Effects of Protein Components on the Chemical Composition and Sensory Properties of Millet Huangjiu (Chinese Millet Wine)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Millet Huangjiu
2.3. Oenological Parameter Analyses of Millet Huangjiu
2.4. Analysis of Free Amino Acids
2.5. Analysis of Organic Acids
2.6. Analysis of Volatiles in Millet Huangjiu
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. The Oenological Parameters of Millet Huangjiu
3.2. Changes in the Free Amino Acid Fraction of Millet Huangjiu
3.3. Changes in Organic Acids in Millet Huangjiu
3.4. Changes in VOCs in Millet Huangjiu
3.4.1. Esters
3.4.2. Alcohols
3.4.3. Aldehydes
3.5. Sensory Analysis of Millet Huangjiu Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, G.-M.; Huang, Z.-R.; Wu, L.; Wu, Q.; Guo, W.-L.; Zhao, W.-H.; Liu, B.; Zhang, W.; Rao, P.-F.; Lv, X.-C. Microbial diversity and flavor of Chinese rice wine (Huangjiu): An overview of current research and future prospects. Curr. Opin. Food Sci. 2021, 42, 37–50. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, W.; Xia, Y.; Mu, Z.; Tao, L.; Song, X.; Zhang, H.; Ni, B.; Ai, L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front. Microbiol. 2020, 11, 580247. [Google Scholar] [CrossRef]
- Zhou, M.; Bu, T.; Zheng, J.; Liu, L.; Yu, S.; Li, S.; Wu, J. Peptides in brewed wines: Formation, structure, and function. J. Agric. Food Chem. 2021, 69, 2647–2657. [Google Scholar] [CrossRef]
- Bangar, S.P.; Suri, S.; Malakar, S.; Sharma, N.; Whiteside, W.S. Influence of processing techniques on the protein quality of major and minor millet crops: A review. J. Food Process. Preserv. 2022, 46, e17042. [Google Scholar] [CrossRef]
- Scott, W.T., Jr.; Van Mastrigt, O.; Block, D.E.; Notebaart, R.A.; Smid, E.J. Nitrogenous Compound Utilization and Production of Volatile Organic Compounds among Commercial Wine Yeasts Highlight Strain-Specific Metabolic Diversity. Microbiol. Spectr. 2021, 9, e00485-21. [Google Scholar] [CrossRef]
- Granato, T.M.; Nasi, A.; Ferranti, P.; Iametti, S.; Bonomi, F. Fining white wine with plant proteins: Effects of fining on proanthocyanidins and aroma components. Eur. Food Res. Technol. 2014, 238, 265–274. [Google Scholar] [CrossRef]
- Ina, S.; Hamada, A.; Kaneko, T.; Nakajima, N.; Yamaguchi, Y.; Akao, M.; Kumagai, H.; Kumagai, H. Physicochemical and Surface Properties of Rice Albumin for its Application as a Functional Food Material. Food Sci. Technol. Res. 2019, 25, 555–562. [Google Scholar] [CrossRef]
