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Abstract: Fritillaria has a long history in China, and it can be consumed as medicine and food. Owing
to the high cost of Fritillaria cirrhosa, traders sometimes mix it with the cheaper Fritillaria thun-
bergii powder to make profit. Herein, we proposed a laser-induced breakdown spectroscopy (LIBS)
technique to test the adulteration present in the sample of Fritillaria cirrhosa powder. Experimental
samples with different adulteration levels were prepared, and their LIBS spectra were obtained.
Partial least squares regression (PLSR) was adopted as the quantitative analysis model to compare
the effects of four data standardization methods, namely, mean centring, normalization by total area,
standard normal variable, and normalization by the maximum, on the performance of the PLSR
model. Principal component analysis and least absolute shrinkage and selection operator (LASSO)
were utilized for feature extraction and feature selection, and the performance of the PLSR model
was determined based on its quantitative analysis. Subsequently, the optimal number of features was
determined. The residuals were corrected using support vector regression (SVR). The mean absolute
error and root mean square error of prediction obtained from the quantitative analysis results of the
combined LASSO-PLSR-SVR model for the test set data were 5.0396% and 7.2491%, respectively, and
the coefficient of determination R2 was 0.9983. The results showed that the LIBS technique can be
adopted to test adulteration in the sample of Fritillaria cirrhosa powder and has potential applications
in drug quality control.

Keywords: laser-induced breakdown spectroscopy; quantitative analysis; chemometric methods

1. Introduction

Fritillaria has high medicinal value because of its ability to moisten the lungs, relieve
cough, reduce phlegm, and it can also be consumed as a food [1,2]. Owing to the difference
in efficacy and supply and demand, the price of Fritillaria cirrhosa is several times higher
than other Fritillaria varieties [3]. In the market, unscrupulous merchants sometimes mix
cheaper Fritillaria powders with Fritillaria cirrhosa powder and attempt to sell them off
as pure Fritillaria cirrhosa. Therefore, it is necessary to develop a rapid and convenient
method to test the level of adulteration of other Fritillaria powders in Fritillaria cirrhosa
powder samples [4]. In this paper, the adulteration of Fritillaria thunbergii powder in
Fritillaria cirrhosa powder was tested.

Currently, these techniques, such as atomic absorption spectrometry (AAS), inductively-
coupled plasma-mass spectrometry (ICP-MS), and inductively-coupled plasma optical
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emission spectrometry (ICP-OES), can be utilized to quantitatively analyse pharmaceu-
tical products; however, these conventional analysis techniques require complex and
time-consuming pre-treatments, such as high temperature and high acid digestion [5]. Flu-
orescence, Raman, and near-infrared spectroscopies are the most prevalent spectroscopic
detection techniques. When adopting these techniques, sample processing is complex and
time consuming, and weak spectral signals are susceptible to background light, which
prevents in situ, real-time, and rapid online detection [6].

Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy
technique with the advantages of in situ, real-time, rapid, and simultaneous multi-element
detection [7,8]. The LIBS technique is applied in various fields, such as biological tissue
detection [9–11], explosives detection [12–14], coal analysis [15–17], polymer identification
analysis [18–20], food analysis [21–23], alloy analysis [24–26], ore identification analy-
sis [27–29], and soil element detection [30–32].

