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Abstract: Lipid metabolism disorder has become an important hidden danger threatening human
health, and various supplements to treat lipid metabolism disorder have been studied. Our previous
studies have shown that DHA-enriched phospholipids from large yellow croaker (Larimichthys
Crocea) roe (LYCRPLs) have lipid-regulating effects. To better explain the effect of LYCRPLs on lipid
regulation in rats, the fecal metabolites of rats were analyzed from the level of metabolomics in this
study, and GC/MS metabolomics measurements were performed to figure out the effect of LYCRPLs
on fecal metabolites in rats. Compared with the control (K) group, 101 metabolites were identified
in the model (M) group. There were 54, 47, and 57 metabolites in the low-dose (GA), medium-dose
(GB), and high-dose (GC) groups that were significantly different from that of group M, respectively.
Eighteen potential biomarkers closely related to lipid metabolism were screened after intervention
with different doses of LYCRPLs on rats, which were classified into several metabolic pathways in
rats, including pyrimidine metabolism, the citric acid cycle (TCA cycle), the metabolism of L-cysteine,
carnitine synthesis, pantothenate and CoA biosynthesis, glycolysis, and bile secretion. L-cysteine
was speculated to be a useful biomarker of LYCRPLs acting on rat fecal metabolites. Our findings
indicated that LYCRPLs may regulate lipid metabolism disorders in SD rats by activating these
metabolic pathways.

Keywords: DHA-enriched phospholipids; lipid metabolism; differential metabolites; pathways

1. Introduction

Metabolomics, an essential branch of systems biology, focuses on the biological path-
ways related to disease pathogenesis and reveals the biological effects of treatment by
exploring the variations of endogenous metabolites [1–3]. Metabolite comparisons and data
analyses are two important parts of metabolomics research. A data analysis is performed
to find out the overall differences among target samples, including in data collection and
processing and dimensional reduction processing [4]. Metabolites can be comparatively
analyzed by employing techniques such as mass spectrometry, chromatography, and spec-
troscopy [5]. At present, metabolomics has been successfully used in medical fields, such
as for hemolytic anemia [6], type 2 diabetes [7–9], Parkinson’s disease [10], and hyperten-
sion [11]. Additionally, metabolomics plays a vital role in studying the mechanisms of
natural active substances relating to organisms. Its wide application in the food indus-
try [12] implies that metabolomics is currently one of the most promising techniques for
identifying the mechanisms of functional substances.

Lipid metabolism disorders are the key factors in the development of metabolic
syndrome [13], which is characterized by dyslipidemia, insulin resistance, abdominal
obesity, and high blood pressure [14]. The excessive intake of fat has been shown to
cause dysfunction and diseases of many organs, such as fat tissue metabolism, liver fat
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storage, pancreatic islet function, and others [15–17]. High blood lipid levels, liver lipid
accumulation [18], obesity [19], non-alcoholic fatty liver disease (NAFLD) [20], diabetes [21],
and atherosclerosis [22] are mainly caused by lipid metabolism disorder. Disorders of lipid
metabolism are often closely related to factors such as having a long-term irregular diet [23,24].
Thus, how to adjust the lipid metabolism disorder by changing the diet structure has
become a research hotspot. Additionally, the mechanism regulating the metabolic disorder
is complex and cannot currently be fully explained by a single mechanism.

Marine animals are rich in n-3 polyunsaturated fatty acids (n-3 PUFAs) [25,26], and
insufficient intake of n-3 PUFAs is one of the dietary factors that are harmful to health [27].
The n-3 PUFAs from marine foods often exist in the form of phospholipids (PLs), such as
docosahexaenoic acid PLs (DHA-PLs) and eicosapentaenoic acid PLs (EPA-PLs). Marine
DHA/EPA-PLs have received more and more attention due to their beneficial health effects,
which have been reported to significantly regulate dyslipidemia [28] and prevent cardio-
vascular diseases [29], NAFLD [30,31], atherosclerosis [32], hypertension [33], allergies [34],
and neurodegenerative pathologies [35]. It is well-known that fish roes [36] are widely
consumed by humans due to their high contents of DHA/EPA-PLs [37–39]. In China, large
yellow croaker (Larimichthys Crocea) roe is a kind of major byproduct containing a high
amount of DHA-PLs [40]. LYCRPLs have great nutritional value [41], and their inhibitory
effect on the accumulation of triglycerides was studied at the cellular level [42] in our early
research. Previous animal experiments have also shown that LYCRPLs can significantly
regulate lipid metabolism and improve the intestine microbiota disorder induced by a
high-fat diet [43]. Nevertheless, there is no report about the effect of LYCRPLs on the fecal
metabolites of rats with a high-fat diet.

