: 0.01–4.5
Micro: 0.0004–40 [55]

N: Rice (Oryza sativa L.) Micro: Zn, Cd, Sb, Pb, As N.A [56]

V: Safflower (Carthamus tinctorius L.)
Macro: Al, Ca, Fe, Mg
Micro: As, Cd, Cu, Hg, Pb, Co, Cr, Mn, Mo,
Ni, P, Se, Sr, V, Zn

Macro: 565–12,484
Micro: 0.046–108.43 [57]

V: Sunflower (Helianthus annuus) Macro: Ca, Fe, K, P, S
Micro: Cd, Ce, Cr, Cu, La, Mn, Ni, Zn

Macro: 1000–35,800
Micro: 1.01–80 [58]

N: Rice, wheat
T: Panax
V: Celery, astragalus, spirulina, garlic

Macro: K, Na, Ba, Ca, Mg, P,
Micro: 59Co, 133Cs, 63Cu, 95Mo, 60Ni, 208Pb,
85Rb, 232Th, 238U, 45Sc, 89Y, 140Ce, 163Dy,
166Er, 153Eu, 157Gd, 165Ho, 139La, 175Lu,
146Nd, 141Pr, 147Sm, 159Tb, 169Tm, 172Yb,
9Be, 209Bi,

Macro:
N: 50–250
T: 44–1050
V: 5.8–1300
Micro:
N: 0.0002–0.85
T: 0.00028–0.36
V: 0.00012.4–0.213

[59]

N: Soybean Micro: Cu, Zn N.A [60]

N: Rice in southern Brazil Macro: Fe, Mg
Micro: As, Cd, Co, Cu, Mn, Ni, Se, Zn

Macro: 15.56–94
Micro: 0.00045–0.5 [61]

V: Tea Macro: Fe, Al
Micro: Pb, As, Cd, Cu, Zn, Se Mo, Cr

Macro: 1510–3100
Micro: 0.034–197 [62]

F: Pepper, tomato, aubergine, apricot,
peach, plum, olive, grape, prune, zucchini
N: Pea, hazelnut, walnut
T: Potato, turnip
V: Lettuce, chicory, endive, cabbage, fennel

Micro: Co, Cr, Cu, Mn, Mo, Ni, Sr, Tl, U,
V, Zn

F: 3 × 10−4– 5.5
N: 2 × 10−4–21
T: 9 × 10−4–5.34
V: 1,2 × 10−4–3.82

[63]

F: Tomato
V: Artichoke

Micro: 75As, 60Ni, 202Hg, 51V, 208Pb, 111Cd,
63Cu, 52Cr

F: 3 × 10−6–1.934
V: 3 × 10−6–2.378

[64]

N: Maize
T: Potato, radish
V: Cabbage, pakchoi, scallion, garlic,
lettuce, parsley, tine peas, spinach

Micro: Cd, Cr, Cu, Pb, Zn
N: 0.8–12.9
T: 1.1–64.8
V: 0.3–90.4

[65]
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Table 1. Cont.

Plant-Based Food Matrix Elements Range (mg.kg−1) Ref

F: Hot pepper
N: Rice, bean
T: Carrot, radish, potato
V: Cabbage, H. houttuyniae, celery,
garlic stem

Micro: Hg, Pb, Cd, Mn, Se

F: 0.00013–0.0426
N: 0.00001–0.0308
T: 0.00004–0.0122
V: 0.00102–0.646

[66]

F: Banana, mango
N: Maize
T: Cassava
V: Amaranthus tricolour

Micro: Zn, Cu, Co, Ni, As, Cd,
Cr, Pb, Mn

F: 0.0–7.14
N: 0.0–16.3
T: 0.0–15.4
V: 0.0–25

[67]

Note: F: Fruit; N: Nut; T: Tuber; V: Vegetable.

This systematic review aims to gather research on the application of ICP-MS combined
with PCA as a technique to establish the authenticity of the geographical origin of plant-
based foods, which could be considered to promulgate as an international standard. The
review focuses on unprocessed plant-based foods such as cereals, rice, wheat, maize,
sorghum, ragi, pulses, legumes, fruits, vegetables, and nuts. Origin fraud, which occurs
when plant food is misrepresented in its geographical origin, is a form of mislabeling that
has a significant impact on the economy and is documented in many countries. Agricultural
and food products are subject to strict control on their origin to ensure quality during import
and export [68–70]. Currently, different types of standards exist for agricultural and food
products [71,72], but standards for determining the geographical origin have not yet been
widely adopted.

Several common multivariate statistical methods are used for geographical origin
determination, including principal component analysis (PCA), cluster analysis (CA), linear
discriminant analysis (LDA), canonical discriminant analysis (CDA), and hierarchical
cluster analysis (HCA). Among these, PCA is the most commonly used method due to its
ability to effectively distinguish data with similar characteristics [73]. Therefore, this paper
specifically focuses on the use of PCA for plant food traceability.

