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Abstract: An ultimate goal in food production is to guarantee food safety and security. Fermented
food products benefit from the intrinsic capabilities of the applied starter cultures as they produce or-
ganic acids and bactericidal compounds such as hydrogen peroxide that hamper most food pathogens.
In addition, highly potent small peptides, bacteriocins, are being expelled to exert antibiotic effects.
Based on ongoing scientific efforts, there is a growing market of food products to which protective
cultures are added exclusively for food safety and for prolonged shelf life. In this regard, most genera
from the order Lactobacillales play a prominent role. Here, we give an overview on protective cultures
in food products. We summarize the mode of actions of antibacterial mechanisms. We display
the strategies for the isolation and characterization of protective cultures in order to have them
market-ready. A survey of the growing market reveals promising perspectives. Finally, a comprehen-
sive chapter discusses the current legislation issues concerning protective cultures, leading to the
conclusion that the application of protective cultures is superior to the usage of defined bacteriocins
regarding simplicity, economic costs, and thus usage in less-developed countries. We believe that
further discovery of bacteria to be implemented in food preservation will significantly contribute to
customer’s food safety and food security, badly needed to feed world’s growing population but also
for food waste reduction in order to save substantial amounts of greenhouse gas emissions.

Keywords: lactic acid bacteria; protective cultures; food safety; legal framework; market overview;
bacteriocins; bio preservation

1. Introduction

Food safety and food security are of primary importance to fight the hunger of a
reported 828 million people in 2021, so to deliver the required amounts of nutritive and
highly valuable food products for everybody [1]. It has been estimated by the world
health organization (WHO) and others that at least about 10% of the world’s population
suffer each year from severe foodborne illnesses [2–4]. In addition to the affected diseased,
more than 40% of food is lost along the food production chain from farm to fork, causing
about 10% of total greenhouse gas emissions each year. The economic burden for food
waste lost was given by an almost inconceivable 2.6 trillion USD including environmental
and social costs [5,6]. One effective measure to reducing food waste and food infections
would be the prolongation of the shelf life of perishable food products. How can this be
achieved? In wealthy countries, the infrastructure for food transportation and food storage
in companies and retail facilities, mainly done by refrigeration, assures on-time delivery
of food to the customer. However, cooling and freezing of food is energy-consuming and
generates unwanted emissions. In less-developed countries such food logistics are simply
not affordable. Hence, there are good reasons for continuous extension of more simple and
cost-effective alternatives to preserve food products.

Chemical preservation is one option, which has its limitations. Food preserved with
sugar, salt, or organic acids changes texture and taste or, as in the case of sorbic acid, are not
acceptable by the customer, because all-natural products that contain as few food additives
as possible are en vogue [7,8]. Physical preservation requires equipment and energy for
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heating or cooling and has its limitations as sensory characteristics can sometimes undesir-
ably alter the food product (i.e., high-pressure processing) [7]. Biological preservation can
be achieved through food fermentation by microorganisms such as yeasts and lactic acid
bacteria (LAB) [9]. This has led in human history to new, often very tasty food products,
accompanied by prolonged preservation resulting in shelf-life extensions from hours or
days to weeks or even months. Already about 2000 years ago, the availability of wine as a
safe source for drinking supply together with the increased availability of fermented foods
was a factor not to be underestimated for the Roman armies to build up the Roman em-
pire [9,10]. When in the early 20th century Ilja Iljitsch Metchnikow described the activities
of non-pathogenic, health-promoting LAB as the basis of fermented milk products such as
kefir and yoghurt, it became obvious that microorganisms are the indispensable actors, the
so-called starter cultures [11,12]. While fermentation generally influences the organoleptic
properties of food products by secreting organic acids, ethanol, carbon dioxide, and numer-
ous aromatic compounds, they produce concomitantly small peptides, the bacteriocins, and
other bactericidal compounds such as diacetyl. The observation that species from the order
Lactobacillales can be included in food products as protective cultures to fight pathogenic
and food spoiling bacteria without interfering with food taste and texture paved the way
for the field of bio-protection [13]. Hence, the use of protective cultures in perishable foods
such as smoked salmon, minced meat, salad, and sprouts has resulted in a significant
increase in shelf life and food safety.

In this review, we address the application of LAB as food protective cultures. We
describe the characteristic features of protective microorganisms regarding the underlying
mechanisms. We outline the strategies for strain identification and validation relating to
application in diverse food products and provide a survey on the market. For the first time,
we extensively attribute the legal restrictions for the use of protective cultures to provide a
guideline to the interested user.

2. Antibacterial Properties

The concept of bio-protection of food by the implementation of protective cultures is
widely accepted, is substantiated in numerous studies, and is implemented into a wide
range of products on the market [13–15]. As a first precondition, the activity of a protection
culture in a certain food environment must leave the organoleptic properties untouched.
However, there is more to consider: (i) production of antimicrobial substances should be
effective; (ii) survival during the manufacturing process must be guaranteed; (iii) bacteria
must be able to function at cooling temperatures; and (iv) they should be proofed as safe
regarding the absence of pathogenic genes and genes encoding resistances to antibiotics.
How do they exert these properties?

The addition of live bacteria to food products as protective cultures was based on the
observation that bacteria have developed a number of strategies to outplace competing
species. An initial observation was that a bacterial species can overgrow in co-culture
experiments other species simply by the higher cell amount of the inoculum, depriving
nutrients and minerals. The so-called Jameson-Effect proved to be valid in many cases
[16–20]. Nevertheless, when alternative nutrients are available, it does not always work [21].

