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Abstract: Shrimp fried in vegetable oil is a very popular food, so it is important to study the changes
in the quality of the oil during frying. In order to more precisely study the nature of frying oil
during the cooking process, this study investigated the quality changes of high-oleic sunflower
oil during the frying of South American white shrimp (Litopenaeus vannamei). The oxidation and
hydrolysis products of frying oils were investigated by integrating the proton nuclear magnetic
resonance technique with traditional oil evaluation indexes in an integrated manner. The results
showed that the color difference as measured using the ∆E* value increased gradually during the
process. Moreover, the acid value, carbonyl value, and total oxidation significantly increased with
prolonged frying time. The major oxidation products formed during frying were (E,E)-2-alkenals,
(E,E)-2,4-alkadienals, and E,E-conjugated hydroperoxides. This indicated that longer treatment times
corresponded with an increased accumulation of aldehydes and ketones, and an increased degree of
oxidative deterioration of the oil. However, the proportion of oleic acid in the frying oil increased
with the frying of shrimp, reaching 80.05% after 24 h. These results contribute to our understanding
of the oxidative deterioration of high-oleic oils during frying, and provide an important reference for
the application properties of high-oleic oils.

Keywords: high-oleic sunflower oil; frying; Litopenaeus vannamei; 1H NMR; oxidation products

1. Introduction

Frying is a traditional food processing method that can improve the color and taste of
food, give it unique flavors [1], and preserve it for a longer time [2]. However, during the
frying process, the oil undergoes a series of chemical reactions, such as oxidation, hydrolysis,
isomerization, and polymerization, under the influence of factors such as high temperature,
oxygen, and moisture [3]. This leads to a change in color, increase in viscosity, and reduction
in quality, and can even produce substances harmful to humans, including aldehydes, acids,
ketones, alcohols, and others such as trans fatty acids, triglyceride polymers, acrylamide,
and so on [4]. In addition, most commercially produced fried foods are fried in batches
in the same oil without changing the oil frequently. Fried food batch production is more
likely to deteriorate oil into harmful substances [5]. The breakdown products created
during prolonged, high-temperature deep-frying include free fatty acids, glycerol esters,
oxidized glycerol esters, polymerized glycerol esters, and other polar components [6]. Fried
meals absorb the majority of these dangerous compounds, and many aldehydes, such as
secondary oxidation products, are cytotoxic and neurotoxic and can harm the human body.
Alkenes with 4-hydroxy-(E)-2-alkenals and 4-hydroperoxy-(E)-2-alkenals groups generated
via oil oxidation may lead to disorders such as autoimmune diseases, Alzheimer’s disease,
cancer, and cardiovascular disease in humans [7,8].
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High-oleic sunflower oil has good oxidative stability, high-quality fatty acid com-
position [9], and is especially rich in oleic acid, which is an unsaturated fatty acid that
has higher oxidative stability than other unsaturated fatty acids [10]. Oils rich in oleic
acid are more resistant to degradation and produce smaller amounts of toxic aldehydes
than those rich in linoleic and linolenic acids [11]. Furthermore, oils rich in oleic acid
induce oxidative rancidity over their shelf life or decompose slowly during frying [12].
Furthermore, consuming oleic-acid-rich oils has several health benefits, such as decreased
cholesterol level in the blood and reduced cholesterol deposition in blood vessels, and
enhanced high-density lipoprotein level, which can improve cardiovascular health [13].
However, Sayyad et al. [14] discovered that the amount of linoleic acid in high-oleic sun-
flower oil has a significant impact on its frying effectiveness. Therefore, further research
is required to evaluate the frying performance of high-oleic sunflower oil. In this study,
the changes in high-oleic sunflower oil during the frying of South American white shrimp
(Litopenaeus vannamei) were monitored. The oxidation and hydrolysis products of high-oleic
sunflower oil were analyzed using proton nuclear magnetic resonance (1H NMR). Several
conventional physicochemical indicators, such as acid value (AV), carbonyl value (CV),
and total oxidation (TOTOX), were also analyzed. The aim of this study was to investigate
the oxidation process of high-oleic sunflower oil while frying L. vannamei shrimp, which
will contribute to a more comprehensive understanding of the application properties of
high-oleic oil and the effect of shrimp on the quality of frying oil.