Research on the applications of LIBS techniques in drug testing has also garnered sig-
nificant attention from scholars globally [33,34]. Peichao Zheng et al. used LIBS technique
to quantify Pb and Cu elements in Ligusticum wallichii, a Chinese medicine, and they
established multiple linear regression models between the LIBS spectral intensities and
the mass fractions of Pb and Cu, respectively; accordingly, the obtained limit of detections
for Pb and Cu were 15.7 µg/g and 6.3 µg/g, respectively [35]. Maogen Su et al. stud-
ied the solubility of metallic elements during the decoction of Astragalus membranaceus
using LIBS technique. The concentration of Cd in the solution was calculated using the
calibration-free LIBS (CF-LIBS) method, and the results of the CF-LIBS were verified via
the internal standard method. The results obtained from the study showed that the concen-
trations of Cd calculated by these two methods were within a 10% error margin [36]. Fei
Liu et al. adopted the LIBS technique to quantify five nutrient elements in Panax ginseng
samples from eight origins. The least squares support vector machine (LS-SVM) model,
based on least absolute shrinkage and selection operator (LASSO), was the best predictor
for K, Ca, Mg, Zn, and B elements in the samples, and the obtained root mean square
error of prediction (RMSEP) values were 0.7704 mg/g, 0.0712 mg/g, 0.1000 mg/g, 0.0012
mg/g, and 0.0008 mg/g, respectively [5]. G. Dastgeer et al. conducted a semi-quantitative
study on the elements in calcium tablets using the LIBS technique. The elements, Ca, Mg,
Fe, and Zn, were detected in the experimental samples, and their approximate contents
were determined from the spectral intensity of each element. Further, the results of the
study were consistent with the range of the elements in the instructions [37]. H. Asghar
et al. conducted quantitative analysis of sage samples via the CF-LIBS method. Accord-
ingly, elemental spectral lines for Fe, Ca, Ti, Co, Mn, Ni, and Cr were detected in the sage
samples. The concentrations of these elements calculated using the CF-LIBS method were
48.1%, 0.7%, 5.3%, 8%, 11%, 12.3%, and 14.6%, respectively [38]. However, to the best of
our knowledge, no report has been presented in the literature on the rapid detection of
adulterated amounts of pharmaceuticals via the LIBS technique.

Herein, we first test the level of adulteration in Fritillaria cirrhosa powder sample using
LIBS techniques. According to the different Fritillaria cirrhosa and Fritillaria thunbergii
content, 21 experimental samples with different adulteration levels were prepared, and
their LIBS spectra were obtained. Partial least squares regression (PLSR) was adopted
as the quantitative analysis model and four data normalization methods, namely, mean
centring (MC), normalization by total area (NA), standard normal variable (SNV), and
normalization by the maximum (NM), which were used to compare the performance on
the PLSR models. Principal component analysis (PCA) and LASSO were utilized to extract
and select features from the data, as well as to quantitatively analyse the performance
of the PLSR model. Accordingly, the optimal number of features was determined, and
the residuals were corrected using SVR. The LASSO method has been applied in the
rapid origin identification of chrysanthemum morifolium [39] and detection of exogenous
contamination of metal elements in lily bulbs [40] using LIBS. However, it has not been used
for quantification combined with PLSR and SVR. We also make the comparison between it
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and the PCA method, which proves that it can achieve ideal results in Chinese traditional
medicine analysis.

2. Materials and Methods
2.1. Experimental Sample Preparation

The experimental setup employed in this study was the same as that used in a previous
study [3]. The adopted Fritillaria cirrhosa and Fritillaria thunbergii powder samples were
purchased from Anhui Tong Huatang Chinese Herbal Beverage Technology Co. (Bozhou,
China) and Sichuan Haorui Gallium Biotechnology Co. (Chengdu, China). In the ex-
perimental procedure, the powdered Fritillaria cirrhosa and Fritillaria thunbergii were first
mixed into experimental samples with 21 different adulteration levels, as listed in Table 1.
Subsequently, for each sample, the powdered samples were continuously and vigorously
vibrated at 1000 rpm for 10 h using a multifunctional vortex mixer (VM-500Pro, Joanlab,
Huzhou, China). Next, the powdered samples were retrieved, placed on weighing pa-
per, and weighed with an electronic balance (BSA124S-CW, Sartorius, Shanghai, China);
accordingly, a 0.5-g weight was obtained. The samples were then pressed for 5 min at
a 20-MPa pressure using a tablet press (HY-12 Tianjin, Tianguang Optical Instruments
Co., Ltd., Tianjin, China) to obtain disc shaped samples with a diameter and thickness
of 13 and 2 mm, respectively, and each sample with different doping levels was pressed
into two slices, as illustrated in Figure 1. Finally, the pressed samples were placed on
a three-dimensional motorized translation table, and 100 LIBS spectra were obtained at
different positions for each sample; accordingly, 200 spectra were obtained for two tablets
of each sample, and then two spectra were averaged into one spectrum. Finally, 100 LIBS
spectra were obtained for each experimental sample with a different doping level.

