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Abstract: The appearance quality of apples directly affects their price. To realize apple grading
automatically, it is necessary to find an effective method for detecting apple surface defects. Aiming
at the problem of a low recognition rate in apple surface defect detection under small sample
conditions, we designed an apple surface defect detection network (ASDINet) suitable for small
sample learning. The self-developed apple sorting system collected RGB images of 50 apple samples
for model verification, including non-defective and defective apples (rot, disease, lacerations, and
mechanical damage). First, a segmentation network (AU-Net) with a stronger ability to capture small
details was designed, and a Dep-conv module that could expand the feature capacity of the receptive
field was inserted in its down-sampling path. Among them, the number of convolutional layers
in the single-layer convolutional module was positively correlated with the network depth. Next,
to achieve real-time segmentation, we replaced the flooding of feature maps with mask output in
the 13th layer of the network. Finally, we designed a global decision module (GDM) with global
properties, which inserted the global spatial domain attention mechanism (GSAM) and performed
fast prediction on abnormal images through the input of masks. In the comparison experiment with
state-of-the-art models, our network achieved an AP of 98.8%, and a 97.75% F1-score, which were
higher than those of most of the state-of-the-art networks; the detection speed reached 39ms per
frame, achieving accuracy-easy deployment and substantial trade-offs that are in line with actual
production needs. In the data sensitivity experiment, the ASDINet achieved results that met the
production needs under the training of 42 defective pictures. In addition, we also discussed the
effect of the ASDINet in actual production, and the test results showed that our proposed network
demonstrated excellent performance consistent with the theory in actual production.

Keywords: artificial intelligence; apple defect; deep learning; defect detection

1. Introduction

The apple is the third largest fruit crop in the world after bananas and citrus in terms
of planting area and production [1]. It has good edibility and nutritional value, and is
one of the most economically important crops in China [2]. The ecological environment
of apple orchards, genetic factors, and improper picking and transportation in the later
stages all lead to apple defects [3]. The surface defects of apples can be mainly attributed to
rot and plant disease caused by biological factors [4]; laceration caused by environmental
factors; and mechanical damage caused during packing and transportation. Surface defects
of apples not only affect their value and cause the loss of nutrients [5], they also cause
the surrounding normal fruits to be infected by pathogens [6], resulting in more serious
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economic losses. Traditionally, fruit surface defect detection mainly relies on manual
recognition. On the one hand, due to the high output of apples and the large market
demand [7], manual identification is labor-intensive, time-consuming, and error-prone. On
the other hand, due to the impact of the COVID-19 pandemic, the proportion of labor costs
has risen sharply, and manual identification is not conducive to the control of production
costs [8]. Therefore, it is necessary to use an objective, fast, nondestructive, and cost-
effective inspection technology to effectively detect surface defects of apples before they
enter the market.

In the past ten years, hyperspectral imaging (HSL) and multispectral imaging (MSL)
have been commonly used for fruit surface defect detection [9]. HSL is widely used for
fruits such as apples [10], citrus [11], peaches [12], and strawberries [13]. However, the
number of wavelengths limits the detection time. To solve the detection time problem,
researchers built the MSL system by selecting an optimal band. Aleixos et al. [14] built
an MSL system that could simultaneously inspect citrus fruits for size, color, and surface
defects at a rate of five fruits per second. However, compared to citrus peels, apple
peels have a variety of colors, which makes it difficult to detect surface defects in apples.
Patrick et al. [10] implemented the detection of apple surface defects using an MSL system.
However, it could not achieve real-time detection, and since the fruit stalk and calyx have
similar color features and texture features to defects, the false detection rate was high [15].
In addition, MSL systems are difficult to obtain in the market due to their complexity, cost,
and volume [16]. Compared with other non-destructive sensing technologies, traditional
machine vision technology has greater potential in the online inspection of apples, due to
its high speed and low cost. However, this technology usually requires manual feature
extraction according to the actual design, and many methods are sensitive to illumination
and background environments (such as the pedicel and calyx) [17]. Unay and Gosselin [18]
eliminated the low edge brightness problem by eroding the edge portion of the apple image.
However, this solution came at the cost of sacrificing edge quality detection, which is not
advisable.

In recent years, the development of deep learning has inspired new approaches to
existing problems, and researchers have applied it to various fields. Examples include food
engineering [19–22], medicine [23,24], civil engineering [25], and forest fire safety [26,27].
Therefore, new machine vision inspection techniques that combine deep learning techniques
with different imaging techniques have also received increasing attention. These techniques
display good performance in fruit surface defect detection, especially with the surface defect
detection model based on semantic segmentation. Zheng et al. [28] proposed an intelligent
algorithm, AFFU-Net, for crack damage detection of winter jujubes. Dubey et al. [29] used
the K-means clustering method to detect infected parts of apple fruits, and combined the
features based on color, texture, and shape features calculated on the segmented images
into a single descriptor, and used multiclass support vector machines for classification. The
results showed that this method offers better performance than the single-feature method.
Although an increasing number of surface defect detection methods based on semantic
segmentation continue to refresh the existing detection indicators, the training of these
models often relies on large-scale finely labeled datasets. Fine labeling is time-consuming
and labor-intensive, which does not meet the requirements of Industry 4.0 [30]. Meeting the
need for finely labeled surface defect segmentation data remains a challenge [31].

Using few-shot learning to meet data needs is a solution that has emerged in recent
years. Therefore, this study aimed to develop a semantic segmentation-based few-shot
learning network to analyze fruit images to detect defective apples directly. The specific
goals were the following: (1) to develop an apple surface defect detection network (AS-
DINet) suitable for few-shot learning, as learning from a small number of training samples
with apple surface defects can still obtain the most advanced defect detection effect; (2)
to evaluate the ASDINet, and compare the performance of the ASDINet with state-of-
the-art fruit defect detection methods; and (3) to validate the proposed model using an
independent dataset obtained on a fruit sorting system.
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The main contributions of this research are summarized as follows:

(1) We designed a segmentation network, which has a strong ability to capture the details
of apple defects.

(2) We designed a global decision module with global properties, plugged into a global
spatial domain attention mechanism, to quickly predict anomalous apple images
using input masks.

(3) We collected RGB images of 50 apple samples on our self-developed apple sorting
system for model validation.

2. Related Research

A non-destructive and objective method for fruit appearance quality inspection is
provided by computer vision technology. Feature extraction is essential for fruit surface
fault identification in computer vision-based technology. The extracted fruit surface defect
features mainly include color, texture, shape, etc. Blasco et al. [32] proposed a region-
oriented segmentation method based on the HIS color space, in order to replace the pixel-
oriented segmentation algorithm in detecting citrus peel defects and stem ends. However,
their study did not determine how to distinguish stem ends from defects. Mohammadi
et al. [33] employed a straightforward thresholding technique to obtain a grayscale image of
an apple, which allowed them to extract shape features such as roundness. These features
were then utilized for detecting defects in the fruit. This method effectively reduced the
rate of false detections for fruiting stems and calyxes. However, this approach proved to be
less reliable for detecting defects in spherical-shaped fruits, where the uneven distribution
of surface brightness often caused darker areas to be erroneously flagged as surface defects.
This issue was also a significant factor in the difficulty of detecting defects in the fruit’s
edge region.

Compared with the traditional machine vision inspection technology, the new ma-
chine vision inspection technology combined with deep learning technology and imaging
technology has significantly improved the research on the detection of fruit surface defects.
The advanced and complex architecture of the deep learning model provides stronger
learning capabilities and higher classification accuracy, especially in complex scenarios.
The implementation of this new technology enhances the precision and efficiency of fruit
surface defect detection. Aziza et al. [34] used a convolutional neural network (CNN) to
detect surface defects in mangosteen, and achieved a 97% classification accuracy. However,
the CNN model used in this study had a relatively simple structure, which limited its ability
to fully extract the feature information of the data, thus negatively affecting the model’s
performance. In contrast, Mukhiddinov et al. [35] proposed a deep learning system for
multi-category fruit and vegetable classification based on the improved YOLOv4 model.
The system could not only identify the type of object in an image, but also classify it as
fresh or decaying. Their approach outperformed Azizah et al.’s method by utilizing a
more advanced model architecture that could extract more comprehensive and informative
features from the data, resulting in improved classification accuracy.

