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Abstract: Heavy metal contamination in wheat not only endangers human health, but also causes
crop quality degradation, leads to economic losses and affects social stability. Therefore, this paper
proposes a Pyraformer-based model to predict the safety risk level of Chinese wheat contaminated
with heavy metals. First, based on the heavy metal sampling data of wheat and the dietary con-
sumption data of residents, a wheat risk level dataset was constructed using the risk evaluation
method; a data-driven approach was used to classify the dataset into risk levels using the K-Means++
clustering algorithm; and, finally, on the constructed dataset, Pyraformer was used to predict the risk
assessment indicator and, thus, the risk level. In this paper, the proposed model was compared to
the constructed dataset, and for the dataset with the lowest risk level, the precision and recall of this
model still reached more than 90%, which was 25.38–4.15% and 18.42–5.26% higher, respectively. The
model proposed in this paper provides a technical means for hierarchical management and early
warning of heavy metal contamination of wheat in China, and also provides a scientific basis for
dynamic monitoring and integrated prevention of heavy metal contamination of wheat in farmland.

Keywords: wheat; food safety risk level; heavy metal contamination; Pyraformer neural net-
work model

1. Introduction

As one of the three major food crops in the world today, wheat plays an important
role in the diets of most countries around the world, and is also a major food crop in
China. However, with the long-term unreasonable application of pesticides, fertilizers and
mulch; industrial production; automobile exhaust emissions; and irrigation of industrial
wastewater, the content of heavy metals in the soil and water environment has increased.
The elimination of heavy metal pollution is often more difficult because heavy metals
cannot be microbially or chemically degraded, and can only undergo interconversion
between various forms in the environment [1]. After heavy metals pollute the atmosphere,
water bodies and soil, they are enriched in the human body at the end of the food chain,
endangering human health, leading to metabolic disorders in the organism and inducing
diseases and even death [2]. Among a series of heavy metals, mercury (Hg), cadmium (Cd),
arsenic (As), lead (Pb) and chromium (Cr) are known as the five toxic elements because
they are the most toxic. Among them, Hg, Cd, As and Pb are harmful to organisms in many
ways as non-essential substances for the metabolism and other biological functions [3],
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while Cr is one of the essential trace elements for humans and animals, but excessive intake
can have significant toxic effects on humans. Studies have shown that Pb, when entering
the human body, can cause abnormalities in the function of many systems, such as the
hematopoietic system, the nervous system and the immune system. It can also cause liver,
kidney, gastrointestinal and brain diseases, in aerosol or liquid form, diffuse in the daily air
environment [4,5]. Cd is more easily adsorbed by crops compared to other heavy metal
elements, and after enrichment in the human body, it impairs bone metabolism and leads
to osteochondrosis. In addition, chronic Cd poisoning has an effect on human fertility [6].
Hg is one of the most toxic heavy metal elements in the environment; it directly sinks into
the liver after being ingested, causing great damage to the brain, nerves and vision [7,8].
The toxicity of As is related to the form and valence state in which it is present, and the
toxicity of arsenicals increases steeply. Chronic As poisoning can induce lung, skin and
bladder cancer, while acute poisoning can lead to death within days or even hours [9,10].
Cr compounds are tremendously harmful to humans, and studies have found that trivalent
Cr is teratogenic, while hexavalent Cr is far more toxic than trivalent Cr. It is also a strong
carcinogen which can induce lung and nasopharyngeal cancer [11].

Besides being hazardous to human health, heavy metal contamination can also cause
crop quality degradation, which can lead to serious economic losses and affect national
economic development. Therefore, in view of the potential consequences of heavy metal
contamination, a study on the prediction of the safety risk level of heavy metal contamina-
tion in wheat, which is the staple food of the nation, is imminent.