Microorganisms have evolved mechanisms to survive in their ecosystems. One exam-
ple is the capacity of soil-dwelling Streptomycetes that secret bio-active secondary metabo-
lites as a survival strategy against other microorganisms, a process that is triggered by
carbon regulation [22–24]. Among these metabolites are more than two-thirds of medically
used antibiotics [25]. Members of the order Lactobacillales exert as well a multitude of
measures against other microorganisms (Figure 1). Through homo- and heterofermentative
fermentation of carbohydrates, they produce a variety of organic acids which they secrete
as the metabolic end products [26]. While lactate and acetate are quite common, there are
LAB that make propionic acid, malic acid, succinic acid, butyric acid, or formic acid [14,27].
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Figure 1. Mode of antibacterial actions by LAB protective cultures. Shown are the major molecules
that exert antibacterial activity and the identified targets.

Organic acids are entering the cell in their uncharged form where they dissociate and
lower the cell internal pH [28,29]. Most bacteria keep and regulate internal pH between six
and seven as long as the external pH is in the range of five to eight [29]. Further acidification
disturbs the cell internal ionic balance through the disruption of cell membranes, enzyme
denaturation and damage of nucleic acids. Notably, the proton gradient across the mem-
brane collapses which inhibits ATP Synthase, proton symporters, and the proton-driven
flagellar motor (Figure 1) [27,30].

Hydrogen peroxide, carbon dioxide, and diacetyl are widely produced antimicrobial
agents. LAB synthesize hydrogen peroxide in the presence of oxygen and light to amounts
up to 1 mM [31,32]. Among 193 examined LAB species, 37 were able to secret hydrogen
peroxide [31,33]. Bacteria that do not possess enzymes for breakdown such as peroxidases
or catalases are posed under stress through this oxidative compound that target thiol
groups within enzymes and exert oxidative cell reactions such as uncoupling the electron
transfer chain [31,34]. Escherichia coli and Salmonella enteritidis strains that possess catalase
are inhibited as well, since in this case the overall enzyme activity is often not sufficient for
detoxification [31,33].

Decent amounts of the butter flavor diacetyl, formed by LAB, are present in many
food products [35]. Diacetyl has been shown to inhibit food pathogenic Gram-negative
bacteria, molds, and yeasts in the range of 50 to 1000 ppm [35] but has been shown to be
less effective against Gram-positive bacteria [36]. It has been identified as a mutagenic
agent by the Ames-Test [37,38] and attributed to the inhibition of arginine utilization [35]. It
should be noted that diacetyl could be toxic for humans through inhalation of this volatile
compound (Figure 1) [39].

Lactic acid bacteria that produce carbon dioxide have been shown to inhibit the growth
of Gram-positive bacteria and Gram-negative psychrotrophs, including Enterobacteriaceae
and Listeria monocytogenes [40]. Carbon dioxide can alter bacterial communities, reduce
metabolite production, and as an example improve in this way the quality of fermented
kimchi [40,41]. The mechanisms comprise the creation of an anaerobic atmosphere, the
decrease of pH accompanied with enzyme denaturation, and the loss of the proton gradient
and cell membrane [42]. Secreted aldehydes also confer antimicrobial function. The best
studied one is reuterin (3-hydroxy propionaldehyde) from Lactobacillus reuteri strains. It
causes oxidative stress and interacts with thiol groups [43]. All groups of microorganisms
including spores and protozoa are targeted by reuterin [44].

Of central importance is the production of numerous bio-protective peptides, the
bacteriocins (Figure 1) [45,46]. The class I contains peptides with less than 10 kDa that
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are posttranslational modified and thus have unusual amino acids [47]. In class II, non-
modified small bacteriocins are classified. They are independent from modifying cell
enzymes. Peptides bigger than 10 kDa, all unmodified, are in class III. By bacteriocin-
mediated pore formation, the cell wall is targeted, and damage occurs in the peptidoglycan
layer [48]. Bacteriocins bind to cell envelope structures like Lipid II or to the PEP:dependent
mannose phosphotransferase transport system [49]. Some bacteriocins act on the central cell
components DNA, RNA, and protein metabolism (Figure 1) [45,46]. Diverse bacteriocins
can exhibit a very narrow spectrum against a few species or a broad spectrum against
bacteria. Some of the most notable ones are nisin, produced by Lactococcus lactis, pediocin,
synthesized by Pediococcus strains, or zoocin A, a product from Streptococcus equi subsp.
Zooepidemicus [50]. The screening for genes and operons encoding bacteriocins has been
facilitated by the BAGEL4 database server [51]. In 2018, there have been 820 gene loci
detected in 238 genomes, best studied in the genera Lactobacillus and Streptococcus [47].

Although much knowledge has been acquired through the past decades on the above-
mentioned antibacterial compounds and bacteriocins, there are still research gaps to fill in
that require further research efforts (Figure 1). The molecular mechanisms of the numerous
antibacterial actions are still to some extent a mystery and thus await discovery. In addition,
the invention of high throughput technologies to directly identify novel bacteriocins is still
a drawback. However, the recent launching of a micro-bioreactor could help solving this,
since the device allows parallel fermentation of 48 cultures in 0.8 mL to 2.4 mL [52].

