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Abstract: Wheat gluten (WG) and peanut protein powder (PPP) mixtures were extruded at high
moisture to investigate the potential application of this mixture in meat analog production. Multi-
ple factors, including the water absorption index (WAI), water solubility index (WSI), rheological
properties of the mixed raw materials, die pressure, torque and specific mechanical energy (SME)
during high moisture extrusion, texture properties, color, water distribution, and water activity of
extrudates were analyzed to determine the relationships among the raw material characteristics,
extruder response parameters, and extrudate quality. At a WG ratio of 50%, the extrudates have
the lowest hardness (2.76 kg), the highest springiness (0.95), and a fibrous degree of up to 1.75. The
addition of WG caused a significant rightward shift in the relaxation time of hydrogen protons
in the extrudates, representing increased water mobility and water activity. A ratio of 50:50 gave
the smallest total color difference (∆E) (about 18.12). When the added amount of WG was 50% or
less, it improved the lightness and reduced the ∆E compared to >50% WG. Therefore, clarifying
the relationship among raw material characteristics, extruder response parameters, and extruded
product quality is helpful in the systematic understanding and regulation of the fiber textural process
of binary protein meat analogs.

Keywords: plant-based meat; vegetable protein; high-moisture extrusion cooking; texture properties;
water-holding activity

1. Introduction

By 2050, the global population is expected to reach 9 billion, and the demand for meat
will increase by 75% compared to today [1]. In addition, inefficient conversion causes
animal meat production to occupy 83% of arable land and consume large amounts of
water [2]. As a result, global environmental and food security pressures are increasing. In
particular, meat consumption is faced with severe challenges, and animal meat resources
are increasingly unable to fully meet the meat demand of humans [3]. Moreover, the
increasing desire to address the health and ethical issues associated with the consumption
of animal meat has led to a shift in dietary behavior toward vegetarianism [4]. One potential
solution, high-moisture texturized vegetable protein (HMTVP), has garnered attention due
to its high production efficiency and low production costs [5]. HMTVP is a meat analog
that has a structure similar to meat fibers due to a four-stage formation process involving
unfolding, association, aggregation, and crosslinking of vegetable protein molecular chains
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during the extrusion process under conditions of high moisture, high temperature, and high
shear [6]. Hitherto, most studies have aimed to improve the fiber structure of extrudates
by optimizing the formula and process parameters [7–13]. By contrast, few studies have
examined the water distribution, despite the importance of water distribution for juiciness—a
key characteristic of meat products [14–16].

Differences in raw material characteristics can also lead to great fluctuations in the
extruder response parameters during the extrusion process, thereby affecting the extrudate
quality. A number of previous studies have described the relationship between process
parameters, extruder response, and product characteristics during high moisture extru-
sion [17,18]. However, for a complex system composed of multiple proteins, the relationship
between raw material characteristics, extruder response parameters, and product character-
istics needs to be further clarified. Therefore, it is still difficult to systematically regulate
the HMTVP product by adjusting the raw materials’ characteristics and extruder response
in a targeted manner.

Currently, the most common protein sources for HMTVP products are soy protein (soy
isolate protein and soy concentrate protein) [19–21], wheat gluten [22,23], and pea protein
(pea isolate protein) [24,25]. In order to improve the utilization of defatted peanut meal,
peanut protein has been used in recent years. Of these, peanut protein is allergenic, with a
prevalence of about 2% [26]. However, peanut protein has an excellent amino acid profile,
a desirable volatile profile, a low level of antinutritional factors, and a steady supply [27].
PPP is the product of defatted peanut meal, a by-product of peanut oil production [28].
The protein, mainly composed of arachin and conarachin, contains 8 essential amino
acids necessary for the human diet and has a digestibility of up to 90%. However, the
fiber structure of peanut protein still needs to be further improved. Many studies have
reported on the fiber textural mechanism and fiber structure improvement of peanut-
protein-based meat analogs [29,30]. The fibrous degree of PPP can be promoted by the
addition of polysaccharides and transglutaminase, which induce conformational changes
in the protein [31,32].

Wheat gluten (WG) is the primary storage protein group in wheat grains [33,34]. It
forms a cohesive viscoelastic network that is important in producing meat analog products.
It is mainly composed of glutenin, which forms polymer networks, and gliadin, which
acts as a plasticizer to improve the viscosity and ductility of wheat doughs [35]. WG can
be extruded individually to form striking textures and is widely used to compound with
other proteins to improve their fibrous structure. This is because it causes the mixture to
form incompatibly independent phases, which are essential for the development of fibrous
structures [22,36,37]. From a protein conformation perspective, increasing the WG ratio
increases the content of disulfide bonds and β-sheets, resulting in a dense and structurally
strong gluten network [10,23,38]. On the other hand, a strong fibrous structure can also
result in a decrease in resemblance to real meat. In addition, juiciness has been neglected
by many studies on the high water compression of wheat protein [39]. In other words, the
extrudates obtained by high-moisture extrusion of PPP or WG alone have shortcomings in
simulating the fibrous structure and juiciness of real meat.

The aim of the present study was to explore the influence of mixing WG and PPP at
different ratios on extrudate quality characteristics (texture, color, and moisture distribu-
tion) from the aspect of the extruder response. The goal of this work was to explain the
relationships among raw material properties, extruder response parameters, and extrudate
quality to provide a basis for systematic regulation of the protein fiber textural process. Our
findings support the use of binary proteins to enhance the fibrous structure of meat analogs.