2. Materials and Methods
2.1. Materials and Chemicals

L. vannamei shrimp (Huazhong Agricultural University Agricultural Products Market,
Wuhan, China), and high-oleic sunflower oil (Zhongliang Co., Ltd., Beijing, China).

Anhydrous ethyl ether, isopropyl alcohol, potassium hydroxide, chloroform, methanol,
potassium thiocyanate, ferrous chloride, p-anisidine, hydrochloric acid, and glacial acetic
acid were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Isooctane, 2,4-dinitrophenylhydrazine, and phenolphthalein were from Shanghai Macklin
Biochemical Co., Ltd. (Shanghai, China). Deuterated chloroform (CDCl3) was acquired
from Cambridge Isotope Laboratories Inc. (Andover, MA, USA).

2.2. Sample Preparation

L. vannamei shrimp were thawed overnight at 4 ◦C, washed, deshelled, and deveined.
Tails were left and 90% of the back was cut after grading. They were rinsed at 10 ◦C, and
the amount of water used was controlled.

Frying experiments were performed in a DF-6L deep-fryer (Jieguan Co., Ltd., Dong-
guan, China). For the frying trials, two frying pots were used, each with 6 L of high-oleic
sunflower oil. One pot was used for the fried shrimp group, while the other was used
for the control (no shrimp were added and the oil was heated at a constant temperature).
The temperature was controlled using an infrared temperature device (Xima Co., Ltd.,
Zhaoqing, China) and heated to 180 ± 5 ◦C within 10 min. In order to maintain stable
quality and heat transfer efficiency, the solid-to-liquid ratio was adjusted to 1:15 (kg:L); the
details are shown in Table 1. A batch of pretreated shrimp was fried for 2 min every 3 h,
150 mL oil was sampled from both pots before and after each batch, and no fresh oil was
added to the fryer. We used one frying pot to fry three times. The samples were stored at
−80 ◦C for further analysis. The specific frying process is shown in Figure 1.
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Table 1. Solid-to-liquid ratio in the fryer.

Batch Oil Volume (L) Weight of Shrimp (kg)

1 6.0 0.40
2 5.7 0.38
3 5.4 0.36
4 5.1 0.34
5 4.8 0.32
6 4.5 0.30
7 4.2 0.28
8 3.9 0.26
9 3.6 0.24
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Figure 1. Sampling method used for oil samples in frying experiment.

2.3. Determination of Moisture and Fat Content

Moisture and fat content were determined according to AOAC official methods 950.46
and 960.39 [15], respectively.

2.4. Determination of Oil Color

The oil color was determined according to the method described by Bansal et al. [16],
with minor modifications. The colorimetric chromaticity of the samples was determined
quantitatively using an automatic colorimeter (TA Instruments Corp, Newcastle, DE, USA).
The colorimetric spot diameter was 10 mm and a white plate was used as the standard
sample. The measured L*, a*, and b* values indicate the chromaticity of the fried oil
samples, and L0*, a0*, and b0* represent the chromaticity of fresh oil. The ∆E* values were
calculated using the following equation:

∆E∗ =
√
(L∗

0 − L∗)2 + (a∗0 − a∗)2 − (b∗
0 − b∗)2 (1)

where L* is lightness, a* is redness/greenness, b* is yellowness/blueness, and ∆E* is color
difference.

2.5. Determination of Acid Value (AV)

The AV of the oil was determined according to AOCS Official Methods Cd 3d-63 [17],
and expressed as mg KOH g−1.