Regarding application, there are many studies demonstrating that protective cultures
can be applied in various food to enhance food safety [53–64]. A few selected studies in
various food groups are given here. Meat products made of cooked ham and minced meat
are most sensible towards spoilage and contamination with pathogenic bacteria. Cooked
cubed ham was inoculated with a mixture of L. monocytogenes strains and was challenged
with two commercial protective cultures, Lyocarni BOX-74 and Lyocarni BOX-57. Storage
for 40 days at a household-representative refrigerator temperature of 8 ◦C revealed that
Listeria have been eliminated without organoleptic changes from the ham, making this
setting a proof-of-concept for cooked ham products [53]. Stephane Chaillou and co-workers
applied L. sakei strains to ground beef stored at 4 ◦C and 8 ◦C, respectively. A protective
effect could be demonstrated against Salmonella enterica Typhimurium and Escherichia coli
O157:H7 [54]. Among marine products, smoked salmon is of particular safety concern
due to contamination with L. monocytogenes and also due to a number of strong-smelling
spoilage bacteria like Photobacterium phosphoreum, Brochothrix thermosphacta, and Serratia pro-
teamaculans. It was shown in several publications that appropriate LAB could stabilize such
products [55,56]. Fresh cheese has been studied by the isolation and investigation of eight
LAB strains. A mixture of two strains demonstrated great potential as a protective culture
for the cheese making process against listerial contamination [57]. Fruits and vegetables
can be contaminated predominantly with E. coli EHEC ssp., Salmonella enterica ssp., or
L. monocytogenes. Since such food is consumed raw, numerous outbreaks have happened
in past decades [58,59]. The functionality of the prevention of pathogens has been shown
for cut fruits, pre-cut cantaloupes, and papayas as well as in iceberg salad, cucumber, or
romaine lettuce [58,60]. A quite novel approach for application is the improvement of
food safety in catering by protective cultures, especially concerning vulnerable groups.
By spraying protective LAB on certain dishes before serving, the risk of food infections
was significantly reduced [61]. The above-mentioned selection of thorough investigations
shows the potential for food produced with protective cultures to improve food safety. We
will further address this on the perspectives of the market.

3. Isolation and Validation of protective LAB and Bacteriocins

LAB are ubiquitous present in the environment and thus can be isolated from a wide
variety of food-associated habitats such as milk from buffalo, cow, and goat and their
respective farm environments. A good source are wild fermented food products like cheese,
sausages, or wine. These are made by taking advantage of the autochthonic flora. Other
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suitable sources are the gastrointestinal tracts of fishes or insects. Even from honeydew
and pig feces, the isolation of potential new protective cultures or possible bacteriocin
producers has been demonstrated [65–70]. Samples are plated onto De Man, Rogosa,
Sharpe Agar (MRS), or Brain Heart Infusion Agar (BHI), sometimes supplemented with
growth-stimulating additives such as cysteine, fructose, or bromphenol blue (BPB) [67,70].
New species can be readily distinguished by colony morphology in shape, size, and color.
In our hands the best choice is MRS-BPB agar as a chromogenic differential medium that
delivers all kind of blueish colonies (our unpublished results; Figure 2A [71–73].

If new strains are available as pure cultures, species identification is conventionally
performed by 16S-rRNA sequencing [67,69,70,74]. However, due to the conserved behavior
of the 16SrRNA gene, unambiguous identification at the species level will not always be
possible. Instead, PCR amplification with primer pairs corresponding to less-conserved
genes will be the solution. It should be noted that only species can be identified for which
the genome has been sequenced [75,76]. Alternatively, species identification can be achieved
by comparison of the in silico-generated proteolytic protein fragment pattern using matrix-
assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).
Reliable identification with this rapid detection method is particularly dependent whether
the respective species has been sequenced and deposited in the database [66,70].

In a next step, the isolate is characterized in terms of antimicrobial properties and
biological safety. This is addressed by (i) in vivo detection of antibacterial activity against
indicator strains or (ii) by genome sequencing followed by bioinformatic searches for the
presence of bacteriocin-encoding genes. For detection in vivo, the point inoculation assay
(Figure 2B), the spot-on-lawn assay, or the agar-well diffusion assay is available [69,74,77–80].
These assays can also be used to clarify a sporocidal or sporostatic effect [65,81]. Since a
response against an indicator organism does not necessarily have to be based solely on
the action of bacteriocins, possible effects of acidification or hydrogen peroxide should
be clarified first. The production of the latter can be analyzed with a 3,3’,5,5’-tetramethyl-
benzidine (TMB) and catalase-containing MRS agar, in which a color change of the colony
from white to dark blue occurs if hydrogen peroxide is produced (Figure 2C). In this case,
the produced amounts should be quantitatively determined [82,83]. Secretion of acid can
be measured with pH indicator stripes placed on the agar plate as shown in Figure 2D.
The tolerance of the isolate to low pH environments (acidification) can be determined in a
survival challenge test by incubation at a low pH-range between two to five [66].

In order to meet the required criteria for food safety, it is necessary to show the ab-
sence of antibiotic resistant genes and genes encoding virulence factors [66,84,85]. It is
recommended to substantiate the analyses in vivo by antibiotic susceptibility testing [84].
A convenient and reliable strategy is whole genome sequencing, which is cost- and time-
efficient since the invention of nanopore sequencing technology, followed by bioinfor-
matics [51,86–91]. A versatile tool is the BAGEL4 webserver that has been established
within the group of Jan Kok and Oscar Kuipers at the Groningen Biomolecular Sciences
and Biotechnology Institute (GBB), Netherlands [51]. The database comprises 820 genes
encoding bacteriocins [51].