2. Materials and Methods
2.1. Materials

Peanut protein powder (PPP) and wheat gluten (WG) were supplied by Ouguo Co.
(Yantai, China) and Feitian Co. (Hebi, China), respectively. The protein, starch, crude
fiber, lipid, and water contents of the PPP employed in this study were 55.3% (dry basis),
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5.2% (dry basis), 0.3% (dry basis), 8.8% (dry basis), and 6.1%, respectively. The protein,
starch, crude fiber, lipid, and water contents of the WG employed in this study were 83.2%
(dry basis), 5.7% (dry basis), 3.5% (dry basis), 1.0% (dry basis), and 8.96%, respectively.
Deionized (DI) water was used throughout the experiment.

A three-dimensional movement mixer (SYH-15L, Shaoping, Wuxi, China) was used to
mix the blends of PPP and WG at different ratios (dry basis). The tested WG:PPP ratios
were 0:100, 30:70, 50:50, 70:30, and 100:0, respectively. A total of 12 kg of the mixture was
prepared under each ratio. The conditioned mixtures were packed in plastic bags and kept
at 4 ◦C overnight to equilibrate.

2.2. WAI and WSI

The water absorption index (WAI) and water solubility index (WSI) were determined
using the method of Ding et al. [40] and Hirunyophat et al. [41], respectively, with appropri-
ate modifications. A 2 g powder sample (m0) was weighed and placed in a dry centrifuge
tube (m1). A 25 mL volume of distilled water was pipetted into the centrifuge tube, the tube
was vortexed for 2 min and then placed in an oscillating water bath at 30 ◦C for 30 min,
followed by centrifugation at 3500 r/min for 10 min. The tube was carefully removed
from the centrifuge and placed vertically, and the supernatant was removed with a pipette
gun. The supernatant was transferred to a weighing bottle (m3) that had been dried to a
constant weight, placed in a 105 ◦C oven to dry to a constant weight, and then weighed
(m4). The centrifuge tube and precipitate mass (m2) were weighed at the same time. Each
set of samples was measured three times and averaged.

The WAI and WSI were calculated using Equation (1) and Equation (2), respectively:

WAI (g/g) =
m2 −m1

m0
(1)

WSI (%) =
m4 −m3

m0
× 100% (2)

2.3. Rheological Properties of Raw Materials

A 3 g sample of raw material powder was accurately weighed into a small 50 mL
beaker, and the water content was adjusted to 55% based on the water content measured in
Section 2.1 to simulate the hydration of raw materials in the mixing zone of the extruder.
The material was thoroughly mixed, the cup was sealed with a sealing film to prevent water
loss, and the powder was placed in a refrigerator at 4 ◦C overnight to balance the water.

The rheological properties of the samples were measured using a rotary rheometer
(Discovery HR-3, TA Instruments, New Castle, DE, USA) using the following operational
conditions: The mixture was placed between two 40 mm diameter plates, and the gap
between the two plates was adjusted to 1050 µm. The excess sample was trimmed and
removed, and a thin layer of silicone oil was applied to the edge of the sample to prevent
water loss. The gap between the two plates was then adjusted to 1000 µm for the test.

2.3.1. Frequency Sweep

The sample was left for 60 s, and then the frequency was scanned at 25 ◦C, a strain
degree of 0.5%, and a frequency of 0.1–10 Hz.

2.3.2. Strain Sweep

The sample was left for 60 s, and then the strain sweep was scanned at 25 ◦C, a
vibration frequency of 1 Hz, and a strain degree of 0.1–100%.

2.3.3. Creep Recovery

The sample was left for 60 s, and then stress was applied at 10 Pa for 180 s. The stress
was measured at 1 Hz and 25 ◦C at 360 s after the stress was withdrawn.
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2.4. Extrusion Experiments and Sample Preparation

The raw materials were extruded with a co-rotating meshing twin-screw extruder
(FMHE36-24, FUMACH, Changsha, China). The raw materials were fed into the extruder
at a constant speed of 6 kg/h (dry basis) by a feeder and the process was controlled by the
extruder operating system. Based on the moisture content of the mixture, water is added
to the extruder through a pump so that the final feed moisture content is maintained at
55%. The processing parameters of the extruder are set according to the methods of Rehrah
et al. [42] and Zhang et al. [32], and adjusted on the basis of a lot of pre-experiments. The
screw speed was 210 rpm. From the first to the sixth zone, the temperature was maintained
at 25 ◦C, 60 ◦C, 90 ◦C, 165 ◦C, 165 ◦C, and 120 ◦C. As shown in Figure 1, a long cooling die
(including the connecting and cooling parts) was connected at the cylinder die mouth of
the extruder, and the temperature was controlled at 70 ◦C.
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Once the running state of the extruder stabilized, 20–30 continuous strips of extrudates
per ratio were collected, cut into 20 cm lengths, immediately vacuum sealed, and frozen at
−18 ◦C for future analysis.

2.5. Extruder Responses

After the extruder reached a stable running state, the real-time control software of
the extruder was used to monitor the extruder response parameters online during the
extrusion process. The extruder response parameters displayed on the extruder operating
system were recorded every 5 min. These parameters included the torque, die pressure,
die temperature, and mass flow rate (MFR). The specific mechanical energy (SME) was
calculated using Equation (3) [25]:

SME (kJ/kg) =
2π× n× T

MFR
(3)

where n is the screw speed (rpm), and T is the torque (N·m).

2.6. Low-Field Nuclear Magnetic Resonance

Extrudate samples were cut into 1 cm × 1 cm pieces for low-field nuclear magnetic
resonance (NMR) analysis and nuclear magnetic resonance imaging (MRI).