Mao et al. [12] compared and analyzed the monitoring of heavy metal contamination
of food products at home and abroad, and found that foreign countries monitored the “farm
to table” process of determining the quality of food earlier, while China had problems such
as difficulties in the precise tracing of factors including the origin environment, planting
and cultivation measures and incomplete coverage of heavy metal indexes. Mahmoud
et al. [13] evaluated the ecological risk of Cd, As, Cr and Pb metals in wheat raised near
industrial parks, and showed that no non-carcinogenic risk was found in the studied
population through the four exposure routes; however, the carcinogenic risk of Cd, As
and Pb was considerable through oral consumption of wheat and ingestion of soil. Li
et al. [14] analyzed the characteristics of heavy metal content in wheat grains and assessed
the human health risks in a county in northern Henan Province, showing that the minimum
health risk indicator for As, Cd and Cr was 6.32 × 10−4 for adults and children, which
exceeded the maximum acceptable risk range recommended by the U.S. Environmental
Protection Agency (EPA) and posed a high carcinogenic risk. Doabi et al. [15] studied heavy
metal contamination and health risks in agricultural soils, atmospheric dust and major food
crops in Kermanshah province, Iran, where 167 samples of agricultural soils, atmospheric
dust and food crops (wheat and maize) were collected and analyzed for concentrations,
contamination levels and human health risks of four heavy metals, including zinc (Zn),
copper (Cu), nickel (Ni) and Cr, respectively. Numerous studies have shown that the
degree of heavy metal contamination varies widely from region to region, and that the
types of heavy metal contamination in different regions vary. This shows that pollution
prevention and timely warnings for agricultural products appear to be necessary for their
targeted management and regulation. Voronenko et al. [16] analyzed and predicted the
food security indicator for Ukraine and predicted the level of risk of its decline using data
from the time interval of 1995 to 2018. Kim et al. [17] used the Integrated Fisheries Risk
Analysis Method for Ecosystems (IFRAME) to assess and predict risk indices at dynamic
and spatial-temporal scales in the Korean ecosystem in order to establish an appropriate
fishery management plan for sustainable fisheries by incorporating spatial variability into
the ecosystem. Tavoloni et al. [18] performed temporal trend analysis and predicted the
heavy metal levels in clams and mussels as a way to assess environmental safety, which
allowed for the assessment of contaminants in water bodies and sediments. Lu et al. [19]
used deep learning algorithms to assess and predict the risk of contamination levels of Cd,
Cr and As metals and metalloids in Chinese rice. The vast area of China, the difference in
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climate between the north and the south, the difference in economic development between
the east and the west and the difference in soil topography and geology were expected to
lead to heavy metal pollution in soil, showing the characteristics of geological factors [20].
In addition, studies have shown that global climate change is further influencing the
diffusion of heavy metals in groundwater [21]. Meanwhile, studies by the U.S. Geological
Survey and Harvard University have shown that a series of seemingly unrelated changes
triggered by global climate change will have a significant impact on the transport and
distribution of the heavy metal mercury on a global scale.

In summary, the graded supervision and risk warning of heavy metal pollution in
wheat in each province of China can not only strengthen the supervision in key areas, but
also provide a theoretical basis for the monitoring and comprehensive management of
heavy metal pollution in farmland wheat. In this study, a Pyraformer-based model was
constructed to predict the safety risk level of heavy metal contamination in wheat in China.

Using the sampling data of heavy metal content in national wheat samples by the State
Administration for Market Regulation, combined with the Fifth China Total Diet Study [22],
the food safety risk evaluation indicator dataset of wheat was constructed and the K-
Means++ algorithm was used to divide the space constructed from the indicator dataset
into the corresponding risk levels. On the constructed dataset, the Pyraformer neural
network model was used to predict the assessment indicator based on the constructed time
series, thus completing the prediction of the wheat risk level. The model proposed in this
paper provides a technical means for implementing hierarchical management of each risk
area, focusing on key areas, early warning and early treatment.

2. Materials and Methods
2.1. Sample Collection and Processing

The data in this study were obtained from the content of heavy metals in wheat
samples taken by the State Administration for Market Regulation from 2019 to 2021,
covering 20 provinces, with a total of 72,254 wheat samples collected. Among them,
the contents of Pb, Cd and Cr were determined by graphite furnace atomic absorption
spectrometry, As by inductively coupled plasma mass spectrometry and Hg by cold atomic
absorption spectrometry.

2.2. Evaluation Methods and Criteria

According to the statistical analysis of the sampling data from the State Administration
for Market Regulation, the proportion of wheat samples without detectable heavy metal
contamination in this study was less than 60% of the total samples. Therefore, according
to the principle of credible evaluation of low-level contaminants in food proposed by the
WHO, the data not detected in this experiment were assigned a 1/2 LOD (limit of detection)
value. The five heavy metal elements, Hg, Cd, As, Pb and Cr, in this study all have chronic
non-carcinogenic health risks, with Cr, As, Cd and Pb having carcinogenic risks.