While the examination of the safety criteria is ongoing, experiments could be con-
ducted in parallel to implement the new isolated protection strain into the chosen food
product. The microbiological profile should be followed to determine the shelf-life. Absence
or prevention against potential food pathogens, texture analysis, and proof of unchanged
organoleptic properties will complete characterization. Subsequently, the upscaling process
must follow in order to commercially sell the food product in sufficient quantities.
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Figure 2. Lactic acid bacteria: (A) Diverse blueish colonies of LAB species on mMRS-BPB differential
agar. (B) In point inoculation assay of LAB (center colony) against a pathogenic indicator strain
(bacterial lawn). Left without zone of inhibition (no bacteria-killing activity), right with zone of
inhibition (bacteria-killing activity). (C) Detection of hydrogen peroxide with TMB; left, light colony
showing no secretion; right, blue colony indicating secretion. (D) Detection of acid production by
LAB (MRS agar plates); pH stripes: orange, acidification to pH 4.1; red, no acidification pH 6.1.

4. Industrial Production of Protective Cultures, Bacteriocins, and Their Actual
Imitations

The industrial production of protective cultures in a bioreactor follows those for LAB
used as food starter cultures. The protective cultures are cultivated from a stock culture
using small-volume batches of about 2 mL to 100 mL or a fed-batch process to grow the
bacteria until a desired biomass concentration is reached. The biomass serves to inoculate
200 L to 50,000 L bioreactors in a batch or fed-batch process [92]. At this stage, bioreactors no
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longer work with defined media, but instead with cheap raw materials such as sidestream
products from cereals or sugar beets to minimize costs and maximize yield (Table 1).
Decisive for a high biomass during fermentation is keeping the culture in the exponential
growth phase and within the appropriate environmental parameters. They include oxygen
content, redox potential, stirring speed, pH, and temperature. Although LAB are acid
tolerant, self-acidification primarily by lactic acid has a more negative influence on biomass
formation than limitation of nutrients. Controlling pH at a value close to neutral is critical
for ensuring highest growth rates and a maximum of biomass [93].

Table 1. Ingredients used in industrial growth media [94–97].

Ingredient Source

carbohydrate

glucose or lactose
(skim)milk or whey

cellobiose–xylose mixture)
sugar molasses

amino acids or peptones mainly added though peptones, yeast extracts or
proteins (milk)

fatty acids tween, acetate
nucleosides/nucleotides yeast extracts, meat

minerals mainly added as salts
vitamins yeast extracts, meat extracts, and peptones

citrate purified
dairy-based ingredient

A compromise between protective culture as maximum biomass and pure bacteriocin
production are fermentates. Fermentates are the bacterial cells propagated in the reactor
plus medium into which bacteriocins are secreted. Under optimally adapted physical
and chemical conditions in vitro, LAB are able to secrete bacteriocins into significantly
higher amounts than in vivo in a food matrix [98]. However, many factors influence
the secretion of large amounts of bacteriocin into the medium, for example pH [99,100],
temperature [100], nutrient density, and salt content. The higher the salinity the lower
the yield of the respective bacteriocin [101]. On the other hand, salt stress may also be
necessary to secrete bacteriocins [102]. This poses complex challenges between biomass
and bacteriocin production. Especially, the focus on bacteriocin production should result
in a yield of a minimum of 50% and a purity of 90% [103]. In most cases, the yield is
significantly lower and is then associated with large efforts to improve culture conditions
and purification process [104,105].

An alternative approach for bacteriocin production is the molecular biology approach
in which bacteriocin-encoding genes or operons are cloned into strains that are widely
used in biotechnology. Since the gene sequences of numerous bacteriocins are read-
ily available [68,106], the successful construction of recombinant bacteriocin-producing
Escherichia coli and Corynebacterium glutamicum has been demonstrated [107–111].

5. The Legal Use of Protection Cultures and Bacteriocins in the European Union

The use of microbial protective cultures is not generally regulated as an ingredient,
additive, or processing aid in the regulatory framework of the European Union (EU) with
its 27 member states and the European Economic Area (EEA) and does not necessarily
require approval and safety assessment. The duty of care and the sole responsibility for
the specific use lies for the time being solely by the user. Further regulation is carried
out outside the legal requirements of the Basic Food Regulation (EC) No. 178/2002 [112]
on the basis of its technological purpose. Only Denmark and France are exceptions and
register microbiological cultures on a national level as additives [113,114], regardless of
their intended use, and require in part proof of efficacy and safety in addition to notification
and approval. However, this does not reduce the free market access of foods treated with
protective cultures from other EU countries.
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In addition, food- or feed-associated microorganisms must always undergo a safety
assessment and be approved by the European Food Safety Authority (EFSA) [115] in the
EU if they are considered genetically modified (GMO) by Directive 2009/41/EC [116],
Regulation (EC) No 1829/2003 [117], and Directive 2001/18/EC [118]. They are classified
as a novel food by Regulation (EU) No 2015/2283 [119] or are considered a feed additive
according to Regulation (EC) No 1831/2003 [120]. In 2006, the EU Standing Committee on
the Food Chain and Animal Health proposed that microbial cultures with a technological
purpose, such as food preservation, should be considered as additives [121], which would
require safety assessment and approval of preservative cultures by the EFSA. This turns
out to be problematic if they originally belong to or have developed from starter cultures
that are not specifically regulated in the EU. Starter cultures also have the additional benefit
of reducing the potential risk of pathogenic microorganisms. Therefore, a differentiation
must be made according to the basic principle of the effectiveness of the protective culture.