2.6.1. Relaxation Time

We used the method of Sun et al. [43], after some adjustments in the parameter set-
tings. The block sample was placed into a cylindrical glass tube (diameter 15 mm). The
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sample relaxation time (T2) was measured using a low-field NMR instrument (MicroMR20-
030V-I, Suzhou Niumag Analytical Instrument Corporation, Suzhou, China). Carr–Purcell–
Meiboom–Gill (CPMG) pulse trains were used to obtain decay signals. The main pa-
rameters of the signal acquisition were as follows: NS (scan times) = 32, NECH (echo
number) = 10,000, TD (sampling point) = 249,990, TW (wait time) = 2000 ms, P2 (180◦ pulse
time) = 12.48 µs, P1 (90◦ pulse time) = 6.52 µs, TE (time echo) = 0.25 ms, and SW (sampling
frequency) = 100 kHz.

2.6.2. Magnetic Resonance Imaging

The block sample from Section 2.2 was placed in a cylindrical glass tube (15 mm
diameter) and subjected to MRI using the same low-field NMR analyzer (MicroMR20-030V-
I, Suzhou Niumag Analytical Instrument Corporation, Suzhou, China). Proton density-
weighted images were obtained using spin echo sequences. The echo time (TE) was 20 ms,
the repetition time (TR) was 500 ms, the field of view (FOV) was 100 mm × 100 mm, and
the slice width and slice gap were 1.9 mm and 2.0 mm, respectively. The pseudo-color
image was obtained by software pseudo-color processing of the proton density-weighted
images [44].

2.7. Water Activity

The water activity of the extrudates was determined using a water activity meter
(FA-ST, GBX Scientific, Romans-sur-Isere, France) according to the method of Al-Jassar
et al. [45]. After cooling the extruded sample to room temperature, it was cut into uniform
0.5 cm × 0.5 cm × 0.5 cm pieces. After mixing, 2 g was transferred to a small plastic dish
and placed in the water activity meter at room temperature until the indicator was stable.
Each set of samples was measured three times, and the values were averaged.

2.8. Color

The color determination was based on the method of Lee et al. [46] and Mazumder
et al. [47], respectively, with appropriate modifications. The color of the extrudates was
measured with a handheld colorimeter (TES-135A, Herewith TES Electrical Electronic Crop,
Taiwan, China) (CIE 2◦ standard observers, illuminant: white LED lamp). The sample (the
extrudate sample was cut into small pieces with a side length of 20 mm and a thickness
of 3 mm, the raw material was spread evenly in the test dish with a thickness of 3 mm)
was placed in the test dish that accompanied the colorimeter and the test dish placed on
10 layers of white paper. The CIE L*, a*, and b* values of the samples were recorded using
10 randomly chosen samples. The L* value ranged from 5 to 100. The luminance (L* value)
ranged from total darkness (L* = 5) to white (L* = 100). The a* value indicated red for a
positive value and green for a negative value. The yellow b* value was positive, and blue
was the negative b* value. The extrudates in each group were measured at least 10 times,
and the values were averaged. A standard white plate (parameters of CIE LAB color space:
L* = 89.73, a* = −0.78, and b* = 1.88) was used to calculate the color difference between
the samples and the white plate. The color difference value (∆E) of the extrudate was
calculated using Equation (4) [18,31,46].

∆E =

√
(L∗ − L∗s )

2 + (a∗ − a∗s )
2 + (b∗ − b∗s )

2 (4)

2.9. Textural Properties

A texture analyzer (TA-XT plus, Stable Micro Systems, Godalming, UK) was used
to determine the extrudate texture properties, including hardness, springiness, tensile
properties, and shear properties (transverse shear force, longitudinal shear force, and fiber
degree), following the methods of Fang et al. [18] and Zhang et al. [32].
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2.9.1. Hardness and Springiness

Square blocks with the shape shown in Figure 2a were compressed to 50% of their
original thickness with a P35 probe (cylinder, ∅35 mm) at a rate of 1 mm s−1 for 5 s, and
the hardness, springiness, and chewiness were recorded. All assays were repeated 10 times,
and the recorded values were averaged.
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2.9.2. Tensile Properties

Samples with the shape shown in Figure 2b were pulled with an A/TG probe (rigs
and clamps) at a speed of 0.5 mm s−1. When the sample strip broke, the tensile force was
recorded. All assays were repeated 10 times, and the recorded values were averaged.

2.9.3. Shear Properties

Samples with the shape shown in Figure 2c were cut with an A/CKB probe (knife
blade) to 75% of the original thickness at a speed of 1 mm s−1. The force of the cut
perpendicular to the extrusion direction was the crosswise shear force (FV), and the force of
the cut parallel to the extrusion direction was the lengthwise shear force (FL). The fibrous
degree was expressed as the ratio of FV to FL. All assays were repeated 10 times, and the
recorded values were averaged.

2.10. Statistical Analysis

Statistical product and service solutions (SPSS) software (Version 24.0, SPSS Inc.,
Chicago, IL, USA) and Origin 2022 software (Origin-Lab, Inc., Northampton, MA, USA)
were used to analyze the data. Analysis of variance (ANOVA) was used to make compar-
isons of means. Post hoc multiple comparisons were determined by Duncan’s test, and
the significance level was set at p < 0.05. All results are expressed as mean ± standard
deviation.