- Okuda, M.; Miyamoto, M.; Joyo, M.; Takahashi, K.; Goto-Yamamoto, N.; Iida, S.; Ishii, T. The relationship between rice protein composition and nitrogen compounds in sake. J. Biosci. Bioeng. 2016, 122, 70–78. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, H.; Yang, N.; Zhu, D.; Li, J.; Yang, Z.; Yang, T. Effects of the proteins of indica rice and indica waxy rice on the formation of volatiles of sweet rice wine. Int. J. Food Sci. Technol. 2022, 57, 3604–3615. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, H.; Sun, L.; Zhang, W.; Lu, X.; Li, Z.; Xu, J.; Ren, Q. The changes of microbial diversity and flavor compounds during the fermentation of millet Huangjiu, a traditional Chinese beverage. PLoS ONE 2022, 17, e0262353. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, C.; Gao, X.; Kang, Y.; Huang, M.; Wu, J.; Liu, Y.; Zhang, J.; Li, H.; Zhang, Y. Characterization of key aroma compounds in Huangjiu from northern China by sensory-directed flavor analysis. Food Res. Int. 2020, 134, 109238. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, L.; Zhan, P.; Tian, H.; Liu, J. Characterization of the aroma compounds of Millet Huangjiu at different fermentation stages. Food Chem. 2022, 366, 130691. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Guo, W.; Ai, L.; Chen, C.; Tian, H. Unraveling the difference in aroma characteristics of Huangjiu from Shaoxing region fermented with different brewing water, using descriptive sensory analysis, comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry and multivariate data analysis. Food Chem. 2022, 372, 131227. [Google Scholar] [PubMed]
- Son, E.Y.; Lee, S.M.; Kim, M.; Seo, J.-A.; Kim, Y.-S. Comparison of volatile and non-volatile metabolites in rice wine fermented by Koji inoculated with Saccharomycopsis fibuligera and Aspergillus oryzae. Food Res. Int. 2018, 109, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, F.; Guo, J.; Ye, M.; Hu, H.; Guo, J.; Liu, X. Effects of glutinous rice protein components on the volatile substances and sensory properties of Chinese rice wine. J. Sci. Food Agric. 2020, 100, 3297–3307. [Google Scholar] [CrossRef] [PubMed]
- Krivoruchko, A.; Nielsen, J. Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Curr. Opin. Biotechnol. 2015, 35, 7–15. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, J.; Xie, T.; Huang, L.; Zhuang, W.; Zheng, Y.; Zheng, B. Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing. Food Chem. 2016, 203, 456–464. [Google Scholar] [CrossRef]
- Wong, B.; Muchangi, K.; Quach, E.; Chen, T.; Owens, A.; Otter, D.; Phillips, M.; Kam, R. Characterisation of Korean rice wine (makgeolli) prepared by different processing methods. Curr. Res. Food Sci. 2023, 6, 100420. [Google Scholar] [CrossRef]