The effect is based on displacement cause by microorganisms that have a higher
colonization rate. They can outcompete nutrients through more efficient transport systems
of carbon sources or by an accelerated metabolism. They also may exert superior adaptation
to aerobic or anaerobic, or other growth conditions. In such cases, the activity is attributed to
a non-specific protective culture [19,122,123]. This also applies to the antagonistic formation
of acids such as lactic, acetic, benzoic, malic, succinic, and formic acid or ethanol, diacetyl,
hydrogen peroxide, and carbon dioxide [29,35,40,124].

Specific protective cultures are distinguished from non-specific ones by their technolog-
ical purpose and their action by means of bacteriocins, proteins, or protein-like compounds,
such as nisin, with antagonistic activity against defined foodborne pathogens [75]. This
distinction results from the European Food Additives Regulation (EC) No 1333/2008 [125]
and the prohibition of the use of unauthorized substances in food according to Article 5 of
Regulation (EC) No 1333/2008 [125].

The prohibition does not refer to the microorganisms themselves but to the substances
produced by them. This is further differentiated in the Enzyme Regulation (EC) No.
1332/2008 [126]; the exemption from approval and regulation does not apply to the use
of microorganism cultures for the targeted production of substances with a technological
effect. LAB cultures, for example, can be used without prior approval as protective cultures
that produce not only lactic acid but also the bacteriocin nisin (E234), which is approved
as a food additive. However, the maximum permissible quantities for nisin must not be
exceeded and nisin must be declared accordingly (Table 2). Apart from nisin, there are
no other bacteriocins permitted as food additives in the Additives Ordinance as amended
on 31 October 2022. A distinction between non-specific and specific protective cultures
is not necessary for all microbial cultures; if they were not contained in foodstuffs in the
European Union before 14 May 1997 [127] and were marketed in significant quantities for
consumption, they all fall under the novel food Regulation (EU) No 2015/2283 [119] and
require a marketing authorization.

Table 2. Allowed addition of nisin in food, natural occurrence in the products not included, source
Regulation (EC) 1333/2008.

Category Category No. Maximum Quantity Restriction/Place of Use

other cream products 01.6.3 10 mg/L bzw. mg/kg clotted cream products
unripened cheese, (except products of

category 16) 01.7.2 10 mg/L or mg/kg mascarpone

ripened cheese 01.7.2 12.5 mg/L or mg/kg
processed cheese 01.7.5 12.5 mg/L or mg/kg

cheese products (except category 16) 01.7.6 12.5 mg/L or mg/kg ripened and processed products only

eggs and egg products processed 10.2 6.25 mg/L or mg/kg pasteurized liquid only (egg white,
yolk or whole egg)

dessert foods, excluding products of
categories 1, 3 and 4 16 3 mg/L or mg/kg semolina and tapioca puddings and

similar products only
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If an application for market authorization and with it a safety assessment on the part of
EFSA is required, there are two approaches depending on the organism used. In principle,
the application procedure for food additives is carried out in accordance with Regulation
(EC) No 1331/2008 [128]. The technical and administrative requirements for an application
to be submitted are set out in Regulation (EC) No 234/2011 [129]. In addition, EFSA
provides practical guidelines to support the submission of an application for marketing
authorization [130].

The two approaches for safety assessment differ in terms of their depth of testing. If
the EFSA already has a qualified presumption of safety (QPS) status for the microorganism
used, an accelerated generic safety assessment will be performed. This procedure was
introduced by the EFSA in 2007 to simplify the marketing authorization process and save
resources. For a microorganism to have QPS status, the taxonomic unit of the organism
used must be at species level for bacteria, fungi, and microalgae/protists and at the family
level for viruses, and it must be on the QPS list [131] maintained by the EFSA. This QPS
list is reviewed by the EFSA Panel of Biological Hazard (BIOHAZ) and updated every
six months.

If a microorganism is used that does not have QPS status, there may be two reasons:
First, the organism has never been evaluated because no dossier was ever submitted for
authorization and therefore the QPS evaluation process was not initiated by EFSA. Second,
the micro-organism in question was not granted QPS status following a QPS evaluation by
the BIOHAZ Panel [132]. The QPS workflow by the BIOHAZ panel is shown in Figure 3.
This can happen if the taxonomic status of the microorganism is ambiguous, if there is not
sufficient study evidence for the microorganism, and/or if the microorganism used has
potentially harmful characteristics such as pathogenicity, antibiotic resistance, or virulence
factors or produces biologically active toxic secondary metabolites. However, this does not
constitute a disqualification for marketing authorization, as a full safety review is foreseen
for these organisms. The 2017 work by Laulund and colleagues describes possible tools
that can be used to review a list of methods and procedures for assessing the safety of food
cultures at the strain level and as quality assurance measures during production and in the
final product [133]. These can be applied to protective cultures as well. An overview of all
microorganisms, notified for marketing authorization since 2007, can be found on the list
of microbiological agents as notified to the EFSA [134].
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6. The Legal Use of Protection Cultures and Bacteriocins in the United States of
America

In contrast to the partially undefined European legal framework for microbial cultures,
the Federal Food, Drug, and Cosmetic Act [136] has provided a corresponding legal
framework in the United States of America (US) since 1958, which was revised in 1997.
Both legal frameworks are fundamentally different, even if at first glance there are two
similar programs with the GRAS program [137] (generally recognized as safe) of the U.S.
Food and Drug Administration (FDA) and the QPS list at the EFSA.