2.6. Determination of Carbonyl Value (CV)

The CV of the frying oil was determined according to the method described by
Farhoosh et al. [18], with minor modifications. Frying oil (0.05–0.5 g) was dissolved in
10 mL of chromatographically pure isopropanol and 1 mL was taken out and placed in a
15 mL centrifuge tube to which 1 mL of 2,4-dinitrophenylhydrazine reaction solution was
added. The tube was covered and shaken well, and heated in a water bath at 40 ◦C for
30 min, along with a blank test. After the reaction, the mixture was removed and cooled
down to room temperature (25 ◦C) with running water, 8 mL of 2.5% KOH–isopropanol
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solution was added, the mixture was centrifuged at 3000 rpm for 5 min, and the absorbance
of the supernatant was measured at 420 nm.

CV =
0.8291 × (A − A0)× 1000

854 × V2
V1

× m
(2)

where A is the absorbance of the sample, A0 is the absorbance of the blank, V1 is the
total volume after sample dilution, V2 is the volume of the sample dilution used for the
determination, and m is the sample weight.

2.7. Determination of Total Oxidation (TOTOX) Value

The peroxide value (PV) of the oil was determined using the method described by
Shantha et al. [19]. The oil sample (0.1–0.3 g) was dissolved in 10 mL of chloroform–
methanol (7:3) mixture, 50 µL of potassium thiocyanate solution was added and vortexed
for 2–4 s, 50 µL of FeCl2 solution was added and vortexed for 2–4 s, and then the sample
left to react for 5 min at room temperature. The absorbance of the solution was measured
at 500 nm (the measurement operation was completed within 10 min).

The PV was calculated using the following equation:

PV =
(As − Ab)× 41.25

55.84 × m0 × 2
(3)

where As is the absorbance of the sample, Ab is the absorbance of the blank, and m0 is the
weight of the sample.

The p-anisidine values (p-AV) of oils and fats are determined with reference to the
AOCS Official Method Cd 18–90 [20]. The oil sample (0.5–4.0 g) was added to a 25 mL
volumetric flask, dissolved with isooctane, and diluted to scale as an oil solution. The
absorbance of the solution was measured at 350 nm, and isooctane was used as a blank
control and recorded as Ab. The oil solution (5 mL) and p-anisidine reagent (1 mL) were
mixed well to create the test solution. After 10 min, absorbance was measured at 350 nm
and recorded as As.

The p-AV was calculated using the following equation:

p-AV =
25 × (1.2As − Ab)

m
(4)

where As is the absorbance of the test solution that reacts with the p-anisidine reagent, Ab is
the absorbance of the blank control, and m is the weight of the oil sample.

After measuring the PVs and p-AVs, the TOTOX values of the oil samples were
calculated using the following equation [21]:

TOTOX = 2PV + p-AV (5)

2.8. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy

Oil samples from the control and deep-fried shrimp groups were taken for 1H NMR
spectrometry analysis every 6 h during the frying process. The 1H NMR spectra of the
frying oil were recorded according to the method described by Jia [22]. Briefly, 50–100 mg
of the oil sample was dissolved in 0.6–0.7 mL CDCl3 and vortexed for 30 s. The mixture
was then transferred to an NMR tube for further analysis. The measurement conditions
were as follows: 12,335.5 Hz spectral width, 16 scans, 2.656 s acquisition time, and 25 ◦C.

Changes in oleic, linoleic, linolenic, and saturated fatty acids in high-oleic sunflower
oil during the frying of South American white shrimp were determined using 1H NMR.
These were calculated according to the equations described by Guillén et al. [23].
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2.9. Statistical Analysis

All experiments were performed in triplicate, and the data were expressed as mean ±
standard deviation using Origin 9.0 software (OriginLab Corp, Northampton, MA, USA).
1H NMR data were analyzed using MestReNova software. SPSS 23 software (IBM Corp,
Armonk, NY, USA) was used to perform analysis of variance (ANOVA) and Duncan’s test
(p < 0.05).