Surface defect detection methods are constantly being improved, but one major chal-
lenge for deep learning networks is the need for a large amount of labeled data. To address
this, Chen and Ho [36] proposed using pre-trained networks, such as the OverFeat network
from the ILSVRC 2013 dataset, as a feature extractor. Then, they used support vector
machines to learn a classifier in addition to these features, which was found to be more
effective than using local binary pattern features. However, this approach does not fully
utilize the potential of deep learning, as it does not learn the network on the target domain.
Racki et al. [37] proposed an efficient network that uses 10 fully convolutional layers, ReLU
activation function, and batch normalization techniques for the accurate segmentation of
defects. They also added a decision network on top of the segmentation network to classify
the presence of defects in each image, resulting in improved classification accuracy on a
synthetic surface defect dataset. This method allows for the full potential of deep learning
to be utilized for surface defect detection. In order to express the relevant research more
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intuitively, we tabulated research methods, advantages, and drawbacks. Please refer to
Table 1 for details.

Table 1. Related research details.

References Method Advantage Drawback

[32]

Citrus sorting by
identification of the

most common defects
using multispectral

computer vision

Without any training,
the sorting accuracy
can reach as high as

95%

Cannot distinguish
stem ends from

defects

[33]

Mechatronic
components in apple

sorting machines
with computer vision

Reduced the false
detection rate of fruit

stems and calyxes

Defects in the edge
portion of the fruit are

difficult to detect

[34]

Deep learning
implementation using
convolutional neural

network in
mangosteen surface

defect detection

The classification
accuracy of

mangosteen surface
defect detection can

reach 97%

The model is simple
and cannot fully mine

the feature
information of the

data

[35]

Improved
classification

approach for fruits
and vegetables

freshness based on
deep learning

The system not only
identifies the type of

fruit or vegetable, but
also classifies it as

fresh or rotten

Misclassification
occurs when fruits

and vegetables have
very similar external

features

[36] Pre-trained OverFeat
network

Alleviates data
requirements

This approach does
not exploit the full
potential of deep

learning, as it does
not learn the network
on the target domain

[37]

Compact
convolutional neural
network for textured

surface anomaly
detection

Defects can be clearly
segmented, and the
existence of defects
can be classified for

each image

This approach does
not exploit the full
potential of deep

learning, as it does
not learn the network
on the target domain

The method proposed in this study was inspired by Racki et al.’s research, but im-
proves upon it in several ways. Our model comprises two components: a segmentation
network (AU-Net) and a global decision module (GDM). Our approach involved the design
of an AU-Net with an enhanced ability to capture finer details, achieved by incorporating a
Dep-conv module to expand the feature capacity of the receptive field in its down-sampling
path. Additionally, we developed a GDM with global properties, which includes a global
spatial domain attention mechanism (GSAM) that can swiftly predict abnormal images
using input masks.

To enhance the readability of this article, we have compiled a list of abbreviations
used, and presented them in Abbreviations part, for easy reference.

3. Materials and Methods
3.1. Dataset Preparation

The datasets used in the experiments consisted of open-source data and the apple
surface defect dataset (ASDD), which served as our training and testing sets, respectively.
The open-source data were obtained from dataset websites, including Digipathos, Kaggle,
Baidu Pictures, etc. The quality of the pictures on the dataset website was uneven, and there
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were misclassification cases. We searched through information and consulted botanists,
reclassified the dataset, and eliminated low-quality photos. Finally, a total of 500 images
were screened out in this part. Table 2 shows the defect categories and data distribution
of apples selected in this study. The test ASDD was composed of images acquired from
the laboratory fruit sorting system. The fruit sorting system in the laboratory (as shown
in Figure 1) consisted of a conveyor belt, two commercial RGB cameras (HIKVISION,
3Q120/3Q140), a manipulator (Bravo 7 Pro), and a composition of 14 LED bulbs (LED
Bright 9W E27 6500K 230V 1CT/12 CN). The 14 LED bulbs were installed above the fruit
at a 45◦ angle to the fruit, in order to ensure that the camera’s view remained bright. The
whole system was controlled by a computer (12th Gen Intel(R) Core (TM) i7-12700H 2.30
GHz and 32GB ARM). All of the components, except the computer, were fixed in the optical
chamber to prevent stray light from affecting the detection accuracy.

Table 2. The data distribution of the training set.

Category Number Proportion (%)

Normal 396 79.2
Rot 31 6.2

Disease 21 4.2
Laceration 27 5.4

Mechanical injury 25 5.0
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Figure 1. Schematic diagram and physical photos of the optical chamber of the 4-channel fruit sorting
machine.

The image acquisition process of the laboratory fruit sorting system is shown in
Figure 1. Samples are placed on the conveyor belt, one by one, and moved at a speed
of 5 fruits/s. The samples were purchased from a local supermarket in Changsha, and
comprised a total of 50 “Fuji” apples, including 40 non-defective apples and 10 defective
apples. As the apples were conveyed onto the turntable, the manipulator and turntable
worked together to reveal the various parts of the apple. Cameras on either side randomly
imaged three different parts of the apple’s surface, for a total of six images per apple. A
total of 300 images were captured. Since the orientation of the apple towards the camera
was random, it was equally possible for a non-defective image to be included in an image
acquired for a defective sample. Finally, after the screening, we selected 200 images,
including 150 images without defects and 50 with defects. It is worth noting that the
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images of defective apples were deliberately selected to ensure that each image contained
at least one defective area. To isolate the red apples, we applied the Otsu [38] thresholding
technique on the red component of the RGB image, resulting in an image of the apple with
the background removed. Similarly, we utilized the Otsu [38] method to threshold the green
component of the RGB image to extract the green apples, obtaining an apple image with
the background removed. Representative images of normal apples and defective apples
with various defects are shown in Figure 2. The blue-bordered images are of non-defective
apples, and the orange-bordered images are of defective apples. Among them, (a) and (b)
defects are rot and plant disease caused by biological factors, respectively; (c) is a laceration
caused by environmental factors; and (d) is mechanical damage caused during packing
and transportation.
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packing and transportation.

3.2. Apple Surface Defect Inspection Network (ASDINet)

We treated the problem of surface defect detection as a binary image classification
problem. In apple post-harvest quality sorting and grading, the accurate classification
of defective apples is more important than the precise location of defects. However,
existing defect detection methods often rely on large-scale finely labeled data training,
which obviously does not meet the needs of actual production benefits. To overcome this
difficulty, we designed an apple surface defect inspection network (ASDINet) suitable for
few-shot learning. The network structure diagram is shown in Figure 3. First, the AU-Net
performs pixel-level localization of surface defects. Training this network with a pixel-wise
loss effectively treats each pixel as a separate training sample, increasing the effective
number of training samples and preventing overfitting. Next, binary image classification is
performed, including an additional network GDM built on top of the AU-Net, and uses the
output of the AU-Net. The GDM exists to better predict whether an image has anomalies.
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3.2.1. AU-Net

U-Net [39] is a fully convolutional neural network for medical image segmentation
proposed by Ronneberger et al. in 2015. The network architecture consists of a down-
sampling path and an up-sampling path, where skip connections between the up- and
down-sampling paths ensure that the network can fuse shallow and deep features. The
U-Net++ [40] is an improved network based on the U-Net. It is an architecture with
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nested and dense skip connections that can capture features at different levels and integrate
them through feature superposition. However, the U-Net++ does not express enough
information from multiple scales, and its parameter volume is larger than that of the
U-Net. Compared with the U-Net and U-Net++, the U-Net3+ [41] combines multi-scale
features, redesigns skip connections, and utilizes multi-scale deep supervision. The U-Net3+
provides fewer parameters, but can generate more accurate location-aware and boundary-
enhanced segmentation maps. However, the noise information from the background
remains in the shallower layers, which easily leads to over-segmentation. In contrast, the
U-Net not only integrates shallow features and deep semantic information but is lighter, has
fewer parameters, and is not prone to over-segmentation. Therefore, we chose to upgrade
on the basis of the U-Net and designed the AU-Net. Its structure is shown in Figure 3b. It
consists of 14 convolutional layers, three max-pooling layers, and three upper convolutional
layers. Compared with the traditional U-Net, the AU-Net replaces the ordinary convolution
block of the down-sampling path with Dep-conv, and uses the segmentation map and mask
as the input of the GDM.