2. Methods
2.1. Multielement and Accuracy Analysis
2.1.1. Multielement Analysis

Generally, trace elements represent the geographical tracer in a specific soil condition,
and are absorbed via the roots and transferred to various parts of the plant. The distribu-
tion of trace elements reflects the elemental signature of the soil origin. In addition, the
isotope ratios of the elements show the linkage between products and soil characteristics.
Particularly, isotopes of heavy metals have been considered the most suitable for tracing
a plant-based food’s origin. However, the isotopes of light elements such as hydrogen,
nitrogen, oxygen, and sulfur are considered reliable indicators of food authentication, but
the ratio of these elements is too variable to serve as tracers of the soil where a product is
produced [74–76].

ICP-MS is a robust analytical technique for the determination of multi-elemental
composition (qualitatively), concentration (quantitatively), and isotopic abundances of
various matrices. The structure and operating principles of the ICP-MS device have
been presented in numerous previous documents. The ICP-MS analyzer can detect many
elements and simultaneously identify their isotopes.

Out of the 118 elements in the periodic table, 16 elements are not recommended for
measurement on ICP-MS and 44 elements cannot be measured on the ICP-MS instrument.

• The elements not recommended for ICP-MS are B, Si, Cl, Ca, Br, Hg, P, S, Zr, Nb, Tc, I,
Hf, Ta, W, and Os.



Foods 2023, 12, 1848 5 of 19

• The elements that cannot measured by ICP-MS are H, He, C, N, O, F, Ne, Ar, Kr, Xe,
Pm, Po, At, Rn, Fr, Ra, Ac, Pa, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr, Rf, Db, Sg,
Bh, Hs, Mt, Ds, Rg, Cn, Nh, Fl, Mc, Lv, Ts, and Og.

Out of the remaining 58 elements, rare earth elements (REEs) can act as geochemical
markers, however, less information using REEs in foodstuff traceability [77]. Additionally,
there are other elements with low content in food samples, such as Ga, Ge, Rb, Y, Ru,
Ir, Au, U, and Te. After removing the elements that are not present, 36 elements are
left in the food sample. The elements selected for analysis on ICP-MS are presented in
Table 2. These 36 elements are commonly analyzed using ICP-MS methods for elemental
or multi-elemental determination in food traceability.

Table 2. 36 selected metals for common analysis by ICP-MS.

massElement 7Li 9Be 23Na 24Mg 27Al 28Si 39K 40Ca 45Sc

Abundance (%) 92.4 100 100 78.99 100 92.23 93.26 96.94 100
massElement 48Ti 51V 52Cr 55Mn 56Fe 58Ni 59Co 63Cu 64Zn

Abundance (%) 73.72 99.75 83.79 100 91.75 68.08 100 69.17 48.63
massElement 75As 80Se 88Sr 95Mo 105Pd 107Ag 111Cd 118Sn 121Sb

Abundance (%) 100 49.61 82.58 15.92 22.33 51.84 12.80 24.22 57.21
massElement 138Ba 182W 185Re 195Pt 201Hg 205Tl 208Pb 209Bi 232Th

Abundance (%) 71.70 26.50 37.40 33.83 13.18 70.48 52.4 100 100

2.1.2. Sample Preparation

Solid samples are digested in strong and hot acid conditions, such as HNO3, HNO3/HCl,
HNO3/H2O2, or HNO3/HF, which depend on the specific matrices. In general, samples are
commonly digested with pure HNO3 (65–70%) in a microwave oven, and then diluted with
ultra-pure water [78]. There are various methods to convert solid samples into aerosols,
including electrothermal vaporization (ETV), laser ablation (LA), microwave-assisted diges-
tion (MAD), spark ablation, etc. The samples are then transported to the plasma by an inert
gas. In these techniques, the ETV analysis method is used for combustible samples while the
spark ablation is applied for conducting samples in sampling large spots with a diameter
of 1–3 mm. The LA microanalysis technique uses high-irradiance (UV) lasers to measure
very small spots (2–750 µm in diameter) on almost solid samples whilst the MAD method
is applied for the sample preparation process in the analysis by ICP-MS, inductively cou-
pled plasma atomic emission spectrometry (ICP-AES), graphite furnace atomic absorption
spectrophotometry (GFAA), and flame atomic absorption spectrophotometry (FLAA).

2.2. PCA Tools

PCA is a popular multivariate statistical algorithm program to distinguish components
from each other via six main steps by transforming a vector into a matrix in mathemat-
ics [79]. PCA plays an important role in reducing the dimensionality of complex datasets,
changing them to a more simple and easier status, and minimizing information loss [80].
PCA and LDA are considered as the most powerful discriminators of data in multivari-
ate analysis tools, which are commonly used to discriminate the geographical origin of
plant-based agricultural products. While both PCA and LDA techniques were applied to
identify linear combinations of features in the best data explanation, LDA is a technique
reducing the supervised dimension that achieves the simultaneous data classification. LDA
concentrates on finding a feature subspace which helps to enhance the separability be-
tween groups, whilst PCA is an unsupervised technique that disregards class labels and
concentrates to capture the maximum variation direction in the datasets [79,80].