3. Results and Discussion
3.1. Components of Litopenaeus vannamei

The fat content of the L. vannamei shrimp was 2.80% and the moisture content was
72.88%. The presence of moisture accelerates the oxidation of oil [24]. Additionally, L.
vannamei shrimp contain about 10–40 mg/kg of astaxanthin [25]. Astaxanthin is a substance
with strong antioxidant capacity, which is of great application value in production. It may
migrate into the oil during the frying process, thus retarding the oxidation of the oil [26].

3.2. Effect of Frying Time on the Color of Frying Oil

Chroma is an important physical index of frying oil which can reflect the changes in
oil quality more intuitively [27]. Figure 2 shows the chroma change of high-oleic sunflower
oils with different heating times. With the prolongation of heating time, the L* value of the
frying oil first significantly reduced and then stabilized; this may have been because the oil
gradually deteriorated, transparency decreased, and color gradually changed from light
yellow to dark brown. The L* values of the deep-fried shrimp group were much lower
than those of the control because some fat-soluble substances in the L. vannamei shrimp
migrated into the oil during the frying process, which increased the turbidity and viscosity.
The a* value of the control increased with the extension of heating time, while the a* values
of the deep-fried shrimp group first increased and then decreased. The increase was due
to the Maillard reaction that occurred during the frying process [28], which also led to the
reddening of the oil. The decrease of the a* values in the late stages of frying may have been
because some substances in the shrimp migrated and reacted with the oil. The b* values
of the deep-fried shrimp group first increased and then decreased to stabilization, and
were lower than that of the unheated fresh oil. This indicates that the high-oleic sunflower
oil gradually turned greenish during the frying process. The ∆E* values of the frying oil
showed a trend of increasing and then stabilizing with increasing heating time, and the
rate of increase for the deep-fried shrimp groups was much higher than that of the control,
which may have been due to the decomposition of oil during the high-temperature frying
process to produce carbon-based compounds. The increase in carbon-based compounds
led to a darker color and increased ∆E* values [29].

3.3. Effect of Frying Time on the AV and CV of Oil

As a measure of the degree of hydrolysis and rancidity of oil, AV can represent the
amount of free fatty acids present in an oil [29]; generally, the smaller the AV, the better the
quality of the oil. Figure 3A shows the changes in the AVs of the high-oleic sunflower oil at
different frying times. It can be seen that the AVs of the control were increased significantly
in both before and after frying groups. This may be related to the generation of free fatty
acids through the thermal oxidation and hydrolysis of the frying oils. The longer the frying
time, the higher the degree of oil oxidation and hydrolysis, and the greater the AV [14]. The
AVs of the deep-fried shrimp group were much higher than those of the control because the
water and fat from the L. vannamei shrimp partially migrated into the frying oil, accelerating
hydrolysis and changing the fatty acid composition and saturation of the oil, resulting in a
relative increase in the free fatty acid content, which subsequently led to an increase in the
AV [30,31]. Furthermore, the sampling method of keeping a constant solid-to-liquid ratio
resulted in a significant shift in the ratio of surface area to volume of oil, which could have
been a factor in the increase in the AV of the frying oil.
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The CV refers to the total quantity of fatty acids, glycerides, and the polymers made up
of aldehyde and ketone groups that are produced as a consequence of the decomposition of
peroxides, which give fried foods an unpleasant taste and lower their nutritional value [6].
Figure 3B displays the change in the CV of the high-oleic sunflower oil at various frying
times. It is clear from the results that the CV of the high-oleic sunflower oil increased
significantly with increasing frying time, which may have been caused by the oxidation
of triglyceride molecules with unsaturated bonds to produce hydroperoxides under high-
temperature conditions. Hydroperoxides are unstable and easily decompose at high
temperatures to produce ketones, which increase CV [32].