3. Results and Discussion
3.1. WAI and WSI of Raw Materials with Different WG:PPP Ratios

The WAI and WSI of the raw materials at different mixing ratios are shown in Table 1.
An increase in the WG ratio resulted in an increasing trend for the WAI of the raw materials,
which reached a maximum of 2.55 g/g at 100% WG. This is because WG has a stronger
water absorption capacity than PPP and easily forms a gluten network structure that can
trap more water [48]. However, the WAI of the raw material was slightly reduced at 30%
and 50% of the WG addition. This may be due to the tendency of WG to agglomerate and
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cross-link to form gluten network structures when mixed with water, but at higher ratios of
PPP, the formation of gluten network structures is inhibited, thus preventing the gluten
network from capturing more water molecules [49]. After the addition of WG exceeds 50%,
when WG plays a major role in the mixture, WAI continues to rise. Therefore, increasing the
WG ratio can significantly improve the WAI of the raw material. WAI also has an important
effect on the rheological properties of the raw material–water mixture, causing a difference
in the hydration state of the raw material. The different hydration states will affect the
rheological property of the raw material and the flow state in the extruder chamber, which
is very important for the interpretation of the extruder response. In addition, the strong
water absorption capacity of wheat gluten may also improve the water-holding capacity of
the extrudates and reduce the water dissipation of the extrudates at the exit and during
storage, resulting in a more uniform water distribution.

Table 1. Water absorption index (WAI) and water solubility index (WSI) of different raw materials.

WG (Wheat Gluten):PPP
(Peanut Protein Power) Ratio WAI (g/g) WSI (%)

0:100 2.10 ± 0.06 c 41.64 ± 0.272 a

30:70 1.88 ± 0.01 d 25.12 ± 0.383 b

50:50 2.04 ± 0.01 c 14.77 ± 0.205 c

70:30 2.24 ± 0.03 b 9.06 ± 0.207 d

100:0 2.55 ± 0.02 a 5.83 ± 0.136 e

Results are expressed as means (n = 3) ± standard deviation. Different superscript letters mean significant
differences within the same column (Duncan’s test; p < 0.05).

An increase in the proportion of WG gradually decreased the WSI of the raw material,
in part because of the higher solubility of PPP and because the protein content of PPP
powder is lower than that of gluten powder and contains more soluble substances.

3.2. Rheological Properties of Raw Materials with Different WG:PPP Ratios
3.2.1. Frequency Sweep Analysis

Frequency sweep analysis allows the study of the changes in the sample storage
modulus G′, loss modulus G”, and loss angle tanδ with the oscillation frequency under
the action of fixed stress. It is a measurement method that does not damage the structure
of the sample. The frequency scanning curve of the sample at 25 ◦C is shown in Figure 3.
Figure 3b,c show that an increase in the WG proportion caused a gradual increase in G” and
a gradual decrease in tanδ to less than 1, indicating that the raw material–water mixture is
more inclined to show viscous liquid characteristics (tanδ > 1) at WG proportions ≤ 70%,
but shows elastic solid characteristics (tanδ < 1) when the WG proportion is 100%. This may
be because WG gradually replaces PPP to become a continuous phase from A0100 to E1000,
and WG enhances the three-dimensional network structure of proteins [50]. However,
peanut protein is mainly composed of arachin and conarachin, which have molecular
chains that expand with difficulty under conventional treatment and tend to form a viscous
liquid when mixed with water [31].
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3.2.2. Strain Sweep Analysis

Strain sweep can reveal the linear viscoelastic region of the sample, and the transition
of the linear viscoelastic region indicates the failure of the network structure. Therefore,
the range of the linear viscoelastic region can be used to measure the breakdown of the
three-dimensional network structure of the protein [51]. The strain scanning curves of the
samples are shown in Figure 4. Figure 4b shows that an increase in the PPP proportion
gradually increases the G” value, indicating the macroscopic characteristics of a viscous
liquid. Figure 4c and Table 2 show that an increase in WG content gradually increases
the range of the linear viscoelastic region of the raw material–water mixture. As the
percentage of WG in the raw materials increased from 0% to 100%, the endpoint of the
linear viscoelastic region of the raw material–water blend system increased from 0.636%
to 32.019% (Table 2), indicating that WG increased the structural strength of the protein
network, making it less susceptible to breakage, which is consistent with the results of Xu
et al. [52]. This phenomenon will further affect the flow behavior of the melt in the extruder
cavity. The larger three-dimensional structural strength of proteins may increase the degree
of friction between the melt and screw and the extruder cavity wall, thereby increasing the
torque and SME during extrusion.
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Table 2. Linear viscoelastic region endpoints for different ratios of raw materials.

WG:PPP Ratio Linear Viscoelastic Region Endpoint (%)

0:100 0.636 ± 0.006 e

30:70 2.011 ± 0.023 d

50:50 6.373 ± 0.081 c

70:30 16.250 ± 0.530 b

100:0 32.019 ± 0.493 a

Results are expressed as means (n = 3) ± standard deviation. Different superscript letters mean significant
differences within the same column (Duncan’s test; p < 0.05).

3.2.3. Creep-Recovery Analysis

The creep-recovery experiment consists of two steps. In the first step, a known stress
(10 Pa) is applied to the raw material–water mixture. The mixture deforms, and the shape
variable increases gradually with the passage of time. The second step is to withdraw
the stress and observe the change in deformation over time, which is called the recovery
stage [53]. Figure 5 shows that an increase in WG content causes a gradual increase in the
creep deformation of the raw material–water mixture.
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Table 3 shows the creep deformation and non-recoverable deformation of the raw
material–water mixtures. When the proportion of WG reaches 100%, the creep deforma-
tion of the mixture can reach 192%, and the elastic solid features are more obvious as
stronger viscoelasticity. Wu et al. [54] reported increases in the creep deformation and
non-recoverable deformation of the mixture with increasing WG content, in agreement
with our experimental results. This may be due to the good elongation and viscosity of the
gliadin in WG and the good elasticity of the glutenin [55]. The addition of WG makes the
raw material–water blend system more inclined to elastic solid characteristics, which can
also be verified from the results of frequency sweep and strain sweep.