Figure 1 shows the different number of research publications using PCA, LDA, K-
nearest neighbor (KNN), and HCA multivariate statistical methods for geographical origin
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determination. PCA is a popular technique used in determining the geographical origin
of agricultural products because it can reduce dimensionality by using main principal
components (PCs) to express the information spread across numerous columns, wherein
the first few PCs can account for an important proportion of the total variance. These PCs
are then used as explicable variables in machine-learning models. In addition, datasets
with more than three features or dimensions can be difficult in class visualization. It can
be observed that a clear distinction between clusters or classes relies on the first two PCs,
which allows for a simple and more effective visualization of the data [81].
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Principal component analysis possesses some advantages: it is an effective computa-
tion algorithm that can speed up machine learning processes and prevent data overflow;
PCA can improve the performance of machine learning (ML) algorithms by eliminating
unnecessary correlated variables; the variance of the PCA is high, which allows better
visualization of the data; and PCA can contribute to reducing noise, which cannot be
automatically ignored, making it a valuable tool for data analysis. On the other hand, a few
disadvantages of principal component analysis have been reported, including that PCA
can sometimes be difficult to interpret, particularly when identifying the most necessary
characteristics even after the calculation of the major components; the calculation of co-
variances and covariance matrices may sometimes be challenging; and, in some particular
cases, the computed principal components might be more difficult to understand than the
original set of components.

Principal Component Analysis (PCA) can be a complex statistical technique that
requires expertise in mathematics. However, there are several software programs available
that make it easier for non-specialists to perform PCA. These programs can be particularly
useful for determining the geographical origin of a sample. To this end, Table 3 lists several
commonly used software options.

In addition to the widely used software packages mentioned earlier, there are many
other specialized software programs built for specific purposes depending on the type
of data being analyzed. Some of these specialized software packages are designed for
genomics, proteomics, medical imaging, or other specialized fields. The availability of
these specialized software packages reflects the diverse and complex nature of modern
data analysis.
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Table 3. Software most commonly used for geographical origin determination.

Software Description Feature Ref

XLSTAT
Version 2023 5.1.1407.0
United States

A popular data analysis add-on for Microsoft
Excel, known for its flexibility and powerful
statistical tools. It offers a wide range of
features and functions, including PCA, which
can be used for geographical origin
determination. With XLSTAT, users can easily
analyze, customize, and share their results
within the familiar Microsoft Excel interface.

User-friendly interface that makes it easy for
non-experts to use. Some of its features
include descriptive statistics, hypothesis
testing, ANOVA, regression analysis, time
series analysis, data visualization, and
machine learning. It also offers advanced
statistical tools such as principal component
analysis (PCA), partial least squares regression
(PLS), and discriminant analysis. XLSTAT
offers a wide range of customizable and
interactive charts, including scatter plots, line
charts, bar charts, histograms, box plots, and
more. The charts are designed to be easy to
interpret and can be modified to fit
specific needs.

[82]

R
4.3.0
France

A free, open-source programming language
for statistical computing and graphics which
was developed at Bell Laboratories. It is
widely used by researchers and analysts in
various fields such as economics, finance,
biology, and social sciences. R provides a wide
range of statistical and graphical techniques,
including linear and nonlinear modeling,
statistical tests, time-series analysis, and data
visualization. Additionally, R has a large and
active community of users who contribute to
the development of packages and resources
that extend the functionality of the language.
Due to its flexibility, power, and
cost-effectiveness, R has become a popular
choice for data analysis and research.

PCA uses functions such as princomp and
prcomp. While princomp uses covariance
matrix decomposition, prcomp uses singular
value decomposition, which often provides
better numerical accuracy.
Moreover, R offers a vast array of packages
that can be used to implement PCA, such as
ade4, vegan, ExPosition, dimRed, and
FactoMineR, among others. These packages
provide additional functionalities beyond the
basic PCA function, such as biplots, scree plots,
and visualization of the results, which are
useful for interpreting and communicating the
analysis outcomes. Additionally, R has
a user-friendly interface and a large
community of users who share their scripts
and offer support for beginners.

[83]

Minitab
21.1.0
United States

A statistical software package developed for
quality improvement and statistical analysis. It
provides a wide range of tools for data
analysis, including graphical tools, statistical
tests, and regression analysis. Minitab also
supports statistical process control, the design
of experiments, and Six Sigma methodologies.
With its user-friendly interface and extensive
documentation, Minitab is a popular choice for
quality professionals and data analysts.