Therefore, GC/MS non-targeted metabolomics measurements were used to determine
and analyze the differential metabolites and metabolic pathways related to lipid metabolism
in the feces of SD rats after LYCRPL treatment. To better explain the effect of LYCRPLs on
lipid regulation in rats, the fecal metabolites of rats were analyzed from the perspective of
metabolomics in this study.

2. Materials and Methods
2.1. Materials

The roe of Larimichthys Crocea was obtained from Fujian Yuehai Aquatic Food Co.,
Ltd. (Ningde, China). All chemicals and solvents were either of analytical or HPLC grade.
The water, methanol, pyridine, n-hexane, methoxylamine hydrochloride (97%), and BSTFA
with 1% TMCS were bought from CNW Technologies GmbH (Düsseldorf, Germany). The
trichloromethane was sourced from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). The L-2-chlorophenylalanine came from Shanghai Hengchuang Bio-technology
Co., Ltd. (Shanghai, China).

2.2. Preparation of LYCRPLs

The LYCRPLs were obtained in the laboratory by referring to the methods used in
our previous study [43]. The thawed Larimichthys Crocea roe was cut into small pieces and
freeze-dried. The neutral fat was removed using the supercritical CO2 fluid method, and
95% ethanol was added at a ratio of 1:10. The extraction was performed at 40 ◦C for 30 min
in three repetitions. The extract was recovered via filtration and freeze-dried to obtain
LYCRPLs, which were stored at −18 ◦C for future use.

2.3. Animal Treatment and Sample Collection

After the experimental Sprague–Dawley (SD) rats adapted to the environment, 50 male
SD rats (specific-pathogen-free, SPF, 120 ± 10 g) were randomly divided into five groups:
the control (K) group, the model (M) group, the low-dose (GA) group (0.005 g·mL−1), the
medium-dose (0.015 g·mL−1) group (GB), and the high-dose (0.03 g·mL−1) (GC) group. The
experiment was carried out under the same conditions as our previous study [43]. The rats
were kept in a comfortable environment to the utmost extent throughout the experiment.
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The samples were given by intragastric administration (dose: 0.01 mL·g−1) at a fixed time
every day for 8 weeks. The nutritional information for the diet used is shown in Table 1. SD
rat feces samples were collected one day prior to the animal dissection experiment, sealed
with a parafilm in a sterilized EP tube, and stored in a refrigerator at −80 ◦C for further
processing.

Table 1. The nutritional information for the diet.

Common Diet Carbohydrate Protein Fat Lard Whole Egg Yolk Powder Cholesterol Bile Salt
41.47% 21.06% 14.42% 0 0 0 0

High-fat diet Carbohydrate Protein Fat Lard Whole egg yolk powder Cholesterol Bile salt
32.68% 16.69% 11.03% 10% 10% 1% 0.2%

2.4. Sample Processing

A 60 mg feces sample and 40 µL of internal standard (0.3 mg/mL 2-chloro-l-
phenylalanine in methanol) plus 360 µL of extraction solvent (methanol/water, 4/1 v/v)
were transferred to a 1.5 mL Eppendorf tube containing two steel balls. The samples were
stored at −20 ◦C for 2 min, then ground at 60 Hz for 2 min. Next, 200 µL of chloroform
was added and the samples were ultrasonically extracted for 30 min at room temperature.
After 30 min, the samples were stored at −20 ◦C for another 30 min, then centrifuged
at 13,000 rpm for 10 min at 4 ◦C. A Quality control QC sample was formed by com-
bining aliquots of all samples, and 300 µL of the supernatant was transferred to a glass
vial, followed by vacuum-drying at room temperature. Next, 80 µL of methoxylamine
hydrochloride (dissolved in pyridine, 15 mg/mL) was added, vortexed for 2 min, and
incubated at 37 ◦C for 90 min. Then, 80 µL of BSTFA (with 1% TMCS) and 20 µL n-hexane
were added, vortexed for 2 min, and derivatized at 70 ◦C for 60 min. The samples were left
at room temperature for 30 min before their analysis by GC-MS.