In the US, according to the Federal Food, Drug, and Cosmetic Act [136], a food additive
is basically any substance that directly or indirectly becomes a component of a food or
could influence the food in one way or another. Thus, unlike in the European Union, the
term food additive is very broad and encompasses virtually as what comes into contact
with food of a pre-approval by the FDA. The only exception is that it is a substance that has
been recognized by the FDA generally recognized as safe (GRAS). Accordingly, microbial
protective cultures, microbially derived ingredients such as bacteriocins can be introduced
to the market either as a food additive or by obtaining GRAS status. While a food additive
requires an evaluation and approval by application according to 21 CFR Part 171 [138],
this is not necessary to obtain GRAS status. Here, the regulations according to 21 CFR
170.30 [139] apply, which contain some special features. The GRAS status is provided
for one microorganism at a strain level and one specific application. This means that an
additional GRAS status must be provided for each additional use case.

In addition, the GRAS status is not determined by the FDA, as is the case with food
additives, but by qualified experts. The first distributor or manufacturer is free to decide
how the expert panel is convened and staffed. An evaluation can also be carried out by
the FDA if desired. The Guidance for Industry [140] assists in the implementation of the
requirements under 21 CFR 170.30 [139]. If there is a GRAS conclusion by the expert panel,
the marketer may make a notice of congestion to the FDA under 21 CFR 170 Subpart E [141].
However, the marketer or manufacturer is not required to do so under either the Federal
Food, Drug, and Cosmetic Act [136] or 21 CFR 170.30 [139,140]. Upon submission of the
GRAS conclusion, the FDA either agrees with the conclusion, and the GRAS status exists
further, or denies it. However, even then it is not prohibited to use the particular culture in
food under U.S. law unless the FDA issues a ban. In the event of a claim, the liability issues
are different than with GRAS status granted by the FDA. Table 3 shows the main difference
between the GRAS system and its European counterpart QPS.

Table 3. Differences between the GRAS guidelines (FDA, USA) and the QPS system.

GRAS QPS

food additives and microorganisms microorganisms only
FDA or external experts determine GRAS

status EFSA determines QPS status

open to all types of food additives limited to microorganisms associated with
regulated food and feed products only

applicants request a GRAS status EFSA requests evaluation of new taxonomic
units within the scope of an internal mandate

describes a specific substance or
microorganism at the strain level

describes microorganisms at the taxonomic
unit level

case-by-case safety assessment at the strain
level

general safety assessment at the taxonomic unit
level.

open tool to all applicants internal tool by EFSA

7. The Legal Use of Protection Cultures and Bacteriocins in Latin America

In Mexico, the use of microbial protective cultures in food products is regulated by the
Federal Commission for Protection against Sanitary Risks (COFEPRIS) under the Ministry
of Health. The use of these cultures is permitted only when they are considered safe
for human consumption and do not alter the nutritional value of the food product. The
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manufacturer of the protective culture must provide evidence that the culture is safe and
effective for use in the specific food product. This requires GRAS status on the part of the
FDA or its homologation. Further, a sample of the microbiological culture used must be
deposited in the strain collection for microorganisms of the National Institute of Forestry,
Agriculture and Livestock Research (INIFAP) [142].

The use of microbial protective cultures in Brazil is regulated by the National Health
Surveillance Agency (ANVISA). ANVISA requires that manufacturers of protective cultures
provide evidence that the culture is safe and effective for use in food products. Since the
revision of Resolution RDC 27/2010: Categories of food and packaging that require pre-
market approval by Anvisa by Resolution—RDC No. 240, of 26 July 2018 the registration
and approval of microbial cultures as technical adjuvants is no longer required [143].

In Peru, the General Directorate of Environmental Health (DIGESA) of the Ministry
of Health is responsible for regulating the food industry. Currently, there is no regulatory
framework for the use of microbial protection cultures in food.

8. The Legal Use of Protection Cultures and Bacteriocins in Asia

The regulatory framework for microbial-protective cultures in China is primarily
governed by the Food Safety Law, which sets the basic principles for food safety, and the
Regulations for the Administration of Food Additives, which provides specific require-
ments for the use of food additives, including microbial protective cultures. The regulatory
authorities in China are the National Health Commission and the Department of Food
Safety Standards, Monitoring and Evaluation, which since 2010 has had a separate regula-
tion for food cultures, including protective cultures. From this date, all new strains placed
on the market must be on the official list. The list was last updated on 18 August 2022 [144].

Some other countries have also established positive lists for food and protective
crops. Examples include Thailand and Malaysia. In Thailand, industrially used cultures
are considered food additives. The regulatory framework requires the submission of
strain level documentation for registration with the Food and Drug Administration [145].
Traditional fermented foods (spontaneous fermentation) without the use of food cultures
are not subject to registration. Since 2014, Malaysia has provided a “New Regulations 26B”
with its Malaysian Food Act, which provides the regulatory framework for “Microbial
Cultures for Food Fermentation”. Protective cultures also fall under this regulation [146].