A wide range of features, including statistical
analysis, data visualization, and predictive
analytics. It offers a user-friendly interface
with easy-to-use tools for data analysis and
quality improvement. Minitab also has built-in
templates for various industries, including
manufacturing, healthcare, and finance. Some
of its popular features include descriptive
statistics, hypothesis testing, regression
analysis, and design of experiments.
Additionally, Minitab can be used to create
interactive graphs and charts to help visualize
and present data in a clear and concise manner.
Minitab has some limitations, such as:
- Limited support for programming and

scripting compared to other
statistical software.

- Limited graphics customization
compared to other software.

- Limited support for advanced statistical
analyses, such as structural equation
modeling and item response theory.

[84]
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Table 3. Cont.

Software Description Feature Ref

Matlab
R2022a
United States

A high-performance language for technical
computing and data analysis. It is widely used
in academia, industry, and research for
developing algorithms, analyzing and
visualizing data, and building models. Matlab
is one of MathWorks products.

Matlab has several functions and tools for
performing PCA, such as princomp and PCA.
These functions can perform PCA on matrices,
including missing data and scaled variables.
Matlab also allows for the customization of
PCA outputs and visualization of the results.
Other features of Matlab for PCA
analysis include:
- Ability to handle large datasets and

perform PCA on high-dimensional data
- Capability to extract and plot biplots,

which display the relationships between
variables and observations in
a single plot

- Tools for assessing the significance of
principal components and
identifying outliers

- The option to perform PCA on specific
subsets of data, such as specific rows or
columns of a matrix

- The ability to save PCA results and load
them for future analysis or comparison.

[85]

SPSS
Statistics Version 26
United States

SPSS (Statistical Package for the Social
Sciences) is, a IBM product, widely used
statistical software in various fields, such as
psychology, marketing, healthcare, and
education. It has a broad range of statistical
analysis options, making it a versatile tool for
data analysis. Additionally, SPSS allows for
data cleaning, data transformation, and data
management, which are essential steps in the
data analysis process. With SPSS, users can
conduct various multivariate techniques,
including principal component analysis, factor
analysis, cluster analysis, and discriminant
analysis, among others. The software is
regularly updated to incorporate the latest
statistical techniques and methods, making it a
reliable and up-to-date tool for data analysis.

SPSS offers a variety of features for data
analysis, including statistical analysis, data
mining, and predictive analytics. Some of its
key features related to PCA include the ability
to perform principal component analysis to
identify underlying structure in the data and
reduce its dimensionality, the option to
perform factor analysis to identify latent
variables underlying observed variables, and
the ability to generate graphical output to
visualize the results. SPSS also offers
a user-friendly interface, making it accessible
to non-technical users, as well as a range of
advanced statistical techniques for more
experienced users. Additionally, SPSS allows
users to automate analysis and reporting,
making it a time-efficient option for
large datasets.

[86,87]

Weka
3.8.3
New Zealand

A collection of machine learning algorithms
for data mining tasks was developed at
University of Waikato. It is open-source
software written in Java. Weka includes tools
for data pre-processing, classification,
regression, clustering, association rules, and
visualization. It provides a graphical user
interface for exploring data and running
machine learning algorithms, as well as a
command-line interface for batch processing
and integration with other software systems.
Weka is widely used in both academia and
industry for research, education, and practical
applications in areas such as bioinformatics,
text mining, image analysis, and more.

Weka has a built-in PCA algorithm that can
perform principal component analysis on data
sets. It allows users to select the number of
principal components to be extracted and
provides options for normalization and
centering of the data. Weka also provides
visualizations of the data, including scatter
plots and parallel coordinate plots, to aid in
understanding the results of the PCA analysis.
Additionally, Weka’s PCA algorithm can be
used in combination with other machine
learning algorithms available in the software
for tasks such as classification and clustering.
Weka provides several visualization tools for
exploring and interpreting the results of PCA,
including scatter plots, biplots, and correlation
matrices. These charts can help users to better
understand the relationships between
variables and identify patterns in the data.
Additionally, Weka supports the export of
charts and graphs to various formats, such as
PNG and PDF, for easy sharing and
presentation of results.

[88]
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Table 3. Cont.

Software Description Feature Ref

SIMCA
17.0
Germany

SIMCA (Soft Independent Modeling of Class
Analogy) is a multivariate data analysis
software developed by Umetrics AB that is
widely used for classification and predictive
modeling in various industries. It uses PCA to
reduce the dimensionality of data and identify
relevant variables for modeling. SIMCA is
particularly popular in the pharmaceutical,
chemical, and food industries for quality
control and process optimization purposes.

SIMCA is a powerful tool for multivariate data
analysis, including PCA. It offers a
user-friendly interface and intuitive data
visualization tools, such as scatter plots and
score plots, to help users understand their
data. Additionally, SIMCA has a range of
advanced features for outlier detection and
model validation. These capabilities make it
a valuable tool for analyzing large datasets
and identifying patterns in complex
data structures.