2.5. Gas Chromatography–Mass Spectrometry Analysis

An Agilent 7890B GC-5977A MSD system (Agilent Tech., Santa Clara, CA, USA) was
used to analyze the samples with a HP-5MS fused silica capillary column (30 m × 0.25 mm
× 0.25 µm). Helium (99.999%) was used as the carrier gas (1 mL/min) and the injector
temperature was 260 ◦C, with a 5 min solvent delay, being performed in splitless mode.
The oven temperature was initially set to 60 ◦C, then ramped to 125 ◦C (8 ◦C/min), 210 ◦C
(5 ◦C/min), 270 ◦C (10 ◦C/min), and 305 ◦C (20 ◦C/min) and held at 305 ◦C for 5 min. The
MS quadrupole and ion source temperatures (electron impact) were 150 ◦C and 230 ◦C,
respectively, with a collision energy of 70 eV; the data were collected in full-scan mode
(50–500 m/z). Quality control was performed regularly for repeatability.

2.6. Data Processing

The Analysis Base File Converter software was used to convert the raw data (.D format)
to .abf, which was then imported into MD-DIAL for data processing. The LUG database was
utilized to annotate metabolites. The “statistic compare” component was used to generate
the raw “data array” (.txt) with three-dimensional data sets (Table S1), including the sample
information, peak names and retention times (m/z), and peak intensities. Internal standards
and any pseudo-positive peaks were removed. RSDs >0.3 for the interior label were deleted,
and the peak strength (peak area) was normalized by the retention time partition period.
Log10 transformation was applied to the data, which were then imported into the R ropls
package.

2.7. Statistical and Pathway Analysis

The experimental data are presented as the means ± SDs. To determine the differ-
ences among groups, a one-way ANOVA followed by Duncan’s multiple range test was
conducted using SPSS (version 13.0). A p-value of <0.05 indicated statistical significance,
and <0.01 was considered extremely significant. Figure 3A was generated using Origin 9.0
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software. The differential metabolites of each group were analyzed after comparison with
the KEGG, HMDB, and LipidMaps databases.

3. Results
3.1. The Effect of LYCRPLs on the Metabolites of Rats with a High-Fat Diet

QC samples are used to equilibrate the system prior to sample detection and to
assess the stability of the mass spectrometry system during sample detection. A total ion
chromatographic (TIC) overlap comparison of the QC samples is shown in Figure 1A. The
results show that the response intensity and retention time of the QC samples remained
stable within 48 h, and the chromatographic peaks basically overlapped, indicating that the
error caused by the instrument during the experiment was small and the obtained results
were highly reliable.

PLS-DA is often used to visually display the differences between groups, and the
greater the separation of the two groups of samples in the figure, the more significant the
difference. PLS-DA was used to determine differences in metabolites among groups. As
can be seen from Figure 1B, the significant separation of each group from group M was
observed. The fecal metabolites between group K and group M, group GA and group
M, group GB and group M, and group GC and group M were completely separated.
Different doses of LYCRPLs can effectively make the predicted main components of rat
fecal metabolites migrate in the positive direction of the X axis. The higher the dose, the
greater the migration to the positive X axis. The results showed that the fecal metabolites
of SD rats with a high-fat diet were significantly different among groups.

Hierarchical clustering of the metabolite expression was performed to more intuitively
show the differences in metabolite expression among groups. From the visualization of
metabolite differences in Figure 2, it can be seen that the hierarchical clustering boundary
of group K and group M is clear (Figure 2A), indicating that a high-fat diet can significantly
regulate the expression of fecal metabolites in rats. Group GA (Figure 2B), group GB
(Figure 2C), and group GC (Figure 2D) can be clearly distinguished from group M, indicat-
ing that LYCRPLs have a significant effect on the fecal metabolites of SD rats.