9. Market Overview

The economic importance of protective cultures for food processing should be ap-
preciated. The global market volume in 2022 was already 1.3 billion USD [147] in the
food and beverage sector. Consumers now expect not only safe food but also healthy
food that is as natural as possible [148]. In addition, social goals such as sustainable eco-
logical management and the reduction of food waste are increasingly prompting food
companies to take action. Companies can meet these challenges through the innovative
use of microbial protection cultures. Several studies have shown that the use of protective
cultures on food can extend the shelf life of products such as fish or meat, thus avoiding
food waste [56,75,149–152]. The potential elimination of refrigeration contributes to carbon
reduction and sustainability goals and enables safe food in regions without refrigeration in-
frastructure. Prolonged storage of grapes (12 days) and meat (2 days) at room temperature,
rather than in refrigeration, after treatment with a protective culture or its ferment, demon-
strated the potential benefits in this case [153,154]. In addition, the elimination of artificial
preservatives brings healthier and more natural products to the market. Consequently,
there is a great development and growth potential for protective cultures in the food sector,
which market research companies estimate to have an annual growth rate between 4.3%
and 23.3% by the end of the decade [147,155,156]. Market development is not only driven
by further growth in Europe and North America but also by the Asian market, which is
home to 60% of the world’s population and is developing consumer needs comparable to
those in Europe and the US [147,155].
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However, the market for protective cultures is quite fragmented and is not dominated
by large international companies. In addition to finished products, start-ups and medium-
sized companies in particular develop customer- and product-specific cultures [147,155].
Protective cultures are primarily offered as freeze-dried or frozen preparations and as
ferments. The only bacteriocin used in pure form is nisin. Table 4 shows a compilation of
ready-to-use commercial protective cultures available in the European Union categorized
by food application. As shown in Figure 4, almost 60% of the listed commercial protective
cultures address a single category, that of milk and dairy products, and currently represent
the largest area of application for protective cultures.

Table 4. Commercially available protective microbial cultures for various applications.

Food Application Product Name Microorganism Manufacturer

Fish & fish products Lyoflora FP-18 Carnobacterium spp. SACCO
Lyoflora FP-50 Carnobacterium spp. SACCO

Meat & sausage products

AVO raw sausage protective culture Lactobacillus plantarum AVO-Werke August Beisse
GmbH

Lyocarni BMX-37 Carnobacterium spp., Lactobacillus
sakei SACCO

Lyocarni BOM-13 Carnobacterium spp., Lactobacillus
sakei SACCO

Lyocarni BOX-74 Carnobacterium spp., Lactobacillus
sakei SACCO

Lyocarni BXH-69 Carnobacterium spp., Lactobacillus
sakei SACCO

Lyoflora FP-18 Carnobacterium spp. SACCO

Lyoflora FP-50 Carnobacterium spp SACCO

M-Culture RS 103

Lactobacillus curvatus subsp.
curvatus, Lactobacillus plantarum,
Lactobacillus sakei, Staphylococcus

carnosus

M-Foodgroup GmbH

M-Culture RS 107

Lactobacillus curvatus subsp.
curvatus, Lactobacillus plantarum,
Lactobacillus sakei, Staphylococcus

carnosus

M-Foodgroup GmbH

M-Culture RS 38

Lactobacillus curvatus subsp.
curvatus, Lactobacillus plantarum,

Pediococcus pentosaceus,
Staphylococcus carnosus,
Staphylococcus xylosus,
Debaryomyces hansenii

M-Foodgroup GmbH

M-Culture RS 49 FM
Debaryomyces hansenii,

Lactobacillus sakei, Lactobacillus
plantarum

M-Foodgroup GmbH

M-Culture Safe GDS 3349 Leuconostoc Carnosum M-Foodgroup GmbH

ProtectSTART
Staphylococcus xylosus,

Staphylococcus carnosus,
Leuconostoc citreum

Moguntia food group

SaferSTART Leuconostoc citeum Moguntia food group

Protective cultures for raw sausage

Lactobacillus sakai, Pediococcus
pentosaceus,

Staphylococcus xylosus,
Staphylococcus carnosus,
Debaryomyces hansenii

Würzteufel GmbH

Protective culture Ham-Protect
Lactobacillus plantarum,
Staphylococcus carnosus,
Staphylococcus xylosus

Würzteufel GmbH
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Table 4. Cont.

Food Application Product Name Microorganism Manufacturer

Meat & sausage products
Protective culture PROTECT ONE

Staphylococcus xylosus,
Staphylococcus carnosus,

Lactobacillus plantarum bac+
Würzteufel GmbH

StartStar SAFE Protective Cultures unknown culture with Bacteriocin
producer Holkof GmbH

Milk & dairy products

AC line DY 4P13 unknown mixture of LAB SACCO
AC line LC 4P1 unknown mixture of LAB SACCO

AC line LCP 4P2 unknown mixture of LAB SACCO

AC line MO K4P04 unknown mixture of LAB without
Lactococcus lactis SACCO

AC line MO L4P03 unknown mixture of LAB without
Lactococcus lactis SACCO

AC line MO N4P01 unknown mixture of LAB with
Lactococcus lactis as nisin producer SACCO

AC line MO N4P02 unknown mixture of LAB with
Lactococcus lactis as nisin producer SACCO