2.2.1. Nemerow Integrated Pollution Index

The Nemerow Integrated Pollution Indicator (NIPI) is a weighted multi-factor envi-
ronmental quality indicator that takes into account extreme values, and is one of the most
common methods used at home and abroad to analyze the pollution levels in soil [23,24],
crop [25,26], water [27–29], atmosphere [30,31], fruits [32] and vegetables [33]. It can take
into account the most polluting impact factors and objectively reflect the comprehensive
impact of various pollutants on wheat. Among them, the degree of contamination of a
single heavy metal was assessed by the single-factor contamination indicator method, and
the expression is shown below:

Pi,j =
Ci,j

Sj
(1)

In this paper, we regard the ith as the i-th in the terminology, and other forms of xth in
the following have the same meaning as this.
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Where Pi,j is the single factor contamination indicator of the jth heavy metal contami-
nant in wheat from province i, Ci,j is the detected level of the jth heavy metal contaminant
in wheat from province i (mg/kg) and Sj is the limit value (mg/kg) specified in the national
standard for the jth heavy metal contaminant in wheat. The National Standard for Food
Safety Limits for Contaminants in Food provides limits on heavy metals in wheat in China,
with the limits of total Hg, Cd, total As, Pb and Cr being 0.02, 0.1, 0.5, 0.2 and 1.0 mg/kg,
respectively.

PIi =

√
P2

max(i)+P2
avg(i)

2
(2)

where PIi is the NIPI of heavy metal contamination in wheat of province i; Pmax(i) is
the maximum single-factor pollution indicator of heavy metal contaminants in wheat of
province i and Pavg(i) is the average pollution indicator of heavy metal contaminants in
wheat of province i. Usually, the single-factor contamination indicator and the NIPI are
greater than 1, indicating that the product is contaminated, or less than or equal to 1,
indicating that it is not contaminated, and the greater the value is, the more serious the
contamination is.

2.2.2. Target Hazard Quotient

In this study, the target hazard quotient (THQ) proposed by the U.S. EPA was used to
assess the chronic non-carcinogenic health risk to the body from heavy metal contaminants
ingested by humans through wheat consumption [34,35]. When more than one heavy
metal contaminant is present in wheat, the combined effect of the contaminants should be
considered. Therefore, in order to assess the risk of multiple heavy metal contaminants
to human health, the total target hazard quotient was used in this paper to calculate the
sum of the target hazard quotients of five heavy metal contaminants in wheat. When THQ
is less than 1, it indicates that there is no significant health risk to the human body from
heavy metal contaminants ingested through wheat, and when THQ is greater than or equal
to 1, it indicates that the contamination poses a certain health risk to human body; the
greater the THQ, the greater the health risk. The expression of the target hazard quotient is
shown below:

THQi,j =
EF× ED× F50

i ×Cavg(i,j)

RfD×W×AT
(3)

where THQi,j is the THQ of the jth heavy metal pollutant in wheat in province i; EF is the
frequency of wheat intake per year (365 days/year); ED is the intake time of wheat, which
takes the value of 70 years; F50

i is the average intake of wheat for residents of province
i (kg/d); Cavg(i,j) is the average content of the jth heavy metal contaminant in wheat in
province i (mg/kg); RfD is the reference dose (mg/(kg·d)) of exposure to heavy metal
contaminants via the ingestion route; W is the average weight of the inhabitants (kg), taken
as 60 kg; and AT is the average exposure time (365 days/year×ED). EPA provides the
average daily reference dose of heavy metals, where the RfD of Hg, Cd, As, Pb and Cr are
0.0001, 0.001, 0.0003, 0.0037 and 0.003 mg/(kg·d), respectively.

THQi = ∑
j

THQi,j (4)

where THQi is the total target hazard quotient of heavy metal pollutants in wheat in
province i, which is the sum of the target hazard quotient THQi,j of five heavy metal
pollutants in wheat.