(a) Dep-conv module

In the down-sampling process, we designed the Dep-conv module (shown in Figure 3c)
to replace the traditional convolution block. Dep-conv is a convolutional module that
increases the number of convolutional layers with the network architecture. Compared
with traditional convolutional blocks, the number of convolutional layers is changed to have
fewer convolutional layers in the shallow layers of the architecture and more convolutional
layers in the deep layers. This greatly increases the feature capacity of the receptive field.
Dilated convolution [42] is a new convolutional network module proposed by Yu et al. It
systematically aggregates multi-scale contextual information without loss of resolution
using dilated convolution. Dilated convolution supports exponential expansion of the
receptive field without loss of resolution or coverage. However, there is a phenomenon of
“The Gridding Effect” in the whole convolution that causes the loss of local information, and
no correlation exists between the information obtained by long-distance convolution, thus
affecting the classification results. In contrast, Dep-conv preserves local feature information
well while increasing the feature capacity of the receptive field, and there is a strong
correlation between the information obtained by convolution, which has little impact on
the classification results. As shown in Figure 3c, each convolutional layer is followed by a
normalization layer (batch normalization) and a nonlinear ReLU [43] layer, both of which
help to improve the convergence speed during the learning process. The formula of the
ReLU [43] layer is shown below, and the algorithm flow of batch normalization is shown in
Algorithm 1.

f (x) = max(0, x) (1)

Algorithm 1: Batch Normalization

1 Input: Values of x over a mini-batch: B = {x1, . . . , m} ; γ, β (parameters to be learned)
2 Begin:
3 µB ← 1

m ∑m
i=1 xi //Calculate the mean of mini-batch data

4 σ2
B ←

1
m ∑m

i=1(xi − µB)
2 //Calculate mini-batch data variance

5 x̂i ←
xi−µB√

σ2
B+ε

//Normalization

6 yi ← γx̂i + β //Scaling and offset

7
Return γ and β

Output: normalized network response
{

yi = BNγ,β(xi)
}

Among them, m represents the number of samples in a batch; xi represents the feature
vector of a sample; µB is the average value of set B; σ2

B is the variance of set B; ε is a very
small number (such as 10−5), used to avoid the situation where the variance is 0; x̂i is
the feature after normalization; γ is the scaling factor; β is the offset; yi is the output of
the BN layer. BN normalizes input data during training using the mean and variance
of each mini-batch, adjusting the input distribution of each layer. During testing, it uses
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the mean and variance of the entire training set for normalization, while keeping scaling
and translation parameters constant. This consistency in statistical characteristics between
training and testing helps improve the model’s generalization performance.

In the process of deep network training, due to the change in network parameters, the
distribution of internal node data changes so that the upper network needs to be constantly
adjusted to adapt to the evolution of input data distribution. This will reduce the speed of
network learning, and the training process of the network will easily fall into the gradient
saturation area, slowing down the convergence speed of the network. For the activation
function gradient saturation problem, we chose to use the unsaturated activation function
(linear rectification function ReLU [43]) and kept the input distribution of the activation
function in a stable state (adding the normalization layer batch normalization) to solve
it, thus avoiding them from becoming stuck in the gradient saturation region as much as
possible. In batch normalization, we also used the mean and variance of the mini-batch as
an estimate of the mean and variance of the overall training samples. Although the data in
each batch were sampled from the overall sample, the mean and variance of different mini-
batches would be different, adding random noise to the network’s learning process. This
was the same as dropout bringing noise by turning off neurons, and it had a regularizing
effect on the model to a certain extent.

All convolutional layers in Dep-conv used a 5× 5 kernel. The number of channels
increased as the feature resolution decreased, so the computational requirements were the
same for each layer.

(b) Shortcut: mask

In semiconductor manufacturing, photolithography is used for many of the chip
processing steps, and the patterned “negatives” used for these steps are called masks (also
called “masks”). Their function is to cover the selected area so that operations such as
erosion or diffusion only affect the area outside the selected area. Image masking is similar
to it, it is used to block the image to be processed (all or part) with a selected image, figure,
or object, and controls the area or process of image processing. In digital image processing,
a mask represents a “logical image” or a 2-bit image consisting of a matrix whose elements
have only 2 values: 0 or 1. It is mainly used for the extraction of regions of interest, the
extraction of structural features, and for the production of special-shaped images. In the
AU-Net, we obtained masks after applying an additional 1 × 1 convolutional layer, which
reduced the number of output channels. This resulted in a single-channel output map. The
resolution of its input image was reduced by a factor of 8. Dropout was not used in this
approach because weight sharing in convolutional layers provides sufficient regularization.

The output mask was one of the inputs to the GDM. At the same time, pixel positioning
and precise boundary segmentation of surface defects were realized through the feature
fusion of the mask and deep semantic information.

3.2.2. Global Decision Module (GDM)

Racki et al. [37] proposed an efficient network to explicitly perform surface defect
segmentation. They proposed an additional decision network on top of the features from
the segmentation network to perform per-image classification of the presence of defects.
This improved classification accuracy on synthetic surface defect datasets. Inspired by this,
we proposed a GDM. The schematic diagram of the GDM is shown in Figure 3b. The GDM
is built on top of the AU-Net, taking the two outputs of the AU-Net as the input of the
GDM. Next, to better predict whether an image is abnormal, we inserted a global spatial
domain attention mechanism (GSAM) into the GDM. Finally, the classification network
performed binary classification on the apple image, and since the segmentation network is
a binary segmentation problem, the classification was performed at the level of individual
image pixels.

(a) Double input for GDM
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The input of the GDM is the output of the AU-Net. Different from Racki et al. [37],
two inputs were used in the GDM, and a global spatial domain attention mechanism
(GSAM) was inserted. The input segmentation map and the mask were subjected to global
max-pooling and global average pooling, respectively, and were connected in series to
finally obtain 66 output neurons.

The design of the GDM followed two crucial principles. Firstly, using multiple down-
sampling layers ensured an appropriate capacity for large complex shapes. This enabled
our network to capture not only local shapes, but also global shapes spanning large regions
of the image. Secondly, the GDM uses the features of the last layer of the AU-Net and
the mask. The presence of the mask is a shortcut, and the output neuron from the mask
provides a way to achieve perfect detection. If the user does not need it, the network can
use only the mask to avoid using a large number of feature maps. At the same time, this
also reduces the situation of overfitting caused by a large number of parameters.

(b) Global Spatial Domain Attention Mechanism (GSAM)

To better help the model pick up important information, we designed a global spatial
domain attention mechanism (GSAM) and inserted it into the GDM module. Refer to
Figure 3d for details.