[89]

Note: the websites of software are listed corresponding to: XLSTAT (xlstat.com), R (r-project.org), Minitab
(minitab.com), Matlab (mathworks.com), SPSS (ibm.com), Weka (cs.waikato.ac.nz), SIMCA (sartorius.com).
Accessed on 27 April 2023.

While most software packages use similar algorithms and produce similar results,
each package has its unique features, interfaces, and outputs. Some software packages,
such as XLSTAT, have a vivid visual interface that makes it easy for non-expert users to
interact with the software and interpret results. Other software packages, such as R, offer
more advanced customization options and allow for greater flexibility in data analysis.

The ability to customize the analysis and interpret the results accurately is critical in
scientific research and decision-making. Therefore, the choice of software package depends
on the specific research question, the type of data being analyzed, and the expertise of the
user. In addition to the analytical capabilities, software packages also offer various chart
and graph options to visualize the data in different ways, allowing users to communicate
the results more effectively. Overall, choosing the right software package is essential for
efficient and effective data analysis.

There are numerous specialized software programs available for various purposes,
depending on the type of data being analyzed. Most software requires a license to be
purchased. While the software generally produces similar results due to using similar
algorithms, each program offers different information, features, and interfaces. Among the
various software programs, XLSTAT is often preferred due to its graphical representation
and user-friendly interface. However, professional users tend to utilize R software, which
allows for greater flexibility in tweaking the code to produce more accurate data (Figure 2).
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3. Discussion
3.1. Applications of ICP-MS Combined with PCA for Determining the Origin of Agricultural
Products

In recent years, numerous scientific studies worldwide have been conducted to success-
fully develop methods for determining the origin of food products for different agricultural
commodities. Many of these studies have utilized the ICP-MS analysis method combined
with PCA to determine the origin of various food products, such as wine [90,91], pork [7],
sheep [92], mutton [15], bivalve mollusks [93], and sea cucumbers [94]. Meanwhile, studies
on tracing the origin of plant-based food products are summarized in the Table 4.

Table 4. ICP-MS and PCA in plant food traceability studies.

Plant Region (Country) No.
Sample/Region

No.
Element Ref.

Fruit type:

Cherry
Regina, Kordia, Mpakirtzeika, Skeena (Greece) 78/4 25 [95]

Ferrovia, Canada Giant, Lapins, Germersdorfer (Edessa and
neighbouring Kozani region, Greece) 56/4 25 [96]

Jackfruits
North 24 Parganas, Nadia, West Tripura, Khowai, Panruti,
Varkala, South Sikkim (India) 70/7 24 [97]

Nadia, North 24 Parganas and South Sikkim (India) 70/3 24 [98]

Lemon
Tucumán, Jujuy, Corrientes (Argentina) 74/3 25 [99]

Sicily (Italy), Çukurova (Turkey) 40/2 32 [100]

Pear
10 locations in Fundão (Portugal) 150/10 24 [101]

Italy, Spain, Greece, Cyprus 74/4 19 [102]

Nut type:

Almonds
Australia, Italy, Iran, Morocco, Spain, United States of America 250/6 58 [58]

Sicily, Spain and California 21/3 7 [103]

Maize Jilin, Gansu, Shandong (China) 90/3 25 [104]

Ricinus communis

Brisbane, Far North Qld, West Qld, South Sydney, West Sydney,
Newcastle, North Coast NSW, North Adelaide, South Adelaide,
East Adelaide, South Coast Adelaide, North Perth, East Perth,
Fremantle, Inner East Melbourne, West Melbourne, East
Melbourne, Swan Hill (Australia)

68/18 92 [105]

Rice

Jiansanjiang, Wuchang, Chahayang (Heilongjiang, China) 237/3 33 [106]

Fuzhou, Longyan, Nanping, Ningde, Putian, Quanzhou,
Sanming, Xiamen, Zhangzhou (China) 206/9 13 [107]

Goiás, Rio Grande do Sul (Brazil) 31/2 20 [108]

Italy, Turkey 40/2 21 [109]

Suwon (Korea), Shanghai (China), Los Banos (Philippines) 27/3 25 [42]

Heilongjiang, Jinlin, Zhejiang, Jiangsu, Hunan, Guizhou (China) 39/6 25 [110]

Campanha, Central, Fronteira Oeste, Planície Costeira
Interna, Sul 640/5 26 [111]

Fengshan, Donglan, Bama, Rugao, Yangdong, Jiaoling, Sanshui,
Huaiji, Guangning, Sihui, Songtao, Qianxi, Fuquan, Tongren,
Kaili, Guang’an, Nanchong, Mianyang, Chengdu, Luzhou,
Changshou, Tieling, Dandong, Suihua, Baicheng, Huinan,
Xinxiang, Xinyang (China)

84/28 27 [112]

Wuchang, Qiqihar, Jiamusi (China) 194/3 16 [57]

Cambodia, Japan, Korea, Philippines, Thailand 59/5 29 [113]

Anhui, Guangxi, Guangdong, Jilin, Heilongjiang, Inner
Mongolia (China) 18/6 30 [114]
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Table 4. Cont.