2.2.3. Total Carcinogenic Risk

Carcinogenic risk (CR) is commonly used to calculate the probability that an individual
will develop a certain cancer as a result of exposure to a chemical [36–39], and the sum of the
carcinogenic risks of various chemicals is the total carcinogenic risk (TCR) when multiple
chemicals act on the body at the same time. In this paper, the total carcinogenic risk was
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used to assess the carcinogenic risk of heavy metals in wheat to humans through dietary
intake, considering that wheat contains several heavy metal elements that can combine
to cause carcinogenic effects in humans. Both the U.S. EPA and our Site Environmental
Assessment Guidelines indicate that when TCR < 10−6, it means that the heavy metal
contaminants in wheat have no carcinogenic risk to humans; when 10−6 < TCR < 10−4, it
means that the risk of the contamination to human health is acceptable; when TCR > 10−4,
it means that the human body is in a state of intolerable carcinogenic risk at the time.
The formula for the daily dietary intake of individual heavy metals through wheat is
shown below.

EDI50
i,j =

F50
i ×Cavg(i,j)

W
(5)

where EDI50
i,j denotes the daily intake of the jth heavy metal (mg/(kg·d)) through wheat in

the diets of residents of province i. In addition, the meanings of F50
i , Cavg(i,j) and W in the

formula are as described in Section 2.2.2.

TCRi = ∑
j

EF× ED×CSFj × EDI50
i,j

ATC
(6)

TCRi denotes the total carcinogenic risk of four heavy metals consumed by residents of
province i through wheat in their diets; ATC denotes the duration of the carcinogenic effect
(365 days/year×years of exposure, 70 years of exposure is assumed in this paper); and
CSFj (cancer slope factor) denotes the carcinogenic slope factor of heavy metal j (kg·d/mg).
In addition, the meanings of EF and ED are as described in Section 2.2.2. EPA provides the
carcinogenic slope factors for heavy metals: the CSFs for Cd, As, Pb and Cr are 6.3, 1.5,
0.0085 and 0.5 kg·d/mg, respectively.

2.3. Wheat Food Safety Risk Classification Based on K-Means++ Algorithm

Based on the above selected evaluation method for heavy metal contamination in
wheat, a dataset of evaluation indicators for wheat samples, taken weekly from each
province, is constructed, resulting in a three-dimensional space of evaluation indicators
for wheat samples. In order to increase the daily supervision and risk monitoring of
wheat’s food quality and safety, the wheat food safety risk level is graded, so as to denote
a higher level of safety risk in the area and provide time to focus on supervision. To
reduce the subjectivity and strong reliance on experience in food safety risk classification,
this paper adopts a data-driven approach and uses clustering algorithms to automatically
classify the three-dimensional space constructed above into reasonable risk classes. The
data handled in this paper are of the numerical type and large volume, so the K-Means++
algorithm was selected, which can ensure better scalability and low algorithm complexity
when dealing with large data sets while enabling more similarity between patterns in a
cluster than between patterns not in the same cluster. The specific algorithmic steps are
described below:

1. Using the dataset of the wheat sample assessment indicator as input, a sample point
in the dataset as randomly selected as the first initial clustering center.

2. For each point x in the dataset, the distance D(x) between x and the cluster center
was calculated.

3. The point with the largest D(x) was selected as the new clustering center.
4. Steps 2 and 3 were repeated until K clustering centers were selected.
5. Using the K cluster centers calculated above as the initial cluster centers, the K-Means

algorithm was run to cluster the dataset of wheat sample evaluation indices.

Finally, the three-dimensional space of the evaluation indicator constructed above
was divided into K parts according to the K-Means++ algorithm, the points in the sample
set were grouped into these K clusters and the clustering centers of these K clusters were
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calculated. According to the distance between the K cluster centers and the origin, these K
clusters were divided into K food safety risk levels.

2.4. Pyraformer-Based Model for Predicting Food Safety Risk Levels of Wheat

Using the constructed dataset of wheat sample assessment indexes, a time series
of each indicator in each province was constructed using the assessment indicators of
historically sampled wheat samples. The model algorithm was used to predict each risk
indicator of wheat in each province separately, based on historical data. Neural network
models are widely used in medical detection, intelligent identification of agricultural pests
and diseases and industrial equipment lifetime analysis, and food quality safety assessment
is also characterized by time series prediction problems. Pyraformer neural network
models [40] are widely used in various industries due to their powerful data reasoning and
friendliness to long series processing; therefore, in this paper, we used a Pyraformer neural
network for the prediction of food safety risk indicators of wheat. After completing the
prediction of each indicator of wheat, the risk level of the wheat was predicted according to
the aforementioned K-Means++ algorithm-based wheat food safety risk grading method.