The attention mechanism originates from the study of human vision. At present, there
are three main ways to add attention mechanism in the field of machine vision recognition:
spatial attention mechanism, channel attention mechanism, and convolutional block atten-
tion module (CBAM). The channel attention mechanism focuses on the influence of different
feature channels, assigns weights to feature channels by modeling the importance of each
feature channel, and strengthens or suppresses different channels according to task require-
ments. The spatial attention mechanism focuses on the importance of the spatial location
of features, generates spatial attention weights for the output feature map, and strengthens
or suppresses different spatial location features according to the feature weights.

The traditional spatial attention mechanism generally only has one-way weight as-
signment, which will lose important information to a certain extent. In the detection of
apple surface defects, because the model has difficulty in distinguishing the importance of
feature information, important feature information may be lost, which affects the recog-
nition of the network. Therefore, this study proposed a GSAM, which assigns weights in
multiple directions to help the model select important information while reducing the loss
of feature information.

The GSAM performs feature extraction for color, texture, and specificity of apple
defects. First, it generates weighted features in the horizontal and vertical directions; then,
it adds the two types of weights and expands the weight coefficient; finally, the weighted
features are matched, a more significant weighted feature is selected, and the larger weight
coefficient is determined. The “eye focus” to objects is brought into the image with a similar
color and texture to an apple defect. The GSAM algorithm is shown in Figure 3d.

Three strategies are used in the GSAM to amplify the differences in feature weight
coefficients. They are described as follows.

First, we assign horizontal weight coefficients to each row feature using a horizontal
attention mechanism, and give vertical weight coefficients to each column feature using a
vertical attention mechanism [26]:

Ci =
n

∑
j=1

eeij

∑ n
k=1eeij

hj (2)

In the above formula, eij represents the weight coefficient of the attention mechanism,
i represents the time feature,j represents the sequence feature, hj means the hidden layer
information of the feature sequence, CI represents the vertical attention mechanism feature
sequence (CI = {C1, C2 . . . Ci−1, Ci}), and CI I illustrates the horizontal attention mechanism
feature sequence (CI I = {C1, C2 . . . Ci−1, Ci}).
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Next, we add the two class weights and expand the weight coefficients:

add = (CI + CI I) (3)

Subsequently, to determine the “visual focus”, taking the maximum value as the
main factor and taking into account other features, the strategy is matched with two types
of weighted features, which are used to supplement the results of the second step of
weighted addition:

weight = A∗max(CI , CI I) + B∗min(CI + CI I) (4)

In the experiments in Section 4.3.2, we confirmed that the optimal values of the weight
assignment parameters were A = 0.84 and B = 0.16.

Then, the three strategies in this method are combined in the following formula:

SAM = concatenate([CI , CI I , add, weight]) (5)

where add indicates additive weighting coefficient; max represents the maximum value
operation; min indicates the minimum value operation; weight shows the weight distribu-
tion strategy.

(c) Classification and output

A fully connected layer connects the 66 neurons’ output via the GDM, and then the
output is converted into a probability distribution by SoftMax to obtain the classification
result. Since segmentation networks are binary segmentation problems, classification is
performed at the level of individual image pixels. We classify samples (pixels) into two
categories: (a) with defects; (b) without defects.

4. Results and Analysis

This section is divided into several subsections: (1) Section 4.1 describes the experi-
mental environment and settings, including the hardware and software environment as
well as hyperparameter settings and network training methods; (2) Section 4.2 introduces
our evaluation metrics; (3) Section 4.3 evaluates the effectiveness and determines the critical
parameters of each module of the ASDINet; (4) Sections 4.4 and 4.5 compare the ASDINet
with other methods, and proves that the ASDINet outperforms other methods in the apple
surface defect detection task; (5) Section 4.6 explores the sensitivity of the model to the
number of training samples. The ASDINet was proven to achieve an AP of 98.8% only by
training with 42 defective images; (6) Section 4.7 describes the impact of input images with
different resolutions on the results; (7) Section 4.8 explores and compares the computational
cost of the ASDINet with other state-of-the-art models; (8) Section 4.9 carries out a practical
application test.

4.1. Experimental Environment and Settings

(a) Setting

All of the tests in this research were performed on the same hardware and software
platform. Environmental parameters are listed in Table 3.

We created a usable dataset of surface defects in apples. To avoid aspect ratio mismatch
and ensure a good learning effect, we resized all images to a 512 × 512 × 3 size using the
resize function in OpenCV. Considering the GPU memory size and the time consumption
of the experiment, we made the following settings: the batch_size to 1, no momentum,
the initial learning rate to 0.1, the attenuation to 0.0005, the length of each training to 100
epochs, and the loss function to cross-entropy loss function. Table 4 contains the settings
and hyperparameters.
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Table 3. Hardware and software parameters.

Hardware
environment

CPU 12th Gen Intel(R) Core (TM)
i7-12700H 2.30 GHz

RAM 32 GB

Video memory 32 GB

GPU NVIDIA GeForce RTX 3070 Ti
Laptop GPU

Software
environment

OS Windows 11

CUDA Toolkit V11.3
CUDNN V8.0.4

Python 3.8.8
torch 1.8.1; torchvision 0.9.1

Table 4. Experimental settings.

Image Size Batch_Size Learning
Rate Decay Iterations Loss Function

512 × 512 1 0.0005 0.0005 100 epochs Cross-entropy

(b) Learning

Our models were not trained on other datasets, but were randomly initialized using
a normal distribution. The training samples were randomly selected during the learning
process; however, we modified the selection process to ensure balanced learning. Defective
images and non-defective images appeared alternately to ensure the network learned a
balance of the number of defective and non-defective images. An epoch was considered
over only when all defective images were observed at least once, which did not necessarily
mean that all non-defective images were scanned.

Subsequently, the AU-Net and GDM learned separately. First, only the AU-Net was
trained independently, and then the weights of the AU-Net were frozen. Next, only the
GDM was trained. By fine-tuning the GDM, the network avoided the overfitting problem
caused by a large number of weights in the AU-Net. This was more important when the
GDM learned than when the AU-Net learned. When the GDM learned, the limitation of
the GPU memory made the batch size only 1 or 2. Still, when the AU-Net learned, each
image pixel was regarded as a separate training sample; thus, the productive batch size
increased several times. In addition, we also considered the simultaneous learning of the
AU-Net and GDM. Simultaneous learning was only possible if both networks used the
cross-entropy loss function. Since loss functions are used in different ranges (pixel level
and image level), accurate normalization of the two layers played a crucial role. In the end,
it turned out that properly normalizing the loss for both ranges was harder to implement,
and resulted in no performance gain. Therefore, the two-stage learning mechanism was a
better choice and was used in all of our subsequent experiments.

4.2. Performance Metrics

Since the samples were pixels, for the convenience of evaluation, we transformed
the problem of surface defect detection into a binary image classification problem. The
schematic diagram is shown in Figure 4. We classified pixels into two categories: (a)
with defects; (b) without defects. Although we could obtain pixel-by-pixel segmentation
of defects from segmentation networks, measuring pixel-wise error is computationally
expensive and inefficient, which is not feasible in an industrial setting. Instead, we only
needed to measure each image’s binary image classification error to evaluate the network’s
segmentation performance.
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Figure 4. Converting the pixel-level segmentation problem into a binary classification problem and
classifying the sample as a single pixel.

In the evaluation, this study compared all of the networks with five different classi-
fication indicators: (a) accuracy rate (Accuracy) [44]; (b) precision rate (Precision) [44]; (c)
recall rate (Recall) [44]; (d) average precision (AP) [44]; and (e) F1. The higher the accuracy
rate, the more accurate the classification of positive and negative samples is. The higher
the precision rate, the higher the proportion of samples that are truly positive among the
samples classified as positive. The higher the recall rate, the higher the proportion of
correctly classified positive samples in the actual positive samples.