3.2. Screening of Differential Metabolites in the Intestine of Rats with a High-Fat Diet after
Intervention by LYCRPLs

The variable importance in projection (VIP) is the weight value of the variable. The
larger the VIP value in the PLS-DA model, the greater the contribution of the variable
to the grouping. VIP > 1 and p < 0.05 are the common criteria for screening differential
metabolites between groups. According to the VIP value obtained from the PLS-DA
analysis, the differences between groups were further analyzed. It is interesting to note
that significant changes in the fecal metabolites were observed after supplementation
with different doses of LYCRPLs. The number of different metabolites between group K
and group M is as high as 101 (Figure 3A), with 40 significantly being up-regulated and
61 significantly down-regulated (Figure 3B), indicating that a high-fat diet can significantly
change the fecal metabolites of experimental rats. Compared with group M, the numbers
of differential metabolites in group GA, group GB, and group GC equaled 54 (39 up-
regulated and 15 down-regulated), 47 (44 up-regulated and 3 down-regulated), and 57
(53 up-regulated and 4 down-regulated), respectively.
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Figure 1. Effect of LYCRPLs on fecal metabolites in rats with a high-fat diet: (A) TIC overlay of QC
samples; (B) PLS-DA results of fecal metabolites in different groups. Component 1 represents the
interpretation degree of the first principal component and component 2 is the interpretation degree
of the second principal component.
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of palmitic acid, ethanolamine, and N-acetyl-d-glucosamine in the intestine of group M 
were significantly (p < 0.05) increased, while the levels of 8 other metabolites were 

Figure 3. Screening of differential metabolites in the intestine of rats with a high-fat diet after
treatment with LYCRPLs: (A) statistics showing the numbers of differential metabolites among
groups; (B) volcano map of differential metabolites between group K and group M; (C) volcano
map of differential metabolites between group GA and group M; (D) volcano map of differential
metabolites between group GB and group M; (E) volcano map of differential metabolites between
group GC and group M; (B–E) the red dots represent the significantly up-regulated differential
metabolites, the blue dots represent the significantly down-regulated differential metabolites, and the
gray dots represent the insignificant differential metabolites. Note: the results of the T test, p < 0.05
means significant.

A total of 18 potential biomarkers related to hyperlipidemia were screened in the key
metabolic pathways of the intestine (Table 2). Compared with group K, the contents of
palmitic acid, ethanolamine, and N-acetyl-d-glucosamine in the intestine of group M were
significantly (p < 0.05) increased, while the levels of 8 other metabolites were significantly
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(p < 0.05) decreased, including uracil, caproic acid, pyruvic acid, L-alanine, 2-hydroxybutyric
acid, and oxoglutaric acid. The metabolites in the intestine were also significantly (p < 0.05)
changed after supplementation with different doses of LYCRPLs. Compared with group M,
the contents of glycolic acid, L-cysteine, and glycerol 3-phosphate in the intestine in group
GA were significantly (p < 0.05) increased, while the levels of 3-methyl-2-oxovaleric acid
and phosphoenolpyruvic acid were significantly (p < 0.05) decreased. The contents of L-
cysteine, L-glutamine, and pantothenic acid in the intestine in group GB were significantly
(p < 0.05) increased. The levels of L-cysteine, D-glucose, pantothenic acid, L-lysine, and
glycerol 3-phosphate were significantly (p < 0.05) increased in group GC, while the levels
of 3-methyl-2-oxovaleric acid and oxoglutaric acid were significantly (p < 0.05) decreased.

Table 2. Differential metabolites among treatment groups.