2.4.1. Wheat Food Safety Risk Indicators Forecast

In this paper, the Pyraformer neural network model was used to predict food safety
risk indicators for wheat, and the model is shown in Figure 1. The Pyraformer neural
network model improved upon the Transformer model by introducing global tokens to
reduce the time complexity. In this paper, single-step prediction was used, as described in
Section 2.4.2.
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Figure 1. Pyraformer-based model for predicting food safety risk indicators for wheat.

On the input side, we used the time series of each indicator [Indicatort, . . . , Indicatort+i,
. . . Indicatort+T] and the number of weeks in a year [Weekt, . . . ,Weekt+i, . . . Weekt+T] as
observations and covariates, respectively, and combined them with the location codes to
sum them as inputs for the coarse scale construction module (CSCM).

The model uses CSCM to construct multi-resolution C meta-trees. The goal of CSCM
is to initialize nodes at the coarser scales of the pyramid graph so that subsequent Pyramid
Attention Modules (PAM) can exchange information between these nodes.

To further capture the temporal correlation of different ranges, PAM was introduced
by passing messages using the attention mechanism in the pyramid diagram. Using
pyramid diagrams to describe the temporal correlation of the observed time series in
a multi-resolution manner, we were able to decompose the pyramid diagram into two
parts: inter-scale connectivity and intra-scale connectivity. Inter-scale connections form
a C-tuple, in which each parent node has C children. In addition, it is easier to capture
long-range dependencies in coarser scales by simply connecting neighboring nodes via
intra-scale connections.

Finally, single-step prediction was used in this study. After the sequence was encoded
by PAM, the features given by the last node on all scales in the pyramid diagram were
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collected, and they were connected and inputted into the fully connected layer for the
prediction output of each risk assessment indicator (Indicatort+T+1).

2.4.2. Forecast of Food Safety Risk Levels for Wheat

In this paper, a Pyraformer-based wheat food safety risk level prediction model was
constructed, as shown in Figure 2. The model consisted of 3 parts, which were the data
processing layer, Pyraformer-based wheat sample risk indicator forecast layer and wheat
food safety risk level prediction layer.
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Figure 2. Pyraformer-based model for predicting food safety risk levels in wheat.

First, at the data processing level, weekly risk assessment indicators were constructed
for each of the 20 provinces of the country over a 3-year period based on the aforementioned
wheat food safety risk assessment method, and risk assessment indicators with time series
characteristics were used to construct a food safety risk space for wheat, which was then
combined with the aforementioned data-driven risk ranking method to rank the food
safety risk space for wheat. In the data processing layer of Figure 2, the blue dashed line
indicated the calculation of NIPI of wheat based on five heavy metals, the orange dashed
line indicated the calculation of THQ of wheat based on five heavy metals, and the green
dashed line indicated the calculation of TCR of wheat based on four heavy metals.

Secondly, in the Pyraformer-based wheat sample risk indicator forecast layer, each risk
assessment indicator of each province was constructed as a time series of [NIPI t, . . . ,NIPIt+i,
. . . NIPIt+T], [THQt, . . . ,THQt+i, . . . THQt+T] and [TCRt, . . . ,TCRt+i, . . . TCRt+T], and the
time series was divided into a training set and a test set. The training set was used to
train the parameters of the indicator prediction model, and the test set was used to test
the accuracy of the indicator’s prediction. In this study, the data from week 1 to 138 of the
3 years were used as the training set, and the data from week 139 to 159 were used as the
test set. T-t+1 was selected as the time window, and the time series of the three assessment
indicators of each province were put into the Pyraformer neural network model. Then, the
prediction model outputted the three food safety risk assessment indicators, NIPIt+T+1,
THQt+T+1 and TCRt+T+1, of each province at the moment of t+T+1.

Finally, in the wheat food safety risk level prediction layer, the three indicators pre-
dicted in the upper layer were compared with the cluster centers of the K food safety
risk levels constructed above in terms of distance, and the cluster with the closest dis-
tance among them was selected to classify the current wheat sample risk level into the
corresponding cluster, which indicated the predicted risk level.
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3. Experimental Results and Discussion
3.1. Data Set of Evaluation Indicators for Wheat Samples

Based on the aforementioned safety risk evaluation method for wheat samples, this
paper constructed an assessment indicator dataset, which was derived from wheat samples
sampled in 20 provinces from 2019 to 2021. The three-dimensional attributes of each sample
point in the dataset are the three safety risk assessment indicators of NIPI, THQ and TCR
for a province in a certain week, respectively.