Table 3. Creep deformation and non-recoverable deformation of different raw materials.

WG:PPP Ratio Creep Deformation Non-Recoverable Deformation

0:100 0.37 ± 0.03 e 0.13 ± 0.05 e

30:70 0.94 ± 0.09 d 0.42 ± 0.01 d

50:50 1.13 ± 0.07 c 0.32 ± 0.00 c

70:30 1.43 ± 0.01 b 0.53 ± 0.00 b

100:0 1.92 ± 0.02 a 1.31 ± 0.01 a

Results are expressed as means (n = 3) ± standard deviation. Different superscript letters mean significant
differences within the same column (Duncan’s test; p < 0.05).

Creep deformation can therefore be used to characterize the rigidity of the protein
network after stress removal. Increasing proportions of WG cause gradual increases in the
non-recoverable deformation of the mixture and in the rigidity of the three-dimensional
protein network. In the case of high WG ratios, the mixture has a large creep deformation
and non-recoverable deformation. The melt is deformed by the screw and moves forward,
but does not easily return to its original shape, which will lead to accumulation of the
material in the direction of the exit and a die head pressure increase that will cause instability
of the die head discharge, and this situation will have a further unfavorable impact on the
quality of the extrudates.

3.3. Extruder Response Parameter Analysis of Raw Materials with Different WG:PPP Ratios
during the High Water Extrusion Process

The extruder response parameters are an important index for monitoring the fiber
textural process of a protein [29]. The extruder response can play a bridging role and
establish a correlation between raw material characteristics and extrudate quality. The
extruder response parameters include torque, die pressure, die temperature, and SME. In
the stable operation stage of the extruder, online software was used to conduct real-time
monitoring of the extruder response parameters, and the results are shown in Table 4. As
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the proportion of WG in the raw material system increased, the torque increased from
110.42 Nm to 116.0 Nm. Under constant conditions of screw speed, feed speed, and
extruded water content, the SME is a function of torque. As shown in Table 4, the SME also
increased from 699.35 kJ/kg to 759.22 kJ/kg.

Table 4. System response parameters for extrusion processes of raw materials with different mixing ratios.

WG:PPP Ratio Die Pressure
(MPa) Torque (N·m) SME (kJ/kg) Die Temperature

(◦C)

0:100 3.56 ± 0.11 d 110.42 ± 0.38 e 699.35 ± 2.39 e 104.60 ± 0.55 d

30:70 4.02 ± 0.08 c 111.46 ± 0.36 d 711.61 ± 2.28 d 106.00 ± 0.71 d

50:50 4.22 ± 0.04 b 112.40 ± 0.63 c 723.46 ± 4.07 c 112.60 ± 1.14 c

70:30 4.36 ± 0.05 b 114.88 ± 0.18 b 745.60 ± 1.16 b 119.40 ± 2.88 b

100:0 4.70 ± 0.20 a 116.04 ± 0.71 a 759.22 ± 4.66 a 123.20 ± 2.59 a

Results are expressed as means (n = 10) ± standard deviation. Different superscript letters mean significant
differences within the same column (Duncan’s test; p < 0.05).

Glutenin plays an important role in enhancing the structure of protein networks.
With a gradual increase in the proportion of glutenin in the raw material system, the
characteristics of the melt formed by the raw material and water approach those of elastic
solids, so the torque and SME increase gradually. Zhang et al. [56] added a certain amount
of WG with soy protein isolate (SPI) to PPP, and they found that the addition of WG
increased the SME during extrusion. However, when SPI was added, the SME of the
extrusion process decreased, which may be related to the difference in viscosity between
SPI and WG. Zhou et al. [49] investigated the effect of soy protein on the rheological
properties of wheat flour bread and found that the addition of SP diluted the gluten and
reduced the viscosity of wheat dough. Some researchers have also found that SME is
related to protein concentration. At higher protein concentrations, potentially denatured
proteins pack tightly together and promote the entanglement and polymerization of protein
molecules, which contribute to increased viscosity and thus higher SME [57].

The increase in the proportion of WG also made the material in the extruder chamber
pile up in the die, so that the die pressure increased from 3.56 MPa to 4.70 MPa. This may
be related to the rheological properties of the raw material. The increase in the proportion
of WG causes the mixed material to become more prone to deformation and less easy to
restore to its original state. The mixed material therefore accumulates at the die and causes
a gradual increase in pressure at the die. The gradually increasing die pressure causes mass
evaporation of extruded water at the die outlet; therefore, the total water of the extrudates
gradually decreases, and some areas with serious water loss appear.

One point worth mentioning is that the system response parameters also significantly
affect the texture properties and color of the extrudates. Excessive torque and SME are
both important factors leading to decreased fibrous degree and darkening of color. Zhang
et al. [29] found that SME was mainly controlled by the water content and the energy
input mode intensity and that the fibrous degree of meat analogs could be significantly
improved by changing the shear mode. Extrusion temperature is another decisive factor
that determines the tensile properties and springiness, while moisture content plays an
important role in the color and hardness of extrudates.