Groups Metabolites Formula Pathways Total Score VIP Trend

M vs. K

Palmitic acid C16H32O2 Fatty Acid Biosynthesis 99.9 1.048287271 ↑ **
Uracil C4H4N2O2 Pyrimidine Metabolism 99.6 1.285789263 ↓ **

Ethanolamine C2H7NO Phospholipid Biosynthesis 98.9 1.731325782 ↑ **
Caproic acid C6H12O2 Mitochondrial Beta-Oxidation of Short

Chain Saturated Fatty Acids
98.6 2.317483899 ↓ *

Pyruvic acid C3H4O3 Pyruvate Metabolism 96.7 2.029064881 ↓ **
L-alanine C3H7NO2 Glucose-Alanine Cycle 95.8 1.150004033 ↓ **

2-hydroxybutyric acid C4H8O3 Propanoate Metabolism 94.6 1.150329979 ↓ **
N-acetyl-d-glucosamine C8H15NO6 Amino Sugar Metabolism 94 1.038048935 ↑ *

Oxoglutaric acid C5H6O5 Citric Acid Cycle 90.8 1.872089434 ↓ **

GA vs. M

Glycolic acid C2H4O3 Fatty Acid Degradation 98.8 1.673615769 ↑ *
L-cysteine C3H7NO2S Cysteine Metabolism 98.8 1.123402905 ↑ *

Glycerol 3-phosphate C3H9O6P Glycolysis 95 1.109006616 ↑ *
3-methyl-2-oxovaleric acid C6H10O3 Valine, Leucine, and Isoleucine

Degradation
94.1 2.94484527 ↓ **

Phosphoenolpyruvic acid C3H5O6P Gluconeogenesis 90.6 1.793270632 ↓ *

GB vs. M
L-cysteine C3H7NO2S Cysteine Metabolism 98.8 1.294524663 ↑ *

L-glutamine C5H10N2O3 Glutamate Metabolism 97 1.728967115 ↑ *
Pantothenic acid C9H17NO5 Pantothenate and CoA Biosynthesis 96.6 1.464407157 ↑ *

GC vs. M

L-cysteine C3H7NO2S Cysteine Metabolism 98.8 1.371971343 ↑ *
D-Glucose C6H12O6 Glycolysis 98.2 1.590452991 ↑ *

Pantothenic acid C9H17NO5 Pantothenate and CoA Biosynthesis 96.6 1.350652592 ↑ *
L-lysine C6H14N2O2 Carnitine Synthesis 94.3 1.249256742 ↑ *

3-methyl-2-oxovaleric acid C6H10O3 Valine, Leucine, and Isoleucine
Degradation

94.1 1.530958872 ↓ *

Oxoglutaric acid C5H6O5 Citric Acid Cycle 90.8 1.33237846 ↑ *

Note: The first column of “A vs. B” indicates the experimental group and the control group, respectively. The fifth
column “total score” represents the total similarity score of this metabolite. The sixth column “VIP” is a measure
of how much each metabolite contributes to the classification and identification of samples in each group, with
VIP > 1 usually being used as a selection criteria for differentiating metabolites. The seventh column “trend”
shows the changes in A compared to B, with ↑ indicating an increase in A compared to B and ↓ indicating a
decrease. Duncan’s multiple range test was used to determine the significance of differences (* p < 0.05) and
extremely significant differences (** p < 0.01) between metabolites in the different groups.

Thus, our results indicated the changes induced by a high-fat diet in the levels of
palmitic acid, ethanolamine, N-acetyl-d-glucosamine, uracil, caproic acid, pyruvic acid, L-
alanine, 2-hydroxybutyric acid, and oxoglutaric acid, while treatments with different doses
of LYCRPLs were associated with the changes in the levels of compounds such as glycolic
acid, L-cysteine, glycerol 3-phosphate, 3-methyl-2-oxovaleric acid, phosphoenolpyruvic
acid, L-glutamine, pantothenic acid, D-glucose, L-lysine, and oxoglutaric acid.

3.3. Metabolic Pathway Enrichment and Analysis of Potential Biomarkers

KEGG is a comprehensive database used to understand the functions and interactions
of metabolites in biological systems, which can provide information about metabolic path-
ways, diseases, and other related metabolites [44]. The most important signal transduction
and metabolic pathways involved in the differential metabolites can be determined through
KEGG pathway enrichment [45]. In this study, the KEGG database was used to enrich
and analyze the metabolic pathways of differential metabolites, which will help to further
understand the effect of LYCRPLs on the fecal metabolites of rats with a high-fat diet.