Plant Region (Country) No.
Sample/Region

No.
Element Ref.

Rice

Gujranwala, Gujrat, Narowal, Wazirabad, Chiniot, Okara,
Bahawalpur, Bahawalnagar, Faisalabad, Sahiwal, Jhang,
Lodhran (Pakistan)

64/12 35 [115]

Jansanjiang, Wuchang, Chahayang (China) 92/3 52 [116]

Sesame
Gondar, Humera, Wollega (Ethiopia) 93/3 12 [117]

Korean, Chỉnese and Indian 123/3 15 [118]

Soybean
Bei’an, Nenjiang, Heihe, Heilongjiang (China) 42/4 24 [119]

Ha Giang, Hanoi, Dong Nai (Vietnam); Ontario, Manitoba
(Canada); Iowa, Illinois (United States); Mato, Grosso (Brazil) 38/9 40 [120]

Wheat
Hebei, Henan (China) 61/2 22 [121]

Hebei, Henan, and Shanxi provinces (China) 270/3 13 [122]

Tuber type:

Potato (grown)
Alpine, Dinaric, Mediterranean, Pannonian (Slovenia) 36/4 25 [123]

Abruzzo, Lazio, Molise, Puglia, Emilia Romagna, and
Veneto (Italia) 30/6 10 [124]

Vegetable type:

Asparagus
Poland, Greece, Spain, Peru, China, Germany, Netherlands 319/7 36 [125]

Shandong, Hebei, Lianing (China) 22/3 15 [126]

Cabbages

Dandong, Yantai, Zhangjiakou, Qingzhou, Pingdu, Hangzhou,
Shanghai (China); Gyeonggi,
North Chungcheong, South Chungcheong, Gangwon, North
Gyeongsang, South Gyeongsang, South Jeonla (Korea)

363/14 22 [127]

Gangwon, North Gyeongsang, South Gyeongsang, South Jeonla,
and South Chungcheong (Korea) and Qingzhou, Pingdu, Yantai,
Dandong, and Zhangjiakou (China)

160/10 19 [128]

Mushroom
Chu Xiong, Da Li, Yu Xi (China) 40/3 13 [129]

Bulgaria, Romania, Croatia, Hungary, Iran, Slovenia, Italy,
Spain, Australia, and China 64/10 45 [130]

Pakchoi Tien Phong, Thanh Da, Linh Nam, Thanh Xuan, Van Duc, Van
Noi (Vietnam) 60/6 42 [131]

The Table 4 illustrates that a large number of samples are necessary to determine the
origin of food products. Typically, more than three samples are required from a single
region. The greater the number of samples collected, the more accurately the distinctive
characteristics of the region can be identified, resulting in a more precise identification.
Additionally, a greater number of elements need to be identified using ICP-MS than in
other studies, with a minimum of 20 elements being the most effective. Fewer elements
lead to less information for identification and inaccurate results. Conversely, if there is
insufficient data, the use of PCA statistics will not produce complete information. This is
similar to having high precision but low accuracy. These factors highlight the significant
effort, time, and analytical costs involved in food traceability studies, as more information
is required than in other types of research [132,133].

Table 4 reveals that rice is the most extensively researched commodity worldwide
in terms of traceability. The authenticity of rice has increasingly become a crucial issue
in recent years. To authenticate rice, a range of techniques has been employed, such as
determining its geographical origin, distinguishing between different cultivars, verifying
organic rice authenticity, and detecting impurities in rice [134].
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3.2. The Necessity of Standardization for Geographical Traceability Methods
3.2.1. Current Related Standard

Although various traceability studies have been conducted on different food products
as presented above, the current method of food traceability is still not regulated, making it
difficult to accurately evaluate. Quality standards and packaging regulations are primarily
set to evaluate the quality of products and determine their origin [80]. Several compelling
factors are driving the need for accurate analytical methods to authenticate the origin of
our food. The UK Food Standards Agency (FSA) has solicited public input on various food
labeling issues. According to the FSA’s research, “country of origin labeling” ranked high
on consumers’ list of demands for change [135].

Geographical indications (GIs) refer to the use of place names to identify products that
originate from specific regions and protect their quality and reputation. They are commonly
used for wines, spirits, and agricultural products. By granting certain foods recognition for
their distinctiveness, GIs differentiate them from other foods in the marketplace, making
them commercially valuable. GIs may also provide relief from acts of infringement or unfair
competition and protect consumers from deceptive or misleading labels. Some examples of
registered or established GIs include Parmigiano Reggiano cheese and Prosciutto di Parma
ham from the Parma region of Italy, Toscano olive oil from Tuscany, Roquefort cheese,
Champagne from the region of the same name in France, Irish Whiskey, Darjeeling tea,
Florida oranges, Idaho potatoes, Vidalia onions, Washington State apples, and Napa Valley
Wines. Over the past decade, determining the geographical origin of food has become an
increasingly important issue for countries worldwide. Consumers are concerned about the
authenticity of the food they eat [75].