3.4. Determination of Total Oxidation (TOTOX) Value

Peroxide value (PV) can reflect the degree of an oil’s oxidation and rancidity. As
shown in Figure 4A, the changes in PV of high-oleic sunflower oil at various frying times
showed that all PVs were lower than the PV of unheated fresh oil. The PV of high-oleic
sunflower oil in the control and deep-fried shrimp groups (before and after frying) first
declined and then increased. This might be due to the PV of frying oil having attained a
maximum between 0 and 3 h. After 18 h of frying, the PV stabilized owing to a dynamic
equilibrium between hydroperoxide formation and decomposition [32]. The p-anisidine
value (p-AV) reflects the amount of aldehydes produced during oil oxidation. The lower
the value, the better the oil quality. Figure 4B shows the variation in the p-AV of high-oleic
sunflower oil at different frying times. It can be seen that the p-AVs of the control and
treatment groups increased throughout the whole frying process.
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TOTOX is a general term for the primary (hydroperoxides) and secondary (aldehydes,
ketones, acids, etc.) oxidation products of oil. This may represent the total oxidation of an
oil and provide a more thorough assessment of the degradation degree of the oil [33–35].
The variation in TOTOX of the high-oleic sunflower oil at various frying times is shown
in Figure 4C. It was clear that as the frying time increased, the trends of TOTOX in the
control and deep-frying groups were generally consistent with those of the p-AVs, with all
showing a significant increase followed by a slow increase. After frying for 24 h, the TOTOX
of high-oleic sunflower oil achieved its highest values of 108.65 mEq/kg, 94.58 mEq/kg,
and 90.51 mEq/kg in the control, before frying, and after frying groups, respectively.
Unsaturated fatty acids in oil may spontaneously oxidize at high temperatures to produce
hydroperoxides, which are unstable. The decomposition of hydroperoxides results in the
formation of aldehydes, ketones, acids, and other compounds [36], thus raising the TOTOX.
As the frying time increased, the TOTOX of the deep-fried shrimp group decreased greatly
compared to that of the control. This may have been due to the presence of astaxanthin
(including free astaxanthin, astaxanthin monoester, and astaxanthin diester) in L. vannamei
shrimp, which can efficiently scavenge free radicals [25]. It has also been shown that
astaxanthin has a stronger antioxidant capacity than both β-carotene and vitamin E [37].
In addition, it has been reported that both boiling and steaming contribute to an increase
in astaxanthin levels [38], and it can be inferred that frying also leads to an increase in
astaxanthin. The change could be explained by the astaxanthin in the shrimp partially
migrating to the frying oil during frying, retarding the oxidation of the oil and thereby
reducing TOTOX.

3.5. 1H NMR Study during Deep-Frying

Changes in the high-oleic sunflower oil during frying of L. vannamei shrimp were
evaluated using 1H NMR spectroscopy. Table 2 shows the fatty acid compositions of frying
oil, which were calculated based on the ratio of 1H NMR acyl spectra. It was found that the
high-oleic sunflower oil contained a high proportion of oleic acid. The oleic acid proportion
of fresh high-oleic sunflower oil accounted for 77.42% of the total fatty acids, while the oil
used to fry L. vannamei shrimp reached 80.05% after 24 h, which is in line with the FAO
regulation that the oleic acid proportion of high-oleic sunflower oil should be 75–91% [39].
Furthermore, the amounts of saturated fatty acids and oleic acid increased with longer
frying times in both the control and treatment groups, but the amounts of linoleic acid and
linolenic acid decreased. This may have been due to breaks in the linkages of linoleic and
linolenic acids, which would have changed them into oleic and saturated fatty acids [40].

Table 2. Fatty acid composition of high-oleic sunflower oil during the frying process according to 1H
NMR (%).