Table 1. Experimental samples of 21 different doping levels.

Sample Number Fritillaria cirrhosa
(g)

Fritillaria thunbergii
(g)

Fritillaria thunbergii
Content (%)

1 0.0000 1.0000 100.0000
2 0.0502 0.9501 95.9351
3 0.1001 0.9002 89.9810
4 0.1505 0.8505 85.0020
5 0.2008 0.8005 79.9621
6 0.2500 0.7500 75.0150
7 0.3008 0.7001 70.0030
8 0.3507 0.6501 65.0105
9 0.4002 0.6005 59.9560
10 0.4505 0.5506 55.0105
11 0.5003 0.5005 49.9900
12 0.5506 0.4503 45.0005
13 0.6001 0.4008 39.9920
14 0.6503 0.3500 35.0420
15 0.7001 0.3000 30.0530
16 0.7506 0.2500 25.0000
17 0.8009 0.2007 20.0539
18 0.8507 0.1501 15.0350
19 0.9008 0.1003 10.0070
20 0.9503 0.0507 5.0185
21 1.0040 0.0000 0.0000
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Figure 1. Physical diagram of the experimental samples with 21 different doping levels.

2.2. LIBS Experiments

The main LIBS setup of our experiments has been shown in the previous work [3]. A
homemade Q-switched Nd: YAG laser (1064 nm, 30 mJ, 1 Hz, 10 ns) is used as the excitation
source. The laser beam is reflected by three mirrors and then focused onto the sample
surface with a NIR-corrected microscopic objective (Mitutoyo, 10X, working distance is
30.5 mm). The plasma radiation is collected and focused into a 600 µm fiber using convex
lenses. Then, the LIBS spectra are analyzed by the fiber spectrometer (AvaSpec 2048-2-USB2,
Avantes) with a range of 190~1100 nm and a resolution of 0.2~0.3 nm.

3. Results and Discussion
3.1. LIBS Spectra of the Samples

The typical LIBS spectra of 21 randomly selected experimental samples with different
doping levels are presented in Figure S1. The Ca, Na, K, H, O, and N elements, including
the CN and C2 molecular bands, were identified in the experimental samples and labelled
in the LIBS spectra of Sample 1. From Figure S1, the intensities of H, O, N, CN, and C2 in
the LIBS spectra of the experimental samples with different doping levels are independent
of the doping amount of Fritillaria thunbergii, which is primarily influenced by air. To
eliminate the interference of airborne components on the intensities of the LIBS spectra of
the experimental samples, non-metallic elements were not used in subsequent analyses.
The wavelength of 300–800 nm and intensities greater than 1000 counts of Ca (393.3 nm,
396.8 nm, and 422.6 nm), Na (588.9 nm and 589.5 nm), and K (766.4 nm and 769.8 nm) for
three metallic elements are presented in Table 2 for the seven LIBS spectral lines.

Table 2. Three metal elements and their wavelengths in the experimental samples.

Element Ca II Ca II Ca I Na I Na I K I K I

Wavelength (nm) 393.3 396.8 422.6 588.9 589.5 766.4 769.8

3.2. Quantitative Analysis Modelling

In this study, the data point intensities of seven spectral lines for each spectrum of
three metal elements were adopted as input variables (66 variables in total), 100 LIBS
spectra from each of Samples 4, 6, 8, 14, 16, and 18 were used as the test set, and 100 LIBS
spectra from each of the remaining 15 samples were utilized as the training set to develop
the PLSR model.

3.2.1. Data Standardization

Data normalization can reduce the fluctuations between the LIBS spectra of Fritillaria
and improve the performance of quantitative analysis models. The effects of the MC, NA,
SNV, and NM methods on the performance of the quantitative models were discussed.
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The mean absolute error (MAE) and RMSEP of the test set obtained using the PLSR model
under the four data normalization methods are listed in Table 3.