3.4. Low-Field NMR Analysis of Extrudates with Different WG:PPP Ratios
3.4.1. Moisture Content Analysis of Extrudates with Different WG:PPP Ratios

The state and content of extruded water at different mixing ratios are shown in Table 5
and Figure 6. Wang et al. [58] found that water can be divided into three different states
according to relaxation time: T21 (0–10 ms, strongly bound water), T22 (10–100 ms, weakly
bound water), and T23 (100–1000 ms, free water). Figure 6 shows that the T21, T22, and T23
of the extrudates gradually increased as the proportion of WG increased to 50%, indicating
that the water mobility in the extrudates increased when a small amount of WG was added,
in agreement with previous research results for WG effects on water mobility in whole
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wheat cracker dough [59]. However, further increases in the proportion of WG resulted in
a gradual decrease in water mobility. This may be because, under high die pressure, the
trapped water (immobilized water) and free water in the protein network microstructure
evaporate in large quantities during the discharge stage and the proportion of water with
low fluidity in the total water increases.

Table 5. Proportions of peak areas (A2) of extrudates with different mixing ratios.

WG:PPP ratio A21 A22 A23

0:100 11.511 ± 0.709 d 87.490 ± 0.684 a 0.999 ± 0.025 a

30:70 12.731 ± 0.828 d 86.682 ± 0.798 a 0.579 ± 0.017 c

50:50 14.902 ± 0.122 c 84.733 ± 0.074 b 0.222 ± 0.008 d

70:30 19.224 ± 0.224 b 79.568 ± 0.002 c 0.998 ± 0.073 a

100:0 21.407 ± 0.621 a 77.757 ± 0.494 d 0.742 ± 0.008 b

Results are expressed as means (n = 3) ± standard deviation. Different superscript letters mean significant
differences within the same column (Duncan’s test; p < 0.05). A2, the normalized peak area ratio; A21, the
normalized peak area ratio of strongly bound water; A22, the normalized peak area ratio of weakly bound water;
A23, the normalized peak area ratio of free water.

Foods 2023, 12, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. The transverse relaxation time spectra of LF-NMR of extrudates with different mixing ratios. 

As shown in Table 5, with the increase in WG proportion, A21 gradually increased 
and A22 gradually decreased, indicating that the immobilized water in the extrudates had 
changed to bound water. Possibly, the addition of WG promoted closer binding of the 
water molecules with macromolecules, thereby leading to the decrease in water mobility. 
Guo et al. [60] found that an increase in the content of WG in SPI-based meat analogs from 
0 to 40% first caused a decrease and then an increase in T21 and T22. A deviation from that 
trend was evident in the present results, which may reflect differences in the response 
parameters of the extruder caused by the ability of the raw material itself to bind water, 
which affected the extruder response. 

3.4.2. MRI Analysis of Extrudates with Different WG:PPP Ratios 
Low-field magnetic resonance imaging (MRI) was used to study the water distribu-

tion of the extrudates at different mixing ratios. Figure 7 shows the proton density images 
of extrudates with different mixing ratios. Brightness represents moisture content and its 
spatial distribution. Pseudo-color processing of the proton density image of extrudates 
with pseudo-color software allowed for a more intuitive depiction of the water distribu-
tion of the extrudates. Figure 8 compares the pseudo-color proton density images of ex-
trudates with different mixing ratios, where red indicates higher water content and blue 
indicates lower water content. 

 
Figure 7. Proton density-weighted images of extrudates at the WG to PPP ratio of 0:100 (a); 30:70 
(b); 50:50 (c); 70:30 (d); and 100:0 (e). 

Figure 6. The transverse relaxation time spectra of LF-NMR of extrudates with different mixing ratios.

As shown in Table 5, with the increase in WG proportion, A21 gradually increased
and A22 gradually decreased, indicating that the immobilized water in the extrudates had
changed to bound water. Possibly, the addition of WG promoted closer binding of the
water molecules with macromolecules, thereby leading to the decrease in water mobility.
Guo et al. [60] found that an increase in the content of WG in SPI-based meat analogs from
0 to 40% first caused a decrease and then an increase in T21 and T22. A deviation from
that trend was evident in the present results, which may reflect differences in the response
parameters of the extruder caused by the ability of the raw material itself to bind water,
which affected the extruder response.

3.4.2. MRI Analysis of Extrudates with Different WG:PPP Ratios

Low-field magnetic resonance imaging (MRI) was used to study the water distribution
of the extrudates at different mixing ratios. Figure 7 shows the proton density images of
extrudates with different mixing ratios. Brightness represents moisture content and its
spatial distribution. Pseudo-color processing of the proton density image of extrudates
with pseudo-color software allowed for a more intuitive depiction of the water distribution
of the extrudates. Figure 8 compares the pseudo-color proton density images of extrudates
with different mixing ratios, where red indicates higher water content and blue indicates
lower water content.
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Figure 7a–c show that the sample area has high brightness and no obvious dark areas.
Figure 7d,e show that the brightness of the sample area decreases, and a large number of
dark areas begin to appear. This pattern indicated that the water loss from the extrudates
was not obvious at WG contents of less than 50%, but as the WG content continued to
increase, the extrudates began to show significant water loss.

As shown in Figure 8a–c, the color of the sample area gradually turned red, while in
Figure 8d,e, the color of the sample area gradually turned blue. The very uneven color
distribution of the sample area in Figure 8e indicates that the moisture content of the sample
first increased and then decreased. When the raw material system was composed entirely
of WG, the water distribution was very uneven.