The primary metrics used in the evaluation were average precision (AP) and the F1.
AP is the area under the precision-recall curve, which accurately captures the model’s
performance at different thresholds better than Accuracy or Precision can. On the other
hand, the number of misclassifications (FP and FN) depended on a certain threshold of
the score. We reported the number of misclassifications at the threshold where the best
F-measure was reached. Furthermore, the choice of AP over the area under the ROC curve
(AUC) was better. AP captures performance more accurately than AUC in datasets with
many negative samples (defect-free). The F1 evaluates the overall performance of precision
and recall on classification performance. The higher the value of the F1, the better the
overall performance of precision and recall in classification.

The calculation formulas of Accuracy, Precision, Recall, average precision (AP), and
the F1 are as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

AP11point =
1

11
×
(
∑ x

)
(x ∈ MaxPrecision) (9)

F1 =
2× Precision× Recall

Precision + Recall
(10)

Among them, TP is the number of positive samples classified as positive, FP is the
number of negative samples classified as positive, TN is the number of negative samples
classified as negative, and FN is the number of positive samples classified as negative.
Positive samples are images with visible defects, and negative samples are images without
visible flaws.



Foods 2023, 12, 1352 14 of 29

4.3. Module Effectiveness Analysis

The parameters and functionality of each module we built are detailed in this section.
Section 4.3.1 describes the AU-Net module’s optimal convolution method (Dep-conv).
The weight distribution coefficients of the GSAM are determined in Section 4.3.2. The
experiment in Section 4.3.2 shows that the GDM dramatically improved the detection effect
of apple surface defects.

4.3.1. Effectiveness of AU-Net

To evaluate the network performance improvement by the AU-Net, we replaced the
segmentation module of the ASDINet with U-Net and compared it with the ASDINet. To
eliminate the influence of other modules on the final result, we added a 1 × 1 convolution
at the bottom of the U-Net and used the mask obtained after convolution as one of the
inputs of the GDM. The schematic diagram is shown in Figure 5. The comparison results
are shown in Table 5.
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Figure 5. Schematic diagram of the U-Net adding a feature map output. Each dark green box
corresponds to a multi-channel feature map. The number of channels is denoted on top of the box.
The x-y-size is provided on the lower edge of the box. Light green boxes represent copied feature
maps. The arrows denote the different operations.

Table 5. Comparing the impact of the U-Net and AU-Net on the final benefit of the network. In
order to rule out that our experimental data were obtained by random or accidental occurrence, we
used SPSS to conduct a one-way analysis of variance on the experimental data. Our null hypothesis
(H0) was that performance metrics were equal, and any small gains or losses observed were not
statistically significant. H1 was the alternative hypothesis. We set α = 0.05. The analysis results show
that F = 5.764 > F crit = 5.318, P = 0.043 < α = 0.05, reject H0. We performed the same analysis on
the data in Tables 6 and 7; please refer to the following for details.

Methods Accuracy Precision Recall AP F1-Score

U-Net 95.57 94.31 88.52 96.32 90.20
AU-Net 98.86 98.53 93.32 98.83 97.75

Experimental results show that using the AU-Net instead of the ordinary U-Net
reduced the number of parameters and expanded the receptive field. Moreover, through
the overlay layer, the activation function, such as ReLU, was sandwiched in the middle of
the convolutional layer, which further improved the expressiveness of the network, and
could represent more complex objects.

4.3.2. Effectiveness of GDM

We evaluated the contribution of the GDM to the final detection results. First, we
evaluated the impact of the GSAM on GDM performance. Then, we measured the impact



Foods 2023, 12, 1352 15 of 29

of the GDM on the overall network by erasing the GDM vs. retaining the GDM. The details
are presented in the following sections.

(a) Impact of the GSAM on GDM

In the weight distribution strategy in Section 3.2.2, relative to the weight distribution
of CI and CI I , the values of A and B affect the performance of the GSAM. For convenience,
we specified the following:

A + B = 1 (11)

We conducted comparative experiments. The interval between different values was
set to A = 0.02, and the numerical values of B and A were relative. To determine the best
coefficients for A and B, we modified the weight distribution coefficients of the GSAM in
the GDM for testing. The experimental results are shown in Figure 6.
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The best coefficients were A = 0.84 and B = 0.16. When the value of A was too
large, the weight of the minimum value was ignored, causing image features at positions
with smaller values to be ignored, and the extraction of image features lost its global
nature. When the value of A was too tiny, over-considering the global features made the
attention mechanism unable to entirely focus on important information, thus affecting the
performance of the GSAM.

We introduced the SE attention mechanism [45] and the CBAM attention mecha-
nism [46] into the GDM for comparative testing to study the impact of the GSAM on GDM
performance. Table 6 shows the test results.

Table 6. Performance of the GSAM. The analysis results show that F = 3.431 > F crit = 3.238, reject
H0.

Method Accuracy Precision Recall AP F1-Score

No improvement 94.55 95.28 95.37 94.92 95.33
SE Attention 95.57 95.93 95.91 95.75 95.94

CBAM Attention 96.98 96.05 96.32 96.52 96.17
GSAM 98.86 98.53 93.32 98.83 97.75
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After adding the SE attention mechanism or the CBAM attention mechanism, the
detection Accuracy of GDM improved. However, the improvement was subtle, and the
addition of the attention module increased the number of parameters. However, when the
GSAM was applied, the Accuracy improved significantly, and the increase in the number
of parameters was about the same as the SE attention mechanism or the CBAM attention
mechanism. Therefore, we chose to adopt the GSAM to enhance the feature extraction
ability of the GDM.

(b) Impact of the GDM on the overall network

We used simple binary descriptors and logistic regression instead of the GDM. After
the segmentation map output by the AU-Net was subjected to global max-pooling and
average pooling, a binary descriptor was created using the pooled value and used as a
feature of logistic regression. This feature was learned separately by the AU-Net after the
network was trained. The results are shown in Table 7.

Table 7. Contribution of the GDM to final benefit. The analysis results show that F = 10.623 >

F crit = 5.317, P = 0.012 < α = 0.05, reject H0.

Method Accuracy Precision Recall AP F1-Score

No GDM 95.22 92.13 89.31 94.63 91.34
GDM 98.86 98.53 93.32 98.83 97.75

These results indicate the importance of the GDM. From the results, simple pixel-level
output segmentation lacks enough information to predict the presence of defects in images
with the same Accuracy. On the other hand, the proposed GDM can capture information
from the rich features of the last segmentation layer, and through GDM, the ASDINet can
separate noise from correct features.

4.4. Comparison with State-of-the-Art Model

In this section, we conducted experiments using a test dataset taken on a fruit sorting
machine, comparing the performance of the ASDINet with several other state-of-the-art
models under optimal conditions. First, we evaluated two standard semantic segmentation
networks and several state-of-the-art semantic segmentation networks, namely U-Net [39],
DeepLabv3+ [23], DANet [47], BiSeNet V2 [48], and Swin Transformer [49]. DeepLabv3+ is
representative of pre-trained models, while U-Net is representative of models designed for
pixel-accurate segmentation. DANet is a dual-attention fusion network, which captures
global dependencies and long-range context information more effectively through two
attention modules, learns better feature representation in scene segmentation, and makes
segmentation results more accurate. BiSeNet V2 is a real-time semantic segmentation
algorithm that achieves high-precision and high-efficiency real-time semantic segmentation
by separately processing spatial details and classification semantics. Swin Transformer is
a new visual Transformer with sliding window operation and hierarchical design, which
is compatible with a wide range of visual tasks, including image classification, object
detection, semantic segmentation, etc. The evaluation was performed by replacing the
segmentation module of our proposed network.