Table 3. MAE and RMSEP of the test set obtained using the PLSR model under the four data
normalization methods.

Data Normalization Methods MC NA SNV NM

MAE (%) 24.2832 48.0711 8.6604 8.6111
RMSEP (%) 26.6806 60.7073 10.8970 10.8760

From Table 3, the MAE values of the test set obtained using the PLSR quantitative
analysis model under the four data normalization methods of MC, NA, SNV, and NM are
24.2832%, 48.0711%, 8.6604%, and 8.6111%, respectively; the RMSEP values of the test set
obtained are 26.6806%, 60.7073%, 10.8970%, and 10.8760%, respectively. Among the four
data normalization methods, the MAE and RMSEP values of the PLSR model’s test set were
the lowest by pre-processing the data using the NM method. The relationship between the
predicted and standard values of the test set obtained by the PLSR quantitative analysis
method under NM data normalization is illustrated in Figure 2; evidently, the MAE and
RMSEP values of the test set are 8.6111% and 10.8760%, respectively, and the coefficient of
determination, R2, of the test set’s fitted straight line is 0.9651. The error bars in Figure 3
represents the standard deviation (SD) of the predicted value based on measurements. We
calculated the SD value of Equation (1) in all the figures of this work.

S =

√
1

n − 1

n

∑
i=1

(xi − x)2 (1)

where the x represent the average value of sample xi, i is the integer index, and n is the
number of samples.
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3.2.2. Feature Variable Selection

To reduce the amount of data input, discard noise and unimportant features, and to
achieve the objective of improving the speed of data processing, it is necessary to select
feature variables. Feature variable selection includes two types of feature extraction and
feature selection. Additionally, in this study, we adopted PCA and LASSO for feature
extraction and feature selection, respectively. LASSO is a compressed estimate. It obtains
a more refined model by constructing a penalty function, so that it compresses some
coefficients and sets some coefficients to zero. Therefore, Lasso retains the advantages of
subset contraction, and it is an estimation of processing with compound linear data.

After normalizing the data via the NM method, the feature variables were extracted
from the LIBS spectral data using the PCA method. Figure 3 presents the variance ratio of
each principal component (PC) and the cumulative variance ratio obtained after the feature
extraction using the PCA method.

As illustrated in Figure 3, the percentage of variance of each individual PC gradually
decreased, and the percentage of cumulative variance gradually increased as the number
PC increased. The variance ratios of the first three PCs were 89.77%, 7.53%, and 1.17%. The
first PC contained most of the original information, and the cumulative variance ratio of
the first three PCs reached 98.47%.

To investigate the effect of the number of PCs on the performance of the PLSR quan-
titative analysis model, the PC scores were adopted as the inputs to the PLSR model for
modelling, and the relationship between the RMSEP of the training set and the number of
PCs is illustrated in Figure 4.

From Figure 4, the RMSEP of the training set fluctuates with the increase in PC number,
exhibiting a general decreasing trend. When the number of PC is 64, the lowest RMSEP
value is obtained via the PLSR quantitative analysis model. Therefore, the first 64 PCs are
chosen for the test set data analysis. The relationship between the predicted and standard
values of the test set obtained by using the PLSR quantitative analysis method for the first
64 PCs as input data is illustrated in Figure 5. From Figure 5, the MAE and RMSEP values
of the test set are 7.1585% and 9.1709%, respectively, and the coefficient of determination,
R2, of the test set’s fitted straight line is 0.9920.