Time/h C18:1 C18:2 C18:3 Saturated Fatty Acid

Control

0 77.42 ± 0.23 b 11.8 ± 0.01 a 1.04 ± 0.05 a 9.75 ± 0.18 a

6 77.43 ± 0.02 b 11.4 ± 0.02 a 0.82 ± 0.01 b 10.34 ± 0.02 a

12 77.80 ± 1.79 ab 10.23 ± 0.20 b 1.04 ± 0.08 a 10.94 ± 2.07 a

18 78.97 ± 0.43 a 9.45 ± 0.12 c 1.09 ± 0.15 a 10.49 ± 0.45 a

24 78.67 ± 0.36 ab 8.95 ± 0.56 c 0.98 ± 0.16 a 11.39 ± 0.04 a

Frying

0 75.78 ± 0.08 d 12.22 ± 0.41 a 0.95 ± 0.02 ab 11.06 ± 0.50 a

6 76.97 ± 0.36 c 11.17 ± 0.07 a 0.88 ± 0.03 c 10.98 ± 0.31 a

12 78.57 ± 0.49 b 12.26 ± 2.25 a 0.97 ± 0.05 a 8.20 ± 1.70 b

18 78.84 ± 0.16 b 10.5 ± 0.94 ab 0.9 ± 0.00 bc 9.76 ± 1.10 ab

24 80.05 ± 0.19 a 8.79 ± 0.25 b 0.87 ± 0.03 c 10.29 ± 0.03 a

Note: Different lowercase letters indicated that there were significant differences among the samples prepared
with the same deep-frying treatment and different frying times (p < 0.05).

The first oxidation process occurred during the frying process, producing lipid hy-
droperoxides such as Z,E-conjugated and E,E-conjugated hydroperoxides. E,E-conjugated
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hydroperoxides have chemical shifts between 6.2 and 6.3 ppm, whereas Z,E-conjugated
hydroperoxides have chemical shifts between 6.5 and 6.6 ppm [41]. The 1H NMR spectra
of the control and frying groups during the primary oxidation of high-oleic sunflower oil
are shown in Figure 5A. Their contents were calculated based on the NMR spectra and the
results are shown in Table 3. The concentration of E,E-conjugated hydroperoxides increased
slowly with frying, and no Z,E-conjugated hydroperoxides were generated in the control.
Z,E-conjugated hydroperoxides were generated only after 12 h in the frying group, with no
significant difference in the intensity in the subsequent frying process. This may be because
the trans molecular structure has a higher bond energy and higher threshold of formation
than that of cis molecules [42], so the Z,E-conjugated hydroperoxide content was lower than
the content of E,E-conjugated hydroperoxides. After frying L. vannamei shrimp in high-
oleic sunflower oil, the major oxidation products exhibited an increasing tendency. During
the frying process, lipid hydroperoxides subjected to high temperatures easily enter the
secondary oxidation process, further oxidizing to generate aldehydes, ketones, acids, esters,
and short-chain carbonyl compounds [43], which are in the range of 9.5–9.8 ppm in the
NMR spectrum. It was observed that a bimodal signal was produced by (E)-2-alkenals at
around 9.50 ppm in the generated compounds (Figure 5(Ba)) and a bimodal signal was gen-
erated by (E,E)-2,4-alkadienals at around 9.52 ppm (Figure 5(Bb)). The (E)-2-alkenals and
(E,E)-2,4-alkadienals partially overlapped [44]. In addition, the secondary oxidation pro-
cess produced 4-hydroxy-(E)-2-alkenals (Figure 5(Bd)) and 4-hydroperoxy-(E)-2-alkenals
(Figure 5(Be)), which partially overlapped and therefore co-integrated both compounds
in the NMR integration. Furthermore, there were 4,5-epoxy-(E)-2-enal (Figure 5(Bf)), 4-
oxoalkanes (Figure 5(Bg)), and n-alkanes (Figure 5(Bc)). The contents of the secondary
oxidation products were calculated from their NMR spectra, as shown in Table 3. It can be
seen that the secondary oxidation products showed an increasing trend during frying, while
the deep-fried shrimp group showed a faster increase and accumulated more secondary
oxidation products than the control, possibly because L. vannamei shrimp contain a large
percentage of n-3 LC-PUFA which may be released into the oil, making it more susceptible
to oxidation and increasing oxidation products [45].

Table 3. Oxidation products of high-oleic sunflower oil during the frying process according to 1H
NMR (mmol/mol oil).

Primary Oxidation