To carry out geographical indications, scientists need to conduct a series of studies on
chemical composition analysis using various methods of determination. This is a complex
and expensive task that can sometimes be too costly for businesses to afford [61,99,136]. On
the other hand, without experience, one would have to search for suitable methods, which
would take a lot of time and effort because there is no pre-defined method. Therefore,
issuing a feasible international standard method that can distinguish the geographical
origin of plant foods will help reduce costs and time in PGI research. This will improve
efficiency in agricultural production.

3.2.2. Main Steps of the Proposed Standard Method

Undoubtedly, creating standards for determining the origin of plant-based food is
of the utmost importance. Based on the data collected, several essential steps need to
be incorporated into the development of the standard, as illustrated in Figure 3. This
entails the integration of two processes: (1) the profiling method and (2) the geographical
traceability method. The profiling method involves the following key steps:

• Step 1—Sample Collection: the received samples must ensure relevant information about
the variable, geographical details, and coordinates. The collection of samples should
include at least 5 or 10 samples per geographical region.

• Step 2—Sample Analysis includes two methods: sample preparation and analysis. These
methods are built depending on the equipment of each laboratory. However, it is
necessary to ensure the analysis of at least 20 elements on the ICP-MS equipment.
When building the standard, it is necessary to specify which elements and parameters
of the method are included.

• Step 3—Input data into PCA: it is necessary to set parameters for the PCA software. The
PCA method needs to determine accuracy and reliability.

In the initial stages of the geographical traceability method, the sample of interest
is an unknown entity. These samples are taken to the laboratory to undergo meticulous
analysis using ICP-MS. The resulting multielement data is then fed into the PCA, allowing
for effective differentiation and source identification. It is imperative that the findings are
presented with precision and reliability.
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4. Conclusions

The present review summarizes the research on the application of ICP-MS and PCA in
the geographical origin authentication of agricultural products. Consequently, ICP-MS is
a robust, accurate, and highly sensitive technique for determining the inorganic elements
in food substances, whereas PCA can reduce dimensions, speed up machine learning
processes, prevent data overflow and reduce noise. The combination of ICP-MS and PCA
can be considered a powerful tool and a standardized approach to authenticating and
certificating the geographical origin of plant-based foods, which plays an important role
in protecting quality products. In addition, this might be the base for producers making
decisions to enhance the effectiveness of the certification of their products to match the
demand of consumers in the markets.
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123. Opatić, A.M.; Nečemer, M.; Budič, B.; Lojen, S. Stable isotope analysis of major bioelements, multi-element profiling, and
discriminant analysis for geographical origins of organically grown potato. J. Food Compos. Anal. 2018, 71, 17–24. [CrossRef]

124. Di Giacomo, F.; Del Signore, A.; Giaccio, M. Determining the geographic origin of potatoes using mineral and trace element
content. J. Agric. Food Chem. 2007, 55, 860–866. [CrossRef]

125. Richter, B.; Gurk, S.; Wagner, D.; Bockmayr, M.; Fischer, M. Food authentication: Multi-elemental analysis of white asparagus for
provenance discrimination. Food Chem. 2019, 286, 475–482. [CrossRef]

126. Kwon, Y.-K.; Bong, Y.-S.; Lee, K.-S.; Hwang, G.-S. An integrated analysis for determining the geographical origin of medicinal
herbs using ICP-AES/ICP-MS and 1H NMR analysis. Food Chem. 2014, 161, 168–175. [CrossRef] [PubMed]

127. Yeon-Sik, B.; Byeong-Yeol, S.; Mukesh, K.G.; Chang-Soon, J.; Hyun, J.A.; Kwang-Sik, L. Discrimination of the geographic origin
of cabbages. Food. Control. 2013, 30, 626–630. Available online: https://www.academia.edu/5870450/Discrimination_of_the_
geographic_origin_of_cabbages (accessed on 1 March 2023).