To investigate the effect on the performance of the PLSR model after adopting LASSO
feature selection for quantitative analysis, the LIBS spectral data of the samples were
first standardized using the NM method; subsequently, the importance of the data after
standardizing the LIBS spectra was evaluated using the LASSO method, and the importance
weight values of 66 variables were obtained. Finally, the importance weight values of the
66 variables were normalized, and the obtained normalized weight values based on the
training set data are presented in Figure 6.
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Figure 6. Normalized weight values of 66 variables obtained for the importance assessment of the
LIBS spectral lines using the LASSO method.
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Figure 6 shows the normalized weight values of 66 variables obtained for the im-
portance assessment of the LIBS spectral lines using the LASSO method. Among the 66
spectral features, nine of them have normalized weight values of 0, thus indicating that
these nine features do not play a role in the quantitative analysis. Meanwhile, the elements
corresponding to the top 57 wavelengths in importance ranking, and their importance
weights are listed in Table 4.

Table 4. Elements and importance weights corresponding to the top 57 wavelengths in impor-
tance ranking.

Order of
Importance

Wave Length
(nm) Element Importance

Weights
Order of

Importance
Wave Length

(nm) Element Importance
Weights

1 589.6 Na I 1.0000 30 393.0 Ca II 0.1348
2 590.2 Na I 0.7738 31 396.4 Ca II 0.1290
3 393.6 Ca II 0.7149 32 588.6 Na I 0.1261
4 587.2 Na I 0.5281 33 589.1 Na I 0.1243
5 770.7 K I 0.4977 34 767.0 K I 0.1172
6 770.4 K I 0.4790 35 421.5 Ca I 0.1171
7 422.9 Ca I 0.4503 36 393.3 Ca II 0.1123
8 769.1 K I 0.4119 37 770.2 K I 0.1116
9 764.4 K I 0.3929 38 764.7 K I 0.1067
10 768.9 K I 0.3683 39 769.7 K I 0.1038
11 587.5 Na I 0.3464 40 766.0 K I 0.1001
12 397.0 Ca II 0.3338 41 769.9 K I 0.0939
13 771.2 K I 0.3215 42 392.7 Ca II 0.0935
14 423.5 Ca I 0.3163 43 589.9 Na I 0.0858
15 764.9 K I 0.3150 44 768.3 K I 0.0714
16 765.2 K I 0.3010 45 767.6 K I 0.0645
17 768.6 K I 0.2787 46 422.4 Ca I 0.0613
18 765.5 K I 0.2757 47 422.6 Ca I 0.0502
19 423.2 Ca I 0.2688 48 769.4 K I 0.0416
20 421.8 Ca I 0.2527 49 392.5 Ca II 0.0391
21 396.1 Ca II 0.2355 50 767.3 K I 0.0272
22 588.0 Na I 0.2331 51 766.2 K I 0.0163
23 771.0 K I 0.2170 52 768.1 K I 0.0149
24 766.8 K I 0.2160 53 767.8 K I 0.0142
25 765.7 K I 0.2109 54 588.3 Na I 0.0116
26 589.5 Na I 0.2045 55 588.9 Na I 0.0091
27 423.8 Ca I 0.1751 56 422.1 Ca I 0.0090
28 587.8 Na I 0.1438 57 588.8 Na I 0.0046
29 396.7 Ca II 0.1358

To investigate the effect of the number of features on the performance of the PLSR
quantitative analysis model, the 57 spectral features with non-zero normalized weight
values were ranked according to the normalized weight values from the largest to the small-
est. The different numbers of spectral features, corresponding to the top 1–57 normalized
weight values, were adopted as inputs to the PLSR model, respectively, and the relationship
between the RMSEP of training set and the number of spectral features is illustrated in
Figure 7.

As illustrated in Figure 7, the RMSEP of the training set fluctuates with the increase
in the number of spectral features, exhibiting a general decreasing trend. The RMSEP
value obtained using the PLSR quantitative analysis model is lowest when the number
of input spectral features is 57. Then, these 57 features are used in the test data analysis.
The relationship between the predicted and standard values of the test set using the PLSR
quantitative analysis model for the first 57 spectral features as input data is illustrated in
Figure 8. From Figure 8, it can be seen that the MAE and RMSEP values of the test set are
7.1038% and 9.1523%, respectively, and the coefficient of determination, R2, of the test set’s
fitted straight line is 0.9728.
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Compared with the PCA-PLSR model, the MAE and RMSEP of the predicted values
of the LASSO-PLSR model’s test set were relatively better, decreasing from 7.1585% to
7.1038% and from 9.1709% to 9.1523%, respectively.