Figure 4 reveals the first 10 pathways among groups. When compared with group
K, the KEGG pathways with significant differences in group M (Figure 4A) included the
biosynthesis of amino acids, central carbon metabolism in cancer, the GABAergic synapse,
lysine degradation, pyrimidine metabolism, citrate cycle (TCA cycle), basal cell carcinoma,
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phenylalanine metabolism, tyrosine metabolism, and the glucagon signaling pathway.
Compared with group M, the KEGG pathways with significant differences in group GA
(Figure 4B) included the cAMP signaling pathway, pyrimidine metabolism, morphine
addiction, alcoholism, choline metabolism in cancer, the gap junction, the synaptic vesicle
cycle, the cGMP-PKG signaling pathway, the regulation of lipolysis in adipocytes, and
Parkinson’ disease. The significantly different KEGG pathways in group GB (Figure 4C) in-
cluded purine metabolism, the cAMP signaling pathway, arginine and proline metabolism,
morphine addiction, alcoholism, the gap junction, bile secretion, the synaptic vesicle cycle,
the cGMP-PKG signaling pathway, and the regulation of lipolysis in adipocytes. The
KEGG pathways with significant differences between group M and group GC (Figure 4D)
included bile secretion, the HIF-1 signaling pathway, the glucagon signaling pathway, taste
transduction, ABC transporters, central carbon metabolism in cancer, non-alcoholic fatty
liver disease (NAFLD), galactose metabolism, the insulin signaling pathway, and the FoxO
signaling pathway.
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Figure 4. A pathway enrichment analysis of differential metabolites after treatment of LYCRPLs:
(A) metabolic pathway enrichment map between group K and group M; (B) metabolic pathway
enrichment map between group GA and group M; (C) metabolic pathway enrichment map between
group GB and group M; (D) metabolic pathway enrichment map between group GC and group M.
Note: (A–D) p < 0.05 means significant, and the smaller the p value, the more significant the difference
in the metabolic pathway. The red line indicates that the p value is 0.01 and the blue line indicates
that the p value is 0.05.
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After the comparative analysis with the KEGG, HMDB, and LipidMaps databases and
key metabolic pathways (Table 2) of potential biomarkers associated with hyperlipidemia,
we found that these substances induced by a high-fat diet were mainly concentrated in
pyrimidine metabolism and the citric acid (TCA) cycle metabolic pathway. The metabolites
of the LYCRPLs groups are significantly different, and the significant enrichment path-
ways included the metabolism of L-cysteine, carnitine synthesis, pantothenate and CoA
biosynthesis, glycolysis, and bile secretion.

4. Discussion

The importance of lipids in the human body is undeniable, since they are related
to material transportation, energy metabolism, and metabolic regulation [46,47]. Lipids,
especially n-3 PUFAs, have been found to have a significant impact on the intestinal
microbiota [48]. They have been associated with changes in bacterial populations, increased
microbial diversity, and the promotion of beneficial bacteria. Furthermore, n-3 PUFAs have
been shown to reduce oxidative stress [49] and inflammation [50] in the intestine, which can
help to protect against diseases such as irritable bowel syndrome and inflammatory bowel
disease. Our previous studies have indicated that LYCRPLs could significantly reduce
the content of triglycerides in HepG2 cells induced by oleic acid [42]. LYCRPLs have also
been shown to regulate lipid metabolism disorders and intestine microbiota imbalances
in SD rats with a high-fat diet [43]. In this study, we further investigated the changes of
fecal metabolites in rats after supplementation of LYCRPLs. GC-MS metabolomics, along
with a multivariate analysis, was employed to detect potential biomarkers. The metabolic
pathways and metabolic mechanism after the administration of LYCRPLs are illustrated in
Figure 5.
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Figure 5. An analysis of the effect of LYCRPLs on SD rats fed with a high-fat diet based on GC/MS
metabolomics.