The DeepLabv 3+ used in these experiments is based on the Xception architecture
containing 65 convolutional layers, trained and evaluated at a single scale, and uses an
output stride of 16. The U-Net used in these experiments is a modified U-Net architecture
with 19 convolutional layers. The only modification performed was adding a mask output
to the U-Net; please refer to Section 4.3.1 for details. DANet, BiSeNet V2, and Swin
Transformer remain unchanged. Similar to our proposed method, the five segmentation
networks also performed the training method in which the segmentation layer was trained
separately from the decision layer. These five methods were also evaluated using logistic
regression instead of the GDM, but they were less effective. The parameters of DeepLabv3+,
DANet, BiSeNet V2, and Swin Transformer networks were initialized using models pre-



Foods 2023, 12, 1352 17 of 29

trained on the ImageNet [50] and COCO datasets [51], while the parameters of U-Net
networks were initialized using a normal random distribution.

Next, we performed a comparative evaluation with the state-of-the-art models ViT [52]
and KF-2D-Renyi+ABC-SVM [53]. Tan et al. [53] proposed a citrus surface defect recogni-
tion network based on KF-2D-Renyi and ABC-SVM to solve the problems of citrus surface
defect recognition with blurred edges, unclear images, more interference, and difficulty
in defect recognition. Its average recognition rate can reach 98.45%. ViT [52] is a model
proposed by the Google team that applies Transformer to image classification. The model
is simple, effective, and highly scalable. It can achieve an accuracy rate of 88.55% on Ima-
geNet1K. The parameters of both networks are also initialized using models pre-trained on
the ImageNet [50] and COCO datasets [51].

For a fair comparison, the parameter settings of all methods reported in this section
were chosen based on the best-performing training settings evaluated in the previous
sections. For all methods, a graph size of 512 × 512, no rotation of the input image, and a
cross-entropy loss function were used. The batch size was set to 1, with no momentum; the
initial learning rate was set to 0.1, the decay was set to 0.0005, the length of each training
was set to 100 epochs, and the loss function was the cross-entropy loss function. Since
the models ViT and KF-2D-Renyi+ABC-SVM did not adopt the architecture we proposed,
and the data size required by the model far exceeded the dataset we provided to ensure
the model fit, we chose to increase the training length to 200 epochs. Table 8 contains the
settings and hyperparameters used.

Table 8. Learning settings and hyperparameters.

Method Image Size Batch_Size Learning
Rate Decay Iterations Loss Function

ASDINet 512 × 512 1 0.1 0.0005 100 epochs Cross-entropy
U-Net 512 × 512 1 0.1 0.0005 100 epochs Cross-entropy

DeepLabv3+ 512 × 512 1 0.1 0.0005 100 epochs Cross-entropy
DANet 512 × 512 1 0.1 0.005 100 epochs Cross-entropy

BiSeNet V2 512 × 512 1 0.1 0.0005 100 epochs Cross-entropy
Swin Transformer 512 × 512 1 0.1 0.0005 100 epochs Cross-entropy

ViT 512 × 512 1 0.1 0.0005 200 epochs Cross-entropy
KF-2D-Renyi+ABC-SVM 512 × 512 1 0.1 0.0005 200 epochs Cross-entropy

The results are shown in Figures 7 and 8. Comparing other network models and
the ASDINet models, the Accuracy of the ASDINet model proposed in this study for
apple surface defect detection is generally higher than that of other networks. Although
the AP of the ASDINet was 0.2% lower than that of the Swin Transformer, the number
of parameters of the Swin Transformer was more significant, which sacrifices a certain
detection speed and results in poor real-time performance (specific experiments will be
shown in Section 4.8). In addition, the newly emerging models, DANet, BiSeNet V2, Swin
Transformer, ViT, KF-2D-Renyi+ABC-SVM, etc., that we adopted were also higher than
the base network U-Net. When the epoch of DeepLabv3+ was about 30, and the epoch of
U-Net, DANet, and DeepLabv3+ was about 60, the loss curve fluctuated violently. This may
have been because the batch at this time did not meet the “homogeneous” requirement, and
a moderate increase in batch size may improve this situation. The loss of ViT showed an
upward trend in the later period, which is an overfitting phenomenon. This phenomenon
may have been related to the complex model of ViT and its large number of parameters
with the small dataset. BiSeNet and Swin Transformer showed excellent performance,
but their convergence speed was slower than that of our network. In addition, the fitting
speed of KF-2D-Renyi+ABC-SVM was slow, which may have been related to the small
dataset we used. This shows that the defect detection ability of the ASDINet model built in
this study is higher than those of other commonly used networks under this dataset. Our
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network solved the problem of less data that other networks mentioned above could not.
This verified the value of the ASDINet model in the current neural network model.
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4.5. Validation of the Proposed Algorithm

In actual classification, the TP value and FP value are the most direct indicators to
finally determine whether the classification is correct. Therefore, we used FP and FN to
evaluate our model and other state-of-the-art models. FP is the number of non-defective
samples classified as defective, and FN is the number of defective samples classified as
non-defective. Since U-Net, DeepLabv3+, DANet, BiSeNet V2, Swin Transformer, etc., were
all embedded in the architecture proposed in this research, the training samples were all
pixels, just as with the ASDINet. Furthermore, the samples of ViT, KF-2D-Renyi+ABC-SVM
were images. The training and parameter settings used were the same as above.

The results are shown in Figure 9. Our method (ASDINet) resulted in only 5 pixels
being misclassified when recall was 100%. Although the ASDINet misclassified two pixels
more than Swin Transformer, the computational cost of Swin Transformer was much larger
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than that of our network, which significantly sacrificed the detection speed of the network
(this was confirmed in Section 4.7). In addition, the performance of the U-Net was the worst,
followed by DeepLabv3+ and DANet. The results fully demonstrate that the proposed
network has practical benefits.
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4.6. Sensitivity to the Number of Training Samples

The number of defect samples required for training is also a significant factor in
industrial production. Therefore, we also evaluated the impact of smaller training sample
sizes on the results. For a fair comparison, the parameters of all methods in experiments
in this section were initialized with models pre-trained on the ImageNet [50] and COCO
datasets [51]. Evaluations were performed using the same evaluation method as in previous
experiments. This section evaluated all of the models mentioned in Section 4.4 under the
same conditions: ASDINet, U-Net, DeepLabv3+, DANet, BiSeNet V2, Swin Transformer,
ViT, and KF-2D-Renyi+ABC-SVM. First, we explored the minimum number of positive
training samples for which the ASDINet could achieve the best results. It efficiently used
50 positive training samples (defective images) for evaluation. Then, the number of positive
training samples was reduced by five each time for training; that is, the numbers of positive
training samples were 50, 45, 40, 35, 30, 25, 20, 15, 10, and 5. The test set did not change.
The training samples that were removed were randomly selected. The same training and
testing procedures were followed as for all previous experiments. The results are shown in
Table 9.

Table 9. The performance of the ASDINet trained between 50 and 5 defective images.

Model 50 45 40 35 30 25 20 15 10 5

ASDINet 98.83 98.52 98.10 97.72 96.33 95.91 93.84 92.01 89.80 85.96

It can be seen from Table 9 that the AP value of the ASDINet was 98.8% when the
number of positive training samples was 45, and the AP value was 98.5% when the number
of positive training samples was 40. To explore the minimum number of positive training
samples for the ASDINet to achieve the best results, we redesigned the experiment between
45 and 40 training samples, reducing one positive training sample each time; that is, the
numbers of positive training samples were 45, 44, 43, 42, 41, and 40. The other conditions
were not changed. The results are shown in Table 10. When the number of positive training
samples was 42, the ASDINet achieved the best results, with an AP value of 98.83%.
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Table 10. The performance of the ASDINet trained between 45-40 defective images.