3.5. Water Activity Analysis of Extrudates with Different WG:PPP Ratios

Water activity is the ratio of the vapor pressure of water in a food product to the
saturated vapor pressure of pure water at the same temperature in a confined space [61]. It
represents how much water is available in the food. The water activity of the extrudates
at different mixing ratios is shown in Figure 9. The addition of a small amount of WG
increased the water mobility of the extrudate and improved the water activity, which was
reflected in the increase in the relaxation time. Gong et al. [62] found that increasing the
ratio of WG in wheat starch/gluten extruded noodles could increase the water activity of
extrudates and significantly affect the water migration of extrudates, in agreement with the
results of the present study. Increasing the proportion of WG beyond 50% decreased the
water activity, as indicated by the decrease in the relaxation time as the WG increased from
50% to 100%. This may be related to the high die pressure and unstable discharge state.
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3.6. Color Analysis of Extrudates with Different WG:PPP Ratios

Color is an important indicator of HMTVP product quality [63]. Too large a value for
the total color difference (∆E) will have a negative effect on the later deep processing and
reduce the acceptance by consumers. Therefore, we investigated the correlation between
the ratio of WG to PPP and the color of the extrudates.

The instrumental color measurements of the raw materials at different mixing ratios
are shown in Table 6. The addition of WG reduces the L* of the mixture and increases the
a* and b* of the mixture, while also making the ∆E of the mixture larger compared to the
standard white plate.

Table 6. Color of raw materials with different mixing ratios.

WG:PPP Ratio L* a* b* ∆E

0:100 89.12 ± 0.32023 a 1.26 ± 0.03 e 10.62 ± 0.40 e 9.00 ± 0.41 e

30:70 88.88 ± 0.02345 a 1.48 ± 0.01 d 11.88 ± 0.03 d 10.29 ± 0.02 d

50:50 88.548 ± 0.18754 b 1.57 ± 0.02 c 12.14 ± 0.12 c 10.59 ± 0.10 c

70:30 87.514 ± 0.21559 c 1.93 ± 0.01 b 13.77 ± 0.03 b 12.39 ± 0.03 b

100:0 86.542 ± 0.00837 d 2.21 ± 0.03 a 14.74 ± 0.01 a 13.58 ± 0.01 a

Results are expressed as means (n = 10) ± standard deviation. Different superscript letters mean significant
differences within the same column (Duncan’s test; p < 0.05).

The extrudate colors at different mixing ratios are shown in Table 7. Increasing the
proportion of WG from 0 to 50% significantly increased the L* of the extrudates from 68.92
to 77.09, indicating increased brightness. This may be because an increase in the proportion
of WG increases the moisture content of the extrudates. Further increases in the WG
proportion decreased the extrudate L* to 46.51, which may reflect a decrease in extrudate
brightness due to water evaporation. Alternatively, it may be related to a negative effect of
SME on the L* of the extrudates [18].

Table 7. Color of extrudates with different mixing ratios.

WG:PPP Ratio L* a* b* ∆E

0:100 68.92 ± 0.80 b 0.34 ± 0.01 e 13.24 ± 0.12 e 23.24 ± 0.73 c

30:70 70.26 ± 2.76 b 0.57 ± 0.05 d 13.43 ± 0.11 d 22.76 ± 2.43 c

50:50 77.09 ± 1.15 a 0.77 ± 0.06 c 14.76 ± 0.17 c 18.12 ± 0.79 d

70:30 51.12 ± 1.55 c 2.17 ± 0.03 b 15.57 ± 0.22 b 41.08 ± 1.44 b

100:0 46.51 ± 1.85 d 3.41 ± 0.18 a 17.25 ± 0.17 a 46.06 ± 1.73 a

Results are expressed as means (n = 10) ± standard deviation. Different superscript letters mean significant
differences within the same column (Duncan’s test; p < 0.05).
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Increases in the proportion of WG also significantly increased the a* of the extrudates
from 0.34 to 3.41. This may be because the addition of WG resulted in a significant increase
in SME, which accelerated the Maillard reaction between amino groups and carbonyl
groups [31,64]. In addition, the color of the raw material itself and its composition will also
have a certain degree of influence on the color of the extrudates. Jia et al. [65] studied the
effect of WG addition on the color of WG-RPC meat analogs, and found that the change in
sample color was not necessarily related to the change in the dominant continuous protein
phase; however, the addition of WG diluted the darker-colored RPC. In addition, oxidized
tannins in RPC can form dark polymers during high-temperature processing, whereas, in
the presence of WG, this oxidized tannin can react with available mercaptan groups from
the WG to form colorless complexes [66]. Comparing the b* of the raw material with that of
the extrudate, it was found that extrusion caused the sample to turn more yellow in color.
The increase in the proportion of WG also significantly increased the b* of the extrudate,
which may be related to the high temperatures in the extruder cavity [18].

A significant negative correlation was noted between the extrudate ∆E and WG content
at WG proportions lower than 50%. When the proportion of WG increased from 50% to
100%, the ∆E of the extrudate increased significantly from 18.12 to 46.06. When the WG
ratio was 50%, the extrudate was similar in color to the standard white plate.

3.7. Texture Properties Analysis of Extrudates with Different WG:PPP Ratios

The quality of the HMTVP was evaluated by its texture characteristics [63]. Hardness,
springiness, and tensile resistance are the key factors affecting the sensorial properties of
plant-based meat analogs. The fibrous degree can be used to evaluate the similarity between
HMTVP and real meat. Table 8 shows the analysis results for the texture characteristics.
The hardness of the WG–PPP extrudates decreased significantly from 3.51 kg to 2.76 kg,
and the springiness increased from 0.92 to 0.95 when the WG proportion increased from
0 to 50%. This suggested that the increased proportion of WG gave the extrudate a soft
and springy texture, in agreement with the results of Zhang et al. [39], who concluded
that an increase in the WG proportion gave the SPC-WG extrudates a softer fiber. This
may be because the increase in WG causes greater moisture retention, resulting in softer
extrudates. Further increases in the proportion of WG significantly increased the hardness
of WG-PPP extrudates to 12.81 kg and decreased the springiness to 0.91, indicating that
excess WG causes the extrudate to become hard and not springy. This may be because
of a positive correlation between the die pressure, SME, and WG content. As the WG
is gradually increased, the discharge state of the extruder becomes unstable, and a large
amount of water evaporates at the die, thereby increasing the hardness of the extrudate.