The citric acid (TCA) cycle is a critical part of energy metabolism, which provides the
energy necessary for bodily activities. ATP acts as an energy source in the metabolic process
and plays a vital role in it [51]. An abnormal TCA cycle leads to metabolic diseases, such as
hyperlipidemia and diabetes [52]. Uracil is involved in many enzymatic reactions in the
human body, mainly by combining with ribose and phosphate to assist in the synthesis of
many enzymes necessary for cell function. The biosynthesis of polysaccharides and the
transport of aldoses are also involved. In this study, when the experimental SD rats were
fed with a high-fat diet, the pyrimidine metabolism and TCA cycle pathways of the rat
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metabolites were abnormally reduced, showing down-regulation of uracil and oxoglutaric
acid (Figure 6A,B). It can be speculated that abnormalities of the pyrimidine metabolism
and TCA cycle may cause hyperlipidemia in SD rats. However, supplementation with
high doses of LYCRPLs can significantly increase the content of oxoglutaric acid in fecal
metabolites and activate the TCA cycle metabolic pathway in high-fat-diet rats (Figure 6B,C).
The results showed that LYCRPLs may participate in the TCA cycle pathway of the intestinal
metabolism by up-regulating the expression of oxoglutaric acid, thereby regulating lipid
metabolism disorders in SD rats.
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changes in high-fat-diet rat fecal metabolites in the TCA cycle before (B) and after (C) treatment 
with LYCRPLs; (D,E) changes in high-fat-diet rat intestine D-glucose in terms of glycolysis (D) 
and bile secretion (E) after treatment with LYCRPLs. (A–E) The small circle represents metabolites, 
the red indicators represent up-regulation, and the blue ones represent down-regulation. The large 
squares represent other metabolic pathways, the small ones represent enzymes, and the small 
green ones represent enzymes unique to this species. The solid arrow indicates the reaction 
direction, and the dashed one indicates the relationship with other metabolic pathways. 
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pyruvate metabolism, tyrosine metabolism, and pantothenate and CoA biosynthesis. The 
whole process of glycolysis can be divided into two phases: the chemical initiation phase 
with D-glucose as the starting compound, and the energy production phase [53–55]. 
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expression of glycerol 3-phosphate, which is a chemical intermediate in the glycolysis 
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Figure 6. KEGG signal pathway analysis after treatment with LYCRPLs: (A,B) changes in rat fecal
metabolites induced by high-fat diet in pyrimidine metabolism (A) and the TCA cycle (B); (B,C)
changes in high-fat-diet rat fecal metabolites in the TCA cycle before (B) and after (C) treatment with
LYCRPLs; (D,E) changes in high-fat-diet rat intestine D-glucose in terms of glycolysis (D) and bile
secretion (E) after treatment with LYCRPLs. (A–E) The small circle represents metabolites, the red
indicators represent up-regulation, and the blue ones represent down-regulation. The large squares
represent other metabolic pathways, the small ones represent enzymes, and the small green ones
represent enzymes unique to this species. The solid arrow indicates the reaction direction, and the
dashed one indicates the relationship with other metabolic pathways.

Glycolysis is a metabolic pathway composed of ten intermediate compounds, which
can convert D-glucose to pyruvate. After pyruvate is produced, it will further undergo
pyruvate metabolism, tyrosine metabolism, and pantothenate and CoA biosynthesis. The
whole process of glycolysis can be divided into two phases: the chemical initiation phase
with D-glucose as the starting compound, and the energy production phase [53–55]. Pan-
tothenate and CoA biosynthesis [56] was also identified as a major metabolic pathway.
Disorders in these pathways may result in disruption of the energy supply. In our study, a
high-fat diet significantly (p < 0.01) decreased the metabolic level of pyruvate acid, while
low-dose LYCRPL supplementation significantly (p < 0.05) increased the expression of
glycerol 3-phosphate, which is a chemical intermediate in the glycolysis pathway. Medium-
dose LYCRPLs can significantly (p < 0.05) increase the expression of pantothenic acid and
activate the pantothenate and CoA biosynthesis pathway. The levels of pantothenic acid
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and D-glucose were significantly (p < 0.05) increased in the group treated with high-dose
LYCRPLs (Table 2), which activated pantothenate and CoA biosynthesis and enhanced
the glycolysis pathway. It is speculated that LYCRPLs may activate the glycolysis path-
way by up-regulating the levels of glycerol 3-phosphate, pantothenic acid, and D-glucose
(Figure 6D), playing a role in regulating intestine metabolism disorders in rats.