Model 45 44 43 42 41 40

ASDINet 98.83 98.83 98.83 98.83 98.65 98.57

In order to ensure the reliability and robustness of the model results, we performed
K-fold cross-validation. This process involved grouping the original data into 10 sets, with
9 sets used for training and the remaining set used for testing. The specific process is
shown in Figure 10. We repeated this process 10 times, each time using a different set for
testing, and then averaged the results to obtain an overall classification accuracy for the
network model. To further increase the reliability and accuracy of the model, we used
random splitting of the dataset for each of the 10-fold cross-validation runs. This helped
to increase the diversity of the dataset division and reduce the risk of bias in the results.
We kept track of the best result for each run and took the average of these 10 results as the
final classification accuracy. Despite our efforts, we acknowledge that there may still be
some level of uncertainty in our results. While we cannot guarantee that the results we
obtained are statistically significant and not by chance, we are confident that our use of
k-fold cross-validation and random dataset splitting helped to minimize these risks and
produce reliable and accurate model results.
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The experimental results are shown in Table 11. Our network still showed good
performance in 10 times 10-fold cross-validation. The average AP of 10 times 10-fold
cross-validation was 98.826%. This showed that the results of our model are reliable
and robust.

Table 11. Results and the average of 10 times 10-fold cross-validation.

Times 1 2 3 4 5 6 7 8 9 10

Accuracy 98.81 98.80 98.84 98.83 98.83 98.81 98.85 98.83 98.83 98.83
Average 98.826

Next, we evaluated the other models. For the other models, the evaluation started with
42 positive training samples, and the number of positive training samples was similarly
reduced each time. The training samples were 42, 35, 30, 25, 20, 15, 10, and 5. The use of
the test set was the same as for the ASDINet. Positive training samples were randomly
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removed—the same number of examples were drawn for all models. The training and
testing procedures used were the same as above. The results are shown in Figure 11.
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training samples.

When trained with only 25 flawed training samples, our proposed ASDINet still
outperformed all other tested models, achieving an AP value of 95.9%. The performance
dropped when using fewer training samples, but the proposed method still achieved
about 86% AP when using only five flawed training samples. For the other models, we
observed a more pronounced performance drop. The other models performed poorly with
fewer training samples. Among them, the performance of ViT and KF-2D-Renyi+ABC-
SVM were most affected by the number of samples. This may have been related to each
model relying on large-scale, finely annotated datasets like most deep learning models.
In addition, the performance of the U-Net also dropped rapidly. However, DeepLab v3+
maintained good results, even with only 15 flawed training samples. However, DeepLabv3+
performed slightly better with 20 and 15 training samples than its results obtained with all
training samples. This showed that DeepLab v3+ was quite sensitive to specific training
samples, and removing such samples helped improve the network’s performance. BiseNet
V2 had poor performance when the number of samples was 20, and when the number
of samples was 5, which may have been related to its insensitivity to specific training
samples. For 10 and 5 flawed training samples, DeepLabv3+ and ViT performed the worst,
with AP values of only 46.6% and 16.8%, respectively. In contrast, U-Net, DANet, and
Swin Transformer were models with relatively stable performance other than our proposed
network (ASDINet), with AP values ranging from about 70% to slightly over 98%. However,
both DANet and Swin Transformer had the problems of high computational cost and poor
real-time performance (see Section 4.8 for details). Therefore, this also proved that it was
the right choice for us to choose U-Net as the base network for our proposed network.

Overall, the experimental results show that the ASDINet also maintained excellent
and stable performance when the number of training samples available was small.

4.7. Image Resolution Test

Image resolution plays a crucial role in deep learning, as it directly impacts the
model’s performance and effectiveness. Therefore, we evaluated the effect of images
with different resolutions on the results. Our network’s architecture was designed to be
input-size independent, similar to fully convolutional networks. Since global averaging



Foods 2023, 12, 1352 22 of 29

and max-pooling are used to eliminate the spatial dimension before the fully connected
layers, the input image can have varying resolutions depending on the problem. In our
discussion, we considered three different image resolutions: 1024 × 1024, 512 × 512, and
256 × 256. Figure 12 reports the parameter quantity, detection time, and AP value at
different resolutions. We conducted our experiments on a single NVIDIA GeForce RTX
3070Ti Laptop GPU. Results showed that when the image resolution was set to 1024× 1024,
the model achieved an impressive AP value of 99.32%. However, this improvement in
accuracy came at a cost, with the parameter count and inference time significantly increasing
to 34.8mio and 117ms, respectively. While the high-resolution images retained more details
and information, they also demanded more computational resources and led to longer
inference times. On the other hand, when the image resolution was lowered to 256 × 256,
the computational cost and inference time decreased, but at the expense of accuracy. The AP
value dropped to 96.57%, indicating a significant decline in performance. Our experiments
showed that the optimal balance between detection accuracy and speed was achieved at an
image resolution of 512 × 512. This setting provided the best overall performance, and we
chose it as the input image resolution for our model, taking into consideration the practical
deployment requirements.
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4.8. Network Computational Cost

The method proposed in this paper outperformed the other methods in terms of
computational cost, and was competitive with the state-of-the-art apple surface defect
detection network. Figure 13 reports the forward pass time relative to the AP. Results
were obtained on a single NVIDIA GeForce RTX 3070 Ti Laptop GPU. The proposed
method proved to be much faster than models of U-Net, DeepLab v3+, DANet, Swin
Transformer, ViT, etc., while maintaining accuracy. This was achieved with a smaller
number of parameters, reflected in the marker size in Figure 13, also shown in Table 12.
The ASDINet achieved this performance using only 16.1 Mio parameters, while U-Net
and DeepLab v3+ had more than twice as many parameters, with 31.6 Mio and 41.5 Mio
parameters, respectively. Although Swin Transformer outperformed the ASDINet, its
parameter volume was more than six times that of that ASDINet, and the detection speed
was much slower than that of our network. The fastest performance was achieved using
BiSeNet, with a detection time of 10ms per image. However, its accuracy was inferior to
that of our proposed network (ASDINet). In contrast, the ASDINet was the model with the
best overall performance, with a detection time of 39 milliseconds per image and an AP
value of 98.83%.



Foods 2023, 12, 1352 23 of 29

Foods 2023, 12, x FOR PEER REVIEW 24 of 30 
 

 

speed was much slower than that of our network. The fastest performance was achieved 
using BiSeNet, with a detection time of 10ms per image. However, its accuracy was infe-
rior to that of our proposed network (ASDINet). In contrast, the ASDINet was the model 
with the best overall performance, with a detection time of 39 milliseconds per image 
and an AP  value of 98.83%. 

 
Figure 13. Detection (forward pass) time with respect to the classification performance for a single 
image. 

Table 12. Comparison with the state-of-the-art methods in the number of learnable parameters 
and average precision. 

Method Number of Parameters  Average Precision (%) 
U-Net 31.1 mio 96.32 

DeepLabv3+ 41.3 mio 97.00 
DANet 63.4 mio 97.11 

BiSeNet V2 15.3 mio 97.92 
Swin Transformer 106.2 mio 99.03 

ViT 117.6 mio 98.75 
KF-2D-Renyi+ABC-SVM 15.6 mio 97.34 

ASDINet 16.7 mio 98.83 

4.9. Testing of Real Applications 
The previous model validation was performed under static conditions. In order to 

test the dynamic detection effect of the model in practical applications, we conducted 
practical application tests. First, we deployed the trained model on JetsonXavierNX, 
used TensorRT to accelerate the reasoning and verification of the model during the deep 
learning process, and realized the edge computing of the network. Then, when 
JetsonXavierNX used an external camera to capture images of apple defects, it obtained 
the image recognition results in a short period through edge computing, sent the recog-
nition results and other information to the server, recorded the data, built a database, 
and completed information visualization on the PC side. Figure 14 shows the system di-
agram of apple defect online detection. After obtaining the detection results of apple sur-
face defects, the computer controlled the manipulator to separate the defective apples 
from the non-defective ones. The schematic diagram is shown in Figure 1. 