- Miao, Z.; Hao, H.; Yan, R.; Wang, X.; Wang, B.; Sun, J.; Li, Z.; Zhang, Y.; Sun, B. Individualization of Chinese alcoholic beverages: Feasibility towards a regulation of organic acids. LWT 2022, 172, 114168. [Google Scholar] [CrossRef]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and Sensory Studies on the Umami Taste of Japanese Green Tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, H.; Su, W.; Mu, Y.; Tian, Y. Analysis of the formation mechanism of volatile and non-volatile flavor substances in corn wine fermentation based on high-throughput sequencing and metabolomics. Food Res. Int. 2023, 165, 112350. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhao, J.; Li, F.; Tian, H.; Ma, X. Characterization of Chinese rice wine taste attributes using liquid chromatographic analysis, sensory evaluation, and an electronic tongue. J. Chromatogr. B 2015, 997, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ji, Z.; Liu, S.; Han, X.; Zheng, F.; Mao, J. Characterization of the volatile compounds of huangjiu using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-TOFMS). J. Food Process. Preserv. 2019, 43, e14159. [Google Scholar] [CrossRef]
- Fan, W.; Qian, M.C. Headspace Solid Phase Microextraction and Gas Chromatography−Olfactometry Dilution Analysis of Young and Aged Chinese “Yanghe Daqu” Liquors. J. Agric. Food Chem. 2005, 53, 7931–7938. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Y. Effect of ‘wheat Qu’ on the fermentation processes and volatile flavour-active compounds of Chinese rice wine (Huangjiu). J. Inst. Brew. 2013, 119, 71–77. [Google Scholar] [CrossRef]
- Park, H.-J.; Lee, S.M.; Song, S.H.; Kim, Y.-S. Characterization of Volatile Components in Makgeolli, a Traditional Korean Rice Wine, with or without Pasteurization, During Storage. Molecules 2013, 18, 5317–5325. [Google Scholar] [CrossRef]
- Kang, B.-S.; Lee, J.-E.; Park, H.-J. Electronic tongue-based discrimination of Korean rice wines (makgeolli) including prediction of sensory evaluation and instrumental measurements. Food Chem. 2014, 151, 317–323. [Google Scholar] [CrossRef]
- Jung, H.; Lee, S.-J.; Lim, J.H.; Kim, B.K.; Park, K.J. Chemical and sensory profiles of makgeolli, Korean commercial rice wine, from descriptive, chemical, and volatile compound analyses. Food Chem. 2014, 152, 624–632. [Google Scholar] [CrossRef]
- Li, M.; Zhan, P.; Wang, P.; Tian, H.; Geng, J.; Wang, L. Characterization of aroma-active compounds changes of Xiecun Huangjius with different aging years based on odor activity values and multivariate analysis. Food Chem. 2023, 405, 134809. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xia, Y.; Wang, G.; Tao, L.; Yu, J.; Ai, L. Effects of boiling, ultra-high temperature and high hydrostatic pressure on free amino acids, flavor characteristics and sensory profiles in Chinese rice wine. Food Chem. 2019, 275, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, L.A.; Daran, J.-M.; van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich Pathway for Fusel Alcohol Production: A Century of Research on Saccharomyces cerevisiae Metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Styger, G.; Jacobson, D.; Bauer, F.F. Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl. Microbiol. Biotechnol. 2011, 91, 713–730. [Google Scholar] [CrossRef][Green Version]