Table 8. Texture properties of extrudates with different mixing ratios.

WG:PPP Ratio Hardness (kg) Springiness
Tensile

Resistant Force
(kg)

Crosswise
Shear Force

(kg)

Lengthwise
Shear Force

(kg)

Fibrous
Degree

0:100 3.51 ± 0.01 c 0.92 ± 0.04 a,b 0.26 ± 0.01e 0.50 ± 0.01 d 0.43 ± 0.01 c 1.18 ± 0.03 d

30:70 3.48 ± 0.04 c 0.93 ± 0.04 a,b 0.31 ± 0.01 d 0.53 ± 0.01 c,d 0.36 ± 0.01 d 1.47 ± 0.03 b

50:50 2.76 ± 0.23 d 0.95 ± 0.04 a 0.37 ± 0.01 c 0.56 ± 0.01 c 0.32 ± 0.01e 1.75 ± 0.04 a

70:30 6.12 ± 0.05 b 0.93 ± 0.02 a,b 0.41 ± 0.01 b 1.19 ± 0.05 b 0.81 ± 0.04 b 1.48 ± 0.04 b

100:0 12.81 ± 0.04 a 0.91 ± 0.03 b 0.64 ± 0.01 a 1.61 ± 0.05 a 1.19 ± 0.06 a 1.36 ± 0.04 c

Results are expressed as means (n = 10) ± standard deviation. Different superscript letters mean significant
differences within the same column (Duncan’s test; p < 0.05).

Wheat gluten (WG) is made up of glutenins and gliadins, and the gliadins can be
divided into α-, γ-, andω-gliadins according to their electrophoretic mobilities [67]. Due to
their cysteine residues, the α- and γ- gliadins are linked mainly by intramolecular disulfide
bonds, and form a continuous band in the presence of water during the extrusion process,
giving the system viscoelasticity [68]. Therefore, the addition of excess WG resulted in a
sticky extrudate lacking springiness [37].
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Table 8 shows that increasing the WG ratio from 0 to 100% significantly increases
the tensile strength of the WG-PPP extrudates from 0.26 kg to 0.64 kg. Zhang et al. [39]
suggested that the addition of WG could improve the tensile strength of meat analogs.
Similar results were observed by Jia et al. [65], who concluded that the anisotropy, tensile
stress, and tensile strain of the blend were significantly improved by the addition of WG to
SPC. This is probably because WG contains glutenin. Glutenin can occur as high molecular
weight and low molecular weight subunits. The high molecular weight subunits form
large polymers through intermolecular disulfide bonds and non-covalent interactions
with gliadin, providing strength for fibrous structures [35]. Therefore, an increase in the
proportion of WG leads to an increase in the strength of the protein polymeric network,
resulting in a sustained increase in the tensile strength of the WG-PPP extrudates.

The crosswise shear force, lengthwise shear force, and fibrous degree of the extrudates
with different mixing ratios shown in Table 8 reveal that when the WG accounted for 50% of
the raw material system, the fibrous degree of the extrudates showed a positive correlation
with the WG content. This may be because the glutenin in WG increases the plasticity of the
extrudates during extrusion, which may result in the proteins dissolving better in the melt
and forming denser structures upon cooling [23,60,69]. The inclusion of WG would also
increase the disulfide bond content and facilitate cross-linking between proteins, resulting
in an increased fibrous degree [10]. However, when the proportion of WG exceeded 50%,
the fibrous degree of the extrudates decreased from 1.75 to 1.36. This may be because the
increase in WG gradually destabilized the discharge state of the extruder, resulting in the
formation of many longitudinal gaps in the extrudates. The presence of these longitudinal
gaps would decrease the fibrous degree of the extrudates [39].

4. Conclusions

The proportions of continuous and dispersed phases in the process of high-moisture
extrusion are of great significance to the mechanism that regulates the rheological properties
of raw materials, the response parameters of the extruder, and the quality characteristics of
the extrudates. In this study, the effects of different proportions of PPP and WG on extrudate
quality characteristics were discussed from the perspective of the extruder response, and
the causes of extruder response differences were discussed from the perspective of the raw
material characteristics. The results support the idea that the good hydration ability of WG
results in a more even distribution of water when added to the ingredients in moderation.
The good moisture distribution also gives the extrudates a soft, elastic texture and white
color. The introduction of glutenin also imparts a dense fiber structure and greater tensile
strength to the extrudates. Conversely, when the WG ratio exceeds 50%, the good hydration
ability of WG leads to the formation of dough with higher viscosity, and this prevents
melt flow during extrusion, resulting in higher torque and higher SME. The large creep
deformation and non-recoverable deformation of WG also lead to the accumulation of
material at the die and increase the die pressure. In this case, a large amount of water
evaporates at the die, the water distribution of the extrudates becomes uneven, and the
extrudates become dry, hard, and dark in color. The extrudates also undergo longitudinal
clearance due to the unstable discharge state, thus reducing the fibrous degree. This study
found that the best quality parameters were achieved at a 50:50 balance of WG to PPP.
Meanwhile, this study provides a new approach for the systematic regulation of the quality
of meat analogs made from WG-PPP and other multiphase systems.
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