85

87.5

90

92.5

95

97.5

100

0 50 100 150 200 250 300 350 400

Av
er

ag
e 

Pr
ec

isi
on

(%
)

Detection time( ms)

DeepLabv3+

ASDINet

U-Net

DANet

BiSeNet V2

Swin Transformer

ViT

KF-2D-Renyi+ABC-SVM

Figure 13. Detection (forward pass) time with respect to the classification performance for a sin-
gle image.

Table 12. Comparison with the state-of-the-art methods in the number of learnable parameters and
average precision.

Method Number of Parameters Average Precision (%)

U-Net 31.1 mio 96.32
DeepLabv3+ 41.3 mio 97.00

DANet 63.4 mio 97.11
BiSeNet V2 15.3 mio 97.92

Swin Transformer 106.2 mio 99.03
ViT 117.6 mio 98.75

KF-2D-Renyi+ABC-SVM 15.6 mio 97.34
ASDINet 16.7 mio 98.83

4.9. Testing of Real Applications

The previous model validation was performed under static conditions. In order to
test the dynamic detection effect of the model in practical applications, we conducted
practical application tests. First, we deployed the trained model on JetsonXavierNX, used
TensorRT to accelerate the reasoning and verification of the model during the deep learning
process, and realized the edge computing of the network. Then, when JetsonXavierNX used
an external camera to capture images of apple defects, it obtained the image recognition
results in a short period through edge computing, sent the recognition results and other
information to the server, recorded the data, built a database, and completed information
visualization on the PC side. Figure 14 shows the system diagram of apple defect online
detection. After obtaining the detection results of apple surface defects, the computer
controlled the manipulator to separate the defective apples from the non-defective ones.
The schematic diagram is shown in Figure 1.

When a defective apple is detected, our cameras can capture images of the defective
apple and issue an alert. Figure 15 shows the comparison of the ASDINet and U-Net for
detecting three typical apple defect images. To test each category, we selected 25 natural
scenes. As shown in Figure 15, the detection accuracies of U-Net and ASDINet were 92%
and 100% in class A, 76% and 96% in class B, and 52% and 80% in class C, respectively.
Figure 15 shows the longest single apple detection times of U-Net and ASDINet in three
cases, A, B, and C.
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The ASDINet performed well in the actual application test, and successfully handled
the three situations shown in Figure 15. The apple defect in Figure 15 A is moderate in
size and is at a 45◦ angle to the camera; the apple defect in Figure 15B is large but light
in color; the apple defect in Figure 15 C is minor. The ASDINet can detect apple surface
defects in all the above cases. These real-world application results demonstrate the superior
performance of the ASDINet in the apple defect detection task.

5. Discussion

Experimental results in Section 4.3 show that each submodule in the ASDINet con-
tributed to the results. However, the above experiments do not explain why the ASDINet
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is better than U-Net. To visually analyze the focus of our model, we used Grad-CAM to
visualize the output of the last convolutional layer of the ASDINet and U-Net. The results
of the Grad-CAM are shown in Figure 16, and the colors on the graph (from blue to red)
indicate the degree of contribution to the results. The more significant the contribution, the
closer the color is to red.
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Clearly, the proposed ASDINet paid close attention to task-relevant semantic regions,
and could correctly predict the presence of defects, including the tiny cracks seen in the
last column. The proposed method was also able to localize defects with excellent accuracy.
The U-Net paid more attention to shallow and salient features, such as gray close to the
color of apple defects, and did not pay attention to minor defects on the surface of apples,
as shown in Figure 16. Compared to the ASDINet, in the U-Net, we observed high-scoring
false positives, and its returned output contained a lot of noise; even with the GDM, it
was impossible to distinguish actual defects from false detections. On the other hand, the
ASDINet not only focused on various types of apple surface defects, but it also activated
the healthy peel around the defects. The results show that the ASDINet can fully use
contextual information and avoid feature confusion between useful semantic information
and redundant information. Our model pays close attention to task-related semantic
regions.

While the ASDINet performed well in static tests, we obtained lower image classi-
fication accuracy and detection speed in real-world tests than in static tests (The results
are shown in Table 13). However, in the actual application test, the images were captured
and dynamically analyzed by the 4-channel apple sorting machine in real-time. Complex
working conditions such as mechanical vibration and sample movement will cause the
detection accuracy and speed to decline to a certain extent. In addition, the hardware
condition of the embedded end will also affect the detection speed. However, compared
with the 90.2% accuracy rate obtained by the apple defect online detection system built
by Zhang et al. [54], the ASDINet proposed in this study is more competitive in terms
of detection accuracy and system construction cost. We achieved an overall detection
accuracy of 96%; we did not need to spend a lot on workforces to manually label and obtain
large-scale datasets, which saves labor costs; we did not need to invest vast sums of money
in machines and equipment. The proposed model can meet the packaging plant’s needs for
the fast, accurate, and economical detection of defective apples.
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Table 13. The average detection time of U-Net and ASDINet in the three cases of A, B, and C.

Defect Category ASDINet U-Net

A 41 ms 199 ms
B 48 ms 253 ms
C 63 ms 418 ms

To become better applied to actual production, we will make the following improve-
ments to the network model and hardware facilities in future research: (1) improve the
detection accuracy and detection speed of the ASDINet; (2) improve the lighting design.
The popularity of Transformer in computer vision tasks allows us to see the possibility
of improving network detection accuracy. Popular Transformer-based image recognition
networks such as Swin Transformer [49] and ViT [50] were also trained and tested based
on the images acquired in this study. However, the calculation speed of these complex
architectures could meet the requirements of the online detection of apple defects. Reduc-
ing the number of model parameters may be one of the ways to improve accuracy while
maintaining detection speed. However, the deployment of Transformer-based models to
the embedded side is still in the exploratory stage. More exploration is needed to realize the
double improvement of ASDINet detection accuracy and speed. In addition to improving
the network model, upgrading hardware facilities is also essential. Good lighting design is
critical for machine vision systems used in food sorting. In previous research and in this
study, the fruit samples were illuminated using a typical lighting technique with the lamp
at a 45◦ angle to the object [55]. However, due to the curvature of the surface of a spherical
fruit such as an apple, this type of lighting can create bright spots on the fruit. Direct
lighting can easily lead to specular reflections; thus, some researchers paint diffuse white
paint on the surface of a custom-made dome or tunnel to maximize reflectivity, thereby
providing even diffuse light for uniform illumination [56,57]. Inspired by this, we will
refine the light source distribution for the light chamber and apply diffuse white paint
to walls in future research. This can improve the detection accuracy of our apple sorting
system to a certain extent.

6. Conclusions

This study designed an apple surface defect detection network (ASDINet), suitable for
less data training from the perspective of specific commercial applications, and conducted
practical application tests. The model was validated on images acquired on a low-cost
computer vision module consisting of a commercial camera, a robotic arm, a rotating stage,
and a homemade LED light. Our network achieved 98.8% AP and a 97.75% F1-score in the
comparison experiment with the most advanced model, and the detection speed reached
39ms per frame, achieving a trade-off between accuracy and ease of deployment. These
results are better than the traditional image processing method, and are more promising.
Loading the ASDINet into the custom software of the fruit sorting system, each category
used 25 independent apples to test its online detection performance; the network achieved
an accuracy rate of 96%, with a processing time of less than 63 milliseconds per apple. In the
data sensitivity experiment, the ASDINet achieved results that met the production needs
under the training of 42 defective pictures. These conclusions indicate that the method
can reduce manual work, reduce labor costs, and increase the flexibility of the production
line when applying this method to new fields. Future research will focus on combining
Transformer with the ASDINet, and combining MSI technology to improve lighting design.
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