- Jin, Z.; Cai, G.; Wu, C.; Hu, Z.; Xu, X.; Xie, G.; Wu, D.; Lu, J. Profiling the key metabolites produced during the modern brewing process of Chinese rice wine. Food Res. Int. 2021, 139, 109955. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Hu, Z.; Chen, L.; Chen, D.; Wang, X.; Yao, L.; Sun, M.; Song, S.; Wang, H. Quantitative structure-activity relationships (QSAR) of aroma compounds in different aged Huangjiu. J. Food Sci. 2020, 85, 3273–3281. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.L.; Yaylayan, V.A. Model Studies on the Oxygen-Induced Formation of Benzaldehyde from Phenylacetaldehyde Using Pyrolysis GC-MS and FTIR. J. Agric. Food Chem. 2008, 56, 10697–10704. [Google Scholar] [CrossRef] [PubMed]
CK | Glu-1 | Glu-2 | Alb-1 | Alb-2 | Glu + Alb | |
---|---|---|---|---|---|---|
Total soluble solids (°Bx) | 11.80 ± 0.19 d | 14.10 ± 0.33 b | 15.6 ± 0.20 a | 13.2 ± 0.11 c | 12.5 ± 0.08 d | 14.6 ± 0.41 b |
Amino acid nitrogen (g/L) | 0.65 ± 0.04 d | 0.85 ± 0.03 b | 0.92 ± 0.05 a | 0.72 ± 0.02 c | 0.76 ± 0.06 c | 0.87 ± 0.07 b |
Reducing sugar content (g/L) | 7.62 ± 0.15 d | 8.89 ± 0.23 c | 9.54 ± 0.28 b | 10.10 ± 0.17 a | 8.15 ± 0.33 c | 8.43 ± 0.26 c |
Ethanol (% vol) | 12.40 ± 0.11 c | 13.50 ± 0.08 b | 14.60 ± 0.16 a | 12.80 ± 0.27 c | 12.50 ± 0.04 c | 13.30 ± 0.22 b |
Amino Acids (mg/L) | CK | Glu-1 | Glu-2 | Alb-1 | Alb-2 | Glu + Alb |
---|---|---|---|---|---|---|
Umami amino acids | ||||||
Aspartic acid | 90.4 ± 5.4 d | 107.9 ± 2.2 b | 135.4 ± 5.9 a | 90.7 ± 0.5 d | 92.1 ± 1.2 d | 100.2 ± 3.0 c |
Glutamic acid | 268.2 ± 15.9 c | 299.7 ± 12.2 b | 332.3 ± 18.7 a | 283.1 ± 31.4 c | 290.3 ± 23.8 c | 310.0 ± 8.7 b |
Sweet amino acids | ||||||
Serine | 75.3 ± 7.6 c | 67.2 ± 0.2 c | 79.8 ± 0.4 c | 85.1 ± 4.5 ab | 89.2 ± 0.4 a | 82.9 ± 0.2 b |
Glycine | 165.3 ± 2.4 c | 174.7 ± 8.5 c | 160.5 ± 3.3 c | 181.6 ± 6.8 b | 197.6 ± 0.8 a | 193.4 ± 2.8 a |
Threonine | 93.1 ± 4.6 c | 96.0 ± 1.6 c | 91.7 ± 1.1 c | 102.9 ± 2.2 ab | 112.8 ± 0.6 a | 110.9 ± 1.2 a |
Alanine | 195.6 ± 11.1 c | 363.2 ± 20.2 a | 381.2 ± 19.0 a | 209.2 ± 22.3 c | 251.3 ± 2.9 b | 351.7 ± 6.3 a |
Proline | 155.5 ± 9.3 d | 204.2 ± 15.0 c | 240.7 ± 9.7 b | 231.4 ± 9.8 bc | 275.6 ± 5.0 a | 217.9 ± 4.6 c |
Lysine | 53.2 ± 0.9 e | 63.3 ± 0.4 d | 82.2 ± 1.0 b | 87.4 ± 3.0 a | 71.6 ± 1.3 c | 72.3 ± 1.9 c |
Bitter amino acids | ||||||
Histidine | 25.8 ± 3.2 b | 28.3 ± 0.3 ab | 29.1 ± 0.4 a | 22.9 ± 0.2 c | 24.7 ± 0.7 bc | 21.6 ± 0.9 c |
Arginine | 45.1 ± 2.4 c | 54.0 ± 10.4 bc | 99.7 ± 0.8 a | 49.0 ± 5.5 c | 46.6 ± 3.1 c | 58.1 ± 6.8 b |
Tyrosine | 61.2 ± 3.3 c | 77.3 ± 2.7 bc | 87.1 ± 1.2 a | 81.4 ± 2.7 a | 89.3 ± 1.6 a | 85.7 ± 3.3 a |