128. Bong, Y.-S.; Shin, W.-J.; Gautam, M.K.; Jeong, Y.-J.; Lee, A.-R.; Jang, C.-S.; Lim, Y.-P.; Chung, G.-S.; Lee, K.-S. Determining the
geographical origin of Chinese cabbages using multielement composition and strontium isotope ratio analyses. Food Chem. 2012,
135, 2666–2674. [CrossRef]

129. Chen, L.-P.; Zhu, H.-Y.; Li, Y.-F.; Zhang, Y.; Zhang, W.; Yang, L.-C.; Yin, H.; Dong, C.-Y.; Wang, Y. Combining multielement analysis
and chemometrics to trace the geographical origin of Thelephora ganbajun. J. Food Compos. Anal. 2020, 96, 103699. [CrossRef]

130. Segelke, T.; von Wuthenau, K.; Neitzke, G.; Müller, M.-S.; Fischer, M. Food authentication: Species and origin determination
of truffles (Tuber spp.) by inductively coupled plasma mass spectrometry and chemometrics. J. Agric. Food Chem. 2020,
68, 14374–14385. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jfca.2022.104803
https://doi.org/10.1016/S1001-0742(12)60007-2
https://doi.org/10.1016/j.compag.2015.11.009
https://doi.org/10.1016/j.foodchem.2013.06.060
https://doi.org/10.1016/j.foodcont.2018.12.011
https://doi.org/10.1016/j.foodchem.2022.134208
https://doi.org/10.1016/j.foodres.2022.112056
https://www.ncbi.nlm.nih.gov/pubmed/36461316
https://doi.org/10.1016/j.foodchem.2017.08.023
https://www.ncbi.nlm.nih.gov/pubmed/28946350
https://doi.org/10.1155/2021/5536241
https://doi.org/10.1016/j.foodcont.2020.107827
https://doi.org/10.1016/j.jfca.2019.103276
https://doi.org/10.1016/j.fochx.2022.100545
https://doi.org/10.1007/s10068-017-0051-0
https://doi.org/10.7506/spkx1002-6630-201808045
https://doi.org/10.1155/2021/5583860
https://doi.org/10.1016/j.jcs.2013.01.008
https://doi.org/10.1111/ijfs.13366
https://doi.org/10.1016/j.jfca.2018.04.005
https://doi.org/10.1021/jf062690h
https://doi.org/10.1016/j.foodchem.2019.01.105
https://doi.org/10.1016/j.foodchem.2014.03.124
https://www.ncbi.nlm.nih.gov/pubmed/24837936
https://www.academia.edu/5870450/Discrimination_of_the_geographic_origin_of_cabbages
https://www.academia.edu/5870450/Discrimination_of_the_geographic_origin_of_cabbages
https://doi.org/10.1016/j.foodchem.2012.07.045
https://doi.org/10.1016/j.jfca.2020.103699
https://doi.org/10.1021/acs.jafc.0c02334
https://www.ncbi.nlm.nih.gov/pubmed/32520544


Foods 2023, 12, 1848 19 of 19

131. Nguyen-Quang, T.; Do-Hoang, G.; Truong-Ngoc, M. Multielement analysis of pakchoi (Brassica rapa L. ssp. chinensis) by ICP-MS
and their classification according to different small geographical origins. J. Anal. Methods Chem. 2021, 2021, 8860852. [CrossRef]
[PubMed]

132. Johnson, J.L.; Adkins, D.; Chauvin, S. A review of the quality indicators of rigor in qualitative research. Am. J. Pharm. Educ. 2019,
84, 7120. [CrossRef] [PubMed]

133. Islam, S.; Cullen, J.M. Food traceability: A generic theoretical framework. Food Control 2021, 123, 107848. [CrossRef]
134. Wadood, S.A.; Nie, J.; Li, C.; Rogers, K.M.; Khan, A.; Khan, W.A.; Qamar, A.; Zhang, Y.; Yuwei, Y. Rice authentication: An overview

of different analytical techniques combined with multivariate analysis. J. Food Compos. Anal. 2022, 112, 104677. [CrossRef]
135. Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope

analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [CrossRef]
136. Potortì, A.G.; Mottese, A.F.; Fede, M.R.; Sabatino, G.; Dugo, G.; Turco, V.L.; Costa, R.; Caridi, F.; Di Bella, M.; Di Bella, G.

Multielement and chemometric analysis for the traceability of the Pachino Protected Geographical Indication (PGI) cherry
tomatoes. Food Chem. 2022, 386, 132746. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/8860852
https://www.ncbi.nlm.nih.gov/pubmed/33628580
https://doi.org/10.5688/ajpe7120
https://www.ncbi.nlm.nih.gov/pubmed/32292186
https://doi.org/10.1016/j.foodcont.2020.107848
https://doi.org/10.1016/j.jfca.2022.104677
https://doi.org/10.1016/j.tifs.2005.08.008
https://doi.org/10.1016/j.foodchem.2022.132746

	Introduction 
	Methods 
	Multielement and Accuracy Analysis 
	Multielement Analysis 
	Sample Preparation 

	PCA Tools 

	Discussion 
	Applications of ICP-MS Combined with PCA for Determining the Origin of Agricultural Products 
	The Necessity of Standardization for Geographical Traceability Methods 
	Current Related Standard 
	Main Steps of the Proposed Standard Method 


	Conclusions 
	References