The 3-dimensional attribute values of the assessment indicator dataset are shown in
Figures 3–5, where the horizontal coordinates represent the number of weeks in 3 years
and the vertical coordinates represent the value of each assessment index.
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3.2. Ranking of Wheat Assessment Indicator Datasets

As can be seen in Figures 3–5, the assessment indicators of the sampled wheat samples
differed greatly in data magnitude in different dimensions, so the direct use of the original
data for clustering was expected to result in the contribution of data of smaller magnitudes
to clustering being ignored, which would have seriously affected the clustering effect. In this
paper, the maximum–minimum method is used to normalize the dataset to eliminate the
influence of different magnitudes on the clustering results and to make the data comparable.
The formula is shown in Equation (7).

x′ =
x−min

max−min
(7)

where x′ denotes the normalized evaluation index, x denotes the evaluation indicator in
the original data set, min denotes the minimum value in the dimension where x is located
in the original data set and max denotes the maximum value in the dimension where x
is located in the original data set. It can be seen from the formula that the normalized
indicators all ranged from 0 to 1.

After normalizing the data, the data set was clustered using the K-Means++ algorithm.
Since the clustering algorithm was an unsupervised machine learning algorithm, the
optimal solution of the model could not be calculated, but only the local optimal solution
of the model could be calculated. Therefore, in this paper, according to the actual demand
of food safety risk classification, the K values of clustering centers were set from 2 to
6, respectively, and the number of clusters with the best clustering effect was selected
by comparing the silhouette coefficients after clustering. Figure 6 shows the silhouette
coefficients of each clustering result. The silhouette coefficient is a way to evaluate how
good the clustering effect is, and aims to compare the similarity of an object to its own
cluster with the similarity to other clusters. The number of clusters with the highest
silhouette coefficient indicates the best choice of the number of clusters. As can be seen
from Figure 6, when the number of clusters was selected as three, the silhouette coefficient
was the largest, indicating that the clustering effect was the best at this time. Therefore, the
risk level of the wheat assessment indicator dataset was classified as three in this paper.
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After selecting the rank classification of the wheat assessment indicator dataset as
three levels, the sample points in the space were clustered by the K-Means++ algorithm,
and the normalized values of the sample centers of each cluster and the number of sample
points in each cluster are shown in Table 1. According to the Euclidean distance between
the normalized sample center and the origin, the three clusters were divided into three risk
levels: high, medium and low. The specific distribution of points in the three clusters is
shown in Figure 7, where the green points indicate low-risk wheat samples, the yellow
points indicate medium-risk wheat samples and the red points indicate high-risk wheat
samples. As seen from the figure, the higher the risk level was, the farther the sample
points were from the origin in the three-dimensional space.
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Table 1. Clustering centers, sample points and rank levels.

Cluster NIPI THQ TCR Sample Point Rank Level

1 0.013764 0.02515 0.02412 2771 Low
2 0.079831 0.115745 0.157608 371 Medium
3 0.35066 0.403727 0.461727 38 High

After dividing the points in the wheat sample set into risk classes, we conducted a
probability density analysis of the original sample point distributions in each cluster, as
shown in Figures 8–10. From the figures, it can be seen that the concentration intervals, as
well as the interval ranges, of the distribution of each dimensional attribute in each cluster
differed significantly from each other, as follows:

(1) Figure 8 shows the probability density of each dimensional attribute of the low-risk
cluster, where the values of NIPI are concentrated around 0.06 and mainly distributed
from 0.03 to 0.09; the values of THQ are concentrated around 0.025 and mainly
distributed from 0.01 to 0.15 and the values of TCR are concentrated around 0.05 ×
10−5 and distributed from 0.025 × 10−5 to 0.3 × 10−5. Each indicator was distributed
in a small range of values.

(2) Figure 9 shows the probability density of each dimensional attribute of the medium-
risk cluster, where the values of NIPI are concentrated around 0.2 and mainly dis-
tributed from 0.1 to 0.5; the values of THQ are concentrated around 0. 25 and mainly
distributed from 0.15 to 0.4 and the values of TCR are concentrated around 0.75× 10−5

and distributed from 0.05 × 10−5 to 1.75 × 10−5. The distribution of each indicator
was still within a relatively small range of values, but its concentrated values and
distribution areas were larger compared to the low-risk clusters.