Valine | 55.5 ± 1.7 e | 67.9 ± 2.9 c | 95.9 ± 1.2 a | 62.6 ± 2.3 d | 60.4 ± 1.1 d | 81.4 ± 1.3 b |
Methionine | 43.3 ± 3.6 d | 40.8 ± 0.2 d | 51.6 ± 0.2 c | 35.9 ± 0.5 e | 58.0 ± 0.1 b | 75.6 ± 0.4 a |
Isoleucine | 89.9 ± 5.8 d | 98.6 ± 5.1 c | 178.4 ± 0.2 a | 90.7 ± 1.0 d | 98.4 ± 8.4 cd | 125.9 ± 1.4 b |
Leucine | 131.4 ± 28.6 bc | 154.8 ± 3.1 b | 297.0 ± 0.5 a | 100.0 ± 1.9 d | 127.2 ± 2.5 c | 165.6 ± 8.2 b |
Cysteine | 36.8 ± 0.9 a | 27.9 ± 0.7 a | 31.2 ± 0.1 a | 36.7 ± 0.8 a | 44.0 ± 7.2 a | 37.4 ± 0.1 a |
Phenylalanine | 127.1 ± 11.6 e | 202.1 ± 2.8 f | 193.6 ± 1.0 a | 85.7 ± 2.3 d | 89.1 ± 1.4 c | 171.7 ± 2.7 b |
Total | 1712.7 ± 33.4 e | 2127.9 ± 40.8 c | 2567.4 ± 49.6 a | 1836.3 ± 27.7 d | 2018.2 ± 50.1 c | 2262.3 ± 20.2 b |
Compound | RI (ref) a | RI (cal) b | CAS | Odor Descriptor | Identification c |
---|---|---|---|---|---|
Alcohols | |||||
2-Methyl-1-propanol | 1101 | 1092 | 78-83-1 | Malty | MS, RI |
3-Methyl-1-butanol | 1209 | 1212 | 123-51-3 | Malty | MS, RI |
1-Hexanol | 1363 | 1356 | 111-27-3 | Grassy, marzipan-like | MS, RI |
1-Octen-3-ol | 1430 | 1456 | 3391-86-4 | Mushroom-like | MS, RI |
1-Heptanol | 1447 | 1465 | 111-70-6 | Fruity, soapy | MS, RI |
5-Methyl-1-hexanol | 1466 | 1470 | 627-98-5 | Fruity, soapy | MS, RI |
1-Octanol | 1573 | 1561 | 111-87-5 | Soapy, citrus-like, green | MS, RI |
2-Furanmethanol | 1635 | 1656 | 98-00-0 | Burnt, sweet | MS, RI |
2-Octen-1-ol | 1645 | 1628 | 22104-78-5 | Soapy | MS, RI |
1-Nonanol | 1666 | 1640 | 143-08-8 | Soapy, fruity | MS, RI |
1-Decanol | 1771 | 1763 | 112-30-1 | Soapy | MS, RI |
2-Butyl-1-octanol | 1853 | 1849 | 3913-02-8 | - | MS, RI |
2-Phenylethanol | 1902 | 1873 | 60-12-8 | Floral, honey-like | MS, RI |
Esters | |||||
Ethyl acetate | 887 | 880 | 141-78-6 | Fruity, sweet | MS, RI |
Ethyl butanoate | 1026 | 1044 | 105-54-4 | - | MS, RI |
3-Methylbutyl acetate | 1132 | 1121 | 123-92-2 | Banana-like, fruity | MS, RI |
Pentyl acetate | 1175 | 1181 | 628-63-7 | Pear, overripe banana | MS, RI |
Ethyl hexanoate | 1241 | 1232 | 123-66-0 | Fruity, pineapple-like | MS, RI |
Ethyl lactate | 1341 | 1352 | 97-64-3 | Fruity, pineapple | MS, RI |
Ethyl heptanoate | 1352 | 1341 | 106-30-9 | Banana, strawberry | MS, RI |
Butyl hexanoate | 1407 | 1421 | 626-82-4 | Fruity, pineapple | MS, RI |
Ethyl octanoate | 1441 | 1435 | 106-32-1 | Pineapple, mushroom | MS, RI |
Ethyl nonanoate | 1526 | 1541 | 123-29-5 | Waxy, soapy, grape | MS, RI |
Isobornyl acetate | 1582 | 1552 | 125-12-2 | Herbal, citrus nuance | MS, RI |
Isoamyl lactate | 1619 | 1603 | 19329-89-6 | Fruity, creamy, nutty | MS, RI |
Ethyl decanoate | 1648 | 1633 | 110-38-3 | Soapy, pear-like | MS, RI |
Diethyl succinate | 1687 | 1669 | 123-25-1 | - | MS, RI |
Phenethyl acetate | 1820 | 1813 | 103-45-7 | Sweet, honey, floral | MS, RI |