3.2.3. Residual Correction

The residual values were obtained by subtracting the predicted values of the LASSO-
PLSR model from the standard values and were corrected using SVR. The SVR is a common
kind of traditional machine learning method, which has extraordinary performance in
the small sample training. In SVR, the straight line required for fitting data becomes a
hyperplane. The SVR creates an “interval band” on both sides of the linear function, which
does not calculate the loss for all samples falling into the interval zone. The samples outside
the interval zone are recognized as support vectors. That is, only the support vector will
affect its function model. Finally, the optimized model is obtained by minimizing total loss
and maximum interval.

The relationship between the mean value of the residuals of the 100 spectra of each
modelled sample and the mean value of the intensity of the most important spectral line
(Na I 589.6 nm) is illustrated in Figure 9.
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As illustrated in Figure 9, the data points comprising the average of the residuals of
100 spectra of each modelled sample and the average of the intensity of the most important
spectral line (Na I 589.6 nm) are randomly distributed and exhibit a nonlinear relationship
overall. To further improve the accuracy of the quantitative analysis model, the most
prevalent nonlinear kernel function in SVR (radial basis kernel function) was adopted
to develop a SVR-based residual correction model with optimal parameters (c = 76.7312,
g = 9.3966), and the predicted value of the PLSR model plus the predicted value of the SVR
correction model was considered as the final predicted value. The relationship between
the predicted and standard values of the test set, based on the LASSO-PLSR-SVR residual
correction model, is illustrated in Figure 10; from this figure, it can be seen that the MAE
and RMSEP values of the test set are 5.0396% and 7.2491%, respectively, and the coefficient
of determination, R2, of the test set’s fitted straight line is 0.9983.
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From Figures 8 and 10, it can be seen that the performance of the LASSO-PLSR-SVR
residual correction-based model improved better than the LASSO-PLSR-based model in
the quantitative analysis of the Fritillaria LIBS spectral data. The MAE value of the test set
decreased from 7.1038% to 5.0396%, the RMSEP value decreased from 9.1523% to 7.2491%,
and the coefficient of determination R2 of the test set’s fitted straight line increased from
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0.9728 to 0.9983. The obtained results indicate that the residual correction model can
compensate for the limitations of the conventional PLSR model in elucidating nonlinear
characteristic variables and ultimately improve the prediction accuracy of the quantitative
analysis model.

4. Conclusions

In this study, we proposed the adoption of the LIBS technique, combined with machine
learning methods in the rapid test of adulteration levels in Fritillaria cirrhosa powder. Us-
ing PLSR as a quantitative analysis model, the effects of four data normalization methods,
MC, NA, SNV, and NM, on the quantitative analysis performance of the PLSR model,
were compared, among which the NM data normalization method exhibited the best
performance. Accordingly, the effects of feature extraction and feature selection on the
quantitative analysis performance of the PLSR model using PCA and LASSO were com-
pared and analysed, and the performance of the LASSO-PLSR-based model was to be
relatively better. A correction model for the residuals was further developed using SVR to
compensate for the limitations of the conventional PLSR model in elucidating the nonlinear
feature variables. The final LASSO-PLSR-SVR-based residual correction model improved
the accuracy of the quantitative analysis relative to the LASSO-PLSR model, and the MAE
of the test set decreased from 7.1038% to 5.0396%, the RMSEP decreased from 9.1523% to
7.2491%, and the coefficient of determination R2 of the test set’s fitted straight line increased
from 0.9782 to 0.9983. The experimental results demonstrated the effectiveness of adopting
the LIBS technique combined with machine learning in the rapid test of adulteration levels
in Fritillaria cirrhosa powder. Furthermore, this study has important application value for
drug testing, regulation, and quality control.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12081710/s1, Figure S1. Typical LIBS spectra of 21 experi-
mental samples with different doping levels.
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