(3) Figure 10 shows the probability density of each dimensional attribute of the high-risk
clusters, where the values of NIPI are concentrated around 1 and mainly distributed
from 0.5 to 2.5; the values of THQ are concentrated around 1 and mainly distributed
from 0. 5 to 1.5 and the values of TCR are concentrated around 3 × 10−5 and dis-
tributed from 2 × 10−5 to 4 × 10−5. The distribution of each indicator was in a
relatively large range of values, and the concentrations of values and distribution
areas were larger compared with the other two clusters.
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3.3. Risk Level Prediction for Wheat Samples

Based on the prediction model of wheat food safety risk level constructed above, this
experiment firstly predicted three risk assessment indicators for wheat in 20 provinces. In
Figures 11–15, the dashed line at week 138 indicates the dividing line, the data from week
138 and earlier indicate the training set and the data from week 139 and later indicate the
test set. In the figure, the solid blue line represents the actual data trend of the constructed
evaluation metrics for the training of the model, the solid yellow line before the dashed line
indicates the data trend trained by the model and the dashed yellow line after the dashed
line indicates the predicted data trend.
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According to the range of each indicator, described in Section 2.2, that is allowed
when there is no contamination or less contamination, combined with the data trend in
Figures 11–15, it can be seen that, overall, China’s wheat was less contaminated by heavy
metals and less harmful to human health; however, some individual provinces in some
time range indicators exceeded the standard. However, it is still necessary to draw the
attention of relevant government departments and to take timely regulatory measures to
avoid serious food safety risk problems.

As seen in Figure 11, the THQ of wheat in Beijing exceeded the standard in June at
the time of 2020, and the NIPI and TCR did not exceed the standard, indicating that the
chronic risk of heavy metal contamination in wheat was higher in that month. Considering
that at the time, new wheat was available and flowing into Beijing from all over the world,
it was necessary to increase the supervision and sampling of wheat in Beijing in June, and,
at the same time, to conduct food traceability of foreign wheat flowing into Beijing so as to
strengthen the supervision of wheat in the field.



Foods 2023, 12, 1843 14 of 19

Foods 2023, 12, x FOR PEER REVIEW 18 of 25 
 

 

 

 
Figure 13. Risk assessment indicator predictions for Hunan, Jilin, Jiangsu and Jiangxi. 

  

Figure 13. Risk assessment indicator predictions for Hunan, Jilin, Jiangsu and Jiangxi.

Foods 2023, 12, x FOR PEER REVIEW 19 of 25 
 

 

 

 
Figure 14. Risk assessment indicator predictions for Liaoning, Inner Mongolia, Ningxia and Qing-
hai. 
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In Figure 12, in early February of each year during the period of 2019–2021, NIPI and
THQ indicators in Henan Province exceeded the standard, while TCR did not; meanwhile,
NIPI indicators in Hubei Province exceeded the standard, while THQ and TCR did not.
Through the research, it was found that during this time period, due to the high demand
for holiday replenishment, the escalation of epidemic prevention and control, the increase
in the placement of grain reserves at all levels and multiple other factors, in two provinces,
wheat sampling indicated that heavy metal contamination was more serious, and this
period required strict control of wheat food safety. At the same time, it was found that
although the indicators of heavy metal pollution in wheat in Heilongjiang Province were
within the permissible range, the deviation of the predicted value from the true value
was significant, taking into account that the province may have been increasing industrial
production and other projects, thus causing heavy metal pollution in the soil.

In Figures 13 and 14, all of the assessed indicators of heavy metal contamination of
wheat in Hunan, Jilin, Jiangsu, Jiangxi, Liaoning, Inner Mongolia, Ningxia and Qinghai
provinces were at low levels, indicating that these eight provinces were doing a relatively
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good job ensuring the food safety of wheat. However, it was found that the risk indicators in
Jilin province, although within the allowed range, also showed large fluctuations, requiring
further analysis of heavy metal contamination of the soil, air and other environments.
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As seen in Figure 15, there was an excess of heavy metals in wheat in Shaanxi and
Sichuan. The NIPI and THQ indicators in Shaanxi province exceeded the standard at the
beginning of February each year, while the TCR indicator fluctuated more significantly at
that time, as did the NIPI in Sichuan province. As both Shaanxi and Sichuan are large pasta
provinces, they were in the same situation as Henan; therefore, it was also necessary to
increase the supervision of wheat in the province during this period.