Bile acids (BAs) are the end products of cholesterol breakdown and have an essential
function in lipid metabolism [57]. BAs can also improve metabolic capacity by promoting
forward intestinal motility [58]. The levels of D-glucose were significantly (p < 0.05)
increased in the group treated with high-dose LYCRPLs (Table 2), which activated the
metabolic pathway of bile secretion. In Figure 4, the pathway enrichment analysis indicates
that the p value of the bile acid secretion decreased as the LYCRPL dose increased. Bile
acid binding leads to fecal bile acid excretion, and bile acid synthesis is critical for the
removal of cholesterol from the body because 70% of cholesterol is synthesized in vivo. Bile
acids also have key roles in the regulation of postprandial lipid metabolism. The effects
seem to be caused by bile acid receptors, such as farnesoid X receptor (FXR) and Takeda G
protein-coupled receptor 5 (TGR5) [59]. It is speculated that LYCRPLs may activate the bile
secretion by up-regulating the level of D-glucose (Figure 6E) via bile acid receptors of FXR
and TGR5, thereby regulating the lipid metabolism disorder in rats.

The metabolism of cysteine is closely related to the development of hyperlipidemia.
Cysteine is a precursor of protein synthesis, which is tightly regulated in the body to
ensure its proper level for metabolism, while also keeping its level below the toxicity
threshold [53,54,60,61]. Lysine is involved in carnitine synthesis, which is key to fatty
acid metabolism. Carnitine is synthesized from lysine residues in existing proteins, trans-
porting fatty acids to the mitochondria, where they are broken down via the TCA cycle
to release energy [62–65]. Our results showed that the expression levels of palmitic acid
and ethanolamine in the fecal metabolites of SD rats were significantly (p < 0.01) elevated
after feeding with a high-fat diet. Palmitic acid is a lipid involved in fatty acid synthesis,
and ethanolamine is an initial precursor for the biosynthesis of phosphatidylcholine (PC)
and phosphatidylethanolamine (PE). In contrast, the ingestion of low and high doses of
LYCRPLs significantly (p < 0.05) reduced the level of 3-methyl-2-oxovaleric acid, which
is a metabolic toxin caused by the incomplete breakdown of branched-chain amino acids.
Supplementation with high doses of LYCRPLs also significantly (p < 0.05) increased the ex-
pression of L-lysine and activated the carnitine synthesis pathway. Interestingly, treatment
with low, medium, and high doses of LYCRPLs significantly (p < 0.05) increased the content
of L-cysteine in the fecal metabolites of SD rats. Thus, we propose that L-cysteine may
be a useful biomarker for the effect of LYCRPLs on rat fecal metabolites. In addition, the
FoxO signaling pathway, glucagon signaling pathway, galactose metabolism, and insulin
signaling pathway are also active after treatment with LYCRPLs, indicating that glucose
metabolism and lipid metabolism in rats are interrelated [66–68]. The effect and mecha-
nism of LYCRPLs on glucose metabolism can also be systematically investigated in the
next study.

5. Conclusions

In summary, 101 metabolites were identified in group M. There were 54, 47, and
57 metabolites in groups GA, GB, and GC that were significantly different from that of
group M, respectively. Eighteen potential biomarkers related to hyperlipidemia were
screened and classified into several metabolic pathways closely related to lipid metabolism
in rats. Treatment with different doses of LYCRPLs was associated with the changes in the
levels of compounds, including glycolic acid, L-cysteine, glycerol 3-phosphate, 3-methyl-
2-oxovaleric acid, phosphoenolpyruvic acid, L-glutamine, pantothenic acid, D-glucose,
L-lysine, and oxoglutaric acid. The therapeutic targets of LYCRPLs on hyperlipidemia
were mainly enriched in cysteine metabolism, carnitine synthesis, pantothenate and CoA
biosynthesis, glycolysis, and bile secretion. It is speculated that LYCRPLs can regulate
the lipid metabolism in SD rats via activating metabolic pathways by modulating these



Foods 2023, 12, 1687 17 of 20

metabolites, and L-cysteine may be a useful biomarker for the effect of LYCRPLs on rat fecal
metabolites. These results can provide theoretical support for the subsequent development
of LYCRPLs as functional foods and excipients with hypolipidemic effects, as well as enrich
the research system of DHA-enriched phospholipids.
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