Ethyl dodecanoate | 1847 | 1856 | 106-33-2 | Waxy, soapy | MS, RI |
γ-Nonanolactone | 2020 | 2010 | 104-61-0 | Coconut, creamy | MS, RI |
Ethyl tetradecanoate | 2070 | 2059 | 124-06-1 | Sweet, creamy | MS, RI |
Ethyl pentadecanoate | 2161 | 2179 | 41114-00-5 | Honey sweet | MS, RI |
Ethyl hexadecanoate | 2270 | 2288 | 628-97-7 | Waxy, fruity, creamy | MS, RI |
Ethyl oleate | 2476 | 2452 | 111-62-6 | Fatty, buttery | MS, RI |
Ethyl linoleate | 2510 | 2521 | 544-35-4 | Fatty, fruity, oily | MS, RI |
Aldehydes | |||||
Hexanal | 1083 | 1079 | 66-25-1 | Green, grassy | MS, RI |
Heptanal | 1186 | 1180 | 111-71-7 | Citrus-like, fatty | MS, RI |
(E)-2-Heptenal | 1334 | 1338 | 18829-55-5 | Green-apple-like | MS, RI |
Nonanal | 1382 | 1379 | 124-19-6 | Citrus-like, soapy | MS, RI |
(E)-2-Octenal | 1425 | 1430 | 2548-87-0 | Fatty, nutty | MS, RI |
Furfural | 1470 | 1474 | 98-01-1 | Sweet, cereal-like | MS, RI |
Decanal | 1486 | 1485 | 112-31-2 | Fatty, orange peel | MS, RI |
Benzaldehyde | 1533 | 1525 | 100-52-7 | Bitter-almond-like, | MS, RI |
Undecanal | 1593 | 1611 | 112-44-7 | - | MS, RI |
4-Methyl- benzaldehyde | 1653 | 1643 | 104-87-0 | - | MS, RI |
Acids | |||||
Acetic acid | 1445 | 1451 | 64-19-7 | Vinegar-like | MS, RI |
Pentanoic acid | 1736 | 1750 | 109-52-4 | Acidic, milky, cheese | MS, RI |
Hexanoic acid | 1861 | 1854 | 142-62-1 | Sweaty | MS, RI |
Octanoic acid | 2082 | 2075 | 124-07-2 | Carrot-like, musty | MS, RI |
nonanoic acid | 2164 | 2176 | 112-05-0 | Moldy, pungent | MS, RI |
Decanoic acid | 2268 | 2284 | 334-48-5 | Soapy, musty | MS, RI |
Ketones | |||||
2-Octanone | 1297 | 1283 | 111-13-7 | Soapy, fruity | MS, RI |
2-Nonanone | 1403 | 1389 | 821-55-6 | Fruity, musty | MS, RI |
Phenols | |||||
2-Methoxy-phenol | 1865 | 1837 | 90-05-1 | - | MS, RI |
4-ethyl-2-methoxyphenol | 2048 | 2054 | 2785-89-9 | Smoky, gammon-like | MS, RI |
2-methoxy-4-vinylphenol | 2180 | 2184 | 7786-61-0 | Smoky, clove-like | MS, RI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Zhou, Y.; Liu, T.; Li, B.; Hu, Y.; Zhai, X.; Zuo, M.; Liu, S.; Yang, Z. Effects of Protein Components on the Chemical Composition and Sensory Properties of Millet Huangjiu (Chinese Millet Wine). Foods 2023, 12, 1458. https://doi.org/10.3390/foods12071458
Zhou C, Zhou Y, Liu T, Li B, Hu Y, Zhai X, Zuo M, Liu S, Yang Z. Effects of Protein Components on the Chemical Composition and Sensory Properties of Millet Huangjiu (Chinese Millet Wine). Foods. 2023; 12(7):1458. https://doi.org/10.3390/foods12071458
Chicago/Turabian StyleZhou, Chenguang, Yaojie Zhou, Tianrui Liu, Bin Li, Yuqian Hu, Xiaodong Zhai, Min Zuo, Siyao Liu, and Zhen Yang. 2023. "Effects of Protein Components on the Chemical Composition and Sensory Properties of Millet Huangjiu (Chinese Millet Wine)" Foods 12, no. 7: 1458. https://doi.org/10.3390/foods12071458