The predictions in graphs 11 to 15 show that the actual trends of most of the data were
basically the same as the predicted trends, and only individual predicted data showed large
deviations from the actual data. Therefore, the effectiveness of the prediction model in this
experiment was evaluated by calculating the RMSE and MAE of the predicted indicators
for each province based on the predicted data and the actual data. Figures 16 and 17 show
the root mean square error (RMSE) and mean absolute error (MAE) of the model, predicting
the 3 indicators for 20 provinces across the country, respectively. Since the allowable range
of TCR indicators is very small, the order of magnitude is in the range of 1 × 10−4–1 ×
10−6. In order to better demonstrate the prediction effect of the model on TCR indicators,
the RMSE and MAE indicators of TCR were multiplied by E5, and the prediction model
efficacy indicators of NIPI and THQ were kept in the same order of magnitude. The smaller
the RMSE and MAE, the smaller the prediction error and the better the effect. As can be
seen in Figures 16 and 17, the RMSE and MAE of each risk assessment indicator predicted
by the model for each province were kept below 1. Thus, this experiment achieved better
results in the process of indicator prediction.

In addition, to verify the effectiveness of this model in predicting the risk level of heavy
metal contamination in wheat, risk level prediction models based on the long short-term
memory (LSTM), gate recurrent unit (GRU) and Informer neural networks are used in
this paper for comparison with this model, and their precision and recall rates of the F1
values of each model are shown in Table 2. From the table, it can be seen that the risk
level prediction model based on the Pyraformer neural network proposed in this paper
achieved the best results in terms of precision, recall and F1 values for different levels
of risk prediction. Precision, recall and F1 values are shown in Table 2 as P%,R%,F1%
respectively. Due to the different numbers of wheat samples of low, medium and high
levels in the sample, especially the fact that the lowest number of samples were found at
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high levels, the precision and recall of this model still reached more than 90%, far exceeding
the other models by 25.38–4.15% and 18.42–5.26%, respectively. This shows that the risk
level prediction model proposed in this paper is able to meet the current early warning
function for the risk of heavy metals in wheat.
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Table 2. Evaluation metrics for neural network-based risk level prediction models.
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Low Level Medium Level High Level
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Pyraformer 99.24 98.81 99.02 91.41 94.61 92.98 92.50 97.37 94.87
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4. Conclusions

Among China’s food crop varieties, wheat is the main food crop, second only to rice,
and is cultivated in a wide range of areas in China, from the tropical Hainan Island in the
south to the cold region of Heilongjiang in the north. In recent years, wheat production has
increased significantly due to farmers’ choices of good varieties and timely work related
to wheat pests and disease prevention. The relevant departments provide year-round
coverage regulation of the nation’s wheat, which can lead to the occupation of sampling
forces and waste of management resources. This results in a lack of focused supervision
of high-risk areas, causing frequent food safety problems, triggering serious declines in
public opinion and bringing about adverse social impacts. Therefore, predicting the level
of heavy metal contamination of wheat in China, grading the risk of wheat food safety and
focusing supervision on areas with serious contamination levels can effectively prevent food
safety problems and enhance people’s sense of well-being and security, while providing
a scientific basis for dynamic monitoring and comprehensive prevention of heavy metal
contamination of wheat in agricultural fields. From the above experimental process, we
can also see that the predicted future data are inferred from the historical and current data;
therefore, the comprehensiveness and accuracy of the sampling data directly affected the
prediction results.

China is a large agricultural country. Its five major varieties of grain crops are rice,
wheat, corn, soybeans and potatoes, in addition to sorghum, cereals and other mixed crops.
In China, grain is both a necessity for people’s survival and an important source of feed, as
well as an important economic source for food and agriculture farmers. Therefore, the food
safety of grain is not only important for stabilizing people’s psychology, but also significant
to the long-term stable development of the national economy. By applying the food safety
risk prediction model proposed in this paper to various food categories, risk assessment
and prediction of heavy metals in food can improve our ability to resist food risks and
reduce the social crisis derived from food risks.
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