AL line CNBAL
unkown mixture of LAB with

Carnobacterium divergens V41 and
Carnobacterium piscicola SF668

SACCO

AL line LPAL unknown mixture of LAB SACCO

AOSM line BGP1 unknown mixture of LAB SACCO

AOSM line LR B unknown mixture of LAB with
Lactobacillus rhamnosus SACCO

AYM line CLP C unknown mixture of LAB SACCO

AYM line LPR A unknown mixture of LAB SACCO

AYM line LR B unknown mixture of LAB with
Lactobacillus rhamnosus SACCO

AYM line LR4 PD unknown mixture of LAB SACCO

BIOPROX CP63 Lactobacillus rhamnosus,
Lactiplantibacillus plantarum bioprox

BIOPROX L135 Lactococcus lactis bioprox

BIOPROX P 83 Lactiplantibacillus plantarum bioprox

BIOPROX P 94 Lactobacillus plantarum subsp.
Plantarum bioprox

BIOPROX RP 80 Lactobacillus rhamnosus,
Lactiplantibacillus plantarum bioprox

BIOPROX SP 86 Limosilactobacillus fermentum bioprox

BIOPROX Z100 Lactiplantibacillus plantarum bioprox

BS-10 Lactococcus lactis subsp. lactis CHR Hansen

FreshQ 11 Lactobacillus rhamnosus CHR Hansen

FreshQ 2 Lactobacillus rhamnosus CHR Hansen

FreshQ 4 Lactobacillus rhamnosus CHR Hansen

FreshQ Cheese 1 Lactobacillus rhamnosus CHR Hansen

HOLDBAC GP10 Pediococcus acidilactici IFF



Foods 2023, 12, 1541 14 of 21

Table 4. Cont.

Food Application Product Name Microorganism Manufacturer

Milk & dairy products

HOLDBAC GP20 FRO 500DCU
Lactococcus lactis subsp. lactis
(nisin producer), Lactobacillus

paracasei, Lactobacillus plantarum
IFF

HOLDBAC GP21 FRO 500DCU
Lactococcus lactis subsp. lactis
(nisin producer), Lactobacillus

rhamnosus, Lactobacillus plantarum
IFF

HOLDBAC LC Lactobacillus rhamnosus IFF

Holdbac LC Lyo 100
DCU—Schutzkultur Lactobacillus rhamnosus DANISCO (IFF)

HOLDBAC Listeria Lactobacillus plantarum IFF

Holdbac YM-B
Lactobacillus rhamnosus,

Propionibacterium freudenreichii
subsp. Shermanii

IFF

Holdbac YM-B LYO 100
DCU—Schutzkultur

Lactobacillus rhamnosus,
Propionibacterium freudenreichii

subsp. shermanii
DANISCO (IFF)

HOLDBAC YM-C
Lactobacillus paracasei,

Propionibacterium freudenreichii
subsp. Shermanii

IFF

HOLDBAC YM-C PLUS Propionibacterium freudenreichii,
Lactobacillus paracasei IFF

HOLDBAC YM-SUSTAIN Lactobacillus plantarum,
Lactobacillus paracasei IFF

HOLDBAC YM-XPK Lactobacillus plantarum IFF

HOLDBAC YM-XPM Lactobacillus plantarum,
Lactobacillus paracasei IFF

HOLDBAC YM-XTEND Lactobacillus plantarum,
Lactobacillus rhamnosus IFF

LC|100 DCU Lactobacillus rhamnosus DANISCO (IFF)

Pure Appeal 01 Lactobacillus paracasei,
Streptococcus thermophilus CHR Hansen

YM-B|100 DCU
Lactobacillus rhamnosus,

Propionibacterium freudenreichii
subsp. Shermanii

DANISCO (IFF)

vegan products in general

HOLDBAC YM-VEGE
Propionibacterium freudenreichii
subsp. shermanii, Lactobacillus

rhamnosus
IFF

Vega FreshQ 101 Lactobacillus rhamnosus CHR Hansen

Vega SafePro 01 data Lactobacillus sakei CHR Hansen

Vegan meat & sausage
alternatives

Safe M-Culture Vegan Leuconostoc carnosum M-Foodgroup GmbH

Protective culture PROTECT ONE
Staphylococcus xylosus,

Staphylococcus carnosus,
Lactobacillus plantarum bac+

Würzteufel GmbH

Vegan milk & dairy alternatives
Lyofast BGP 1 unknown mixture of LAB SACCO

Lyofast CLP C unknown mixture of LAB SACCO

Vegan milk & dairy alternatives

Lyofast CNBAL
unknown mixture of LAB with

Carnobacterium divergens V41 and
Carnobacterium piscicola SF668

SACCO

Lyofast LPAL unknown mixture of LAB SACCO
Lyofast LPR A unknown mixture of LAB SACCO

Lyofast BGP 1 unknown mixture of LAB with
Lactobacillus rhamnosus SACCO

Lyofast CLP C unknown mixture of LAB SACCO
Lyofast LR B unknown mixture of LAB SACCO

Lyofast LR4 PD unknown mixture of LAB SACCO
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10. Conclusions

The implementation of protective cultures of lactic acid bacteria in diverse perishable
food products contributes substantially to food protection, food safety and food security.
The here thoroughly discussed regulatory frameworks show that the use of foods harboring
protective cultures is superior to the application of specifically defined agents, such as a
pure bacteriocins. This accounts even more regarding the production costs. The current
state of knowledge through studies providing proof of principle for all categories of risky
foods shows that a wealth of protective cultures is available. Furthermore, nature still has an
untapped unlimited reservoir for more protective bacterial species that remain to uncover.
Bio-protection could thus contribute to nourish the hundreds of millions of starving people
and to reduce significantly greenhouse gas emissions by food waste reduction. The biggest
challenge to making this true is probably to speed up the transfer of scientific knowledge
towards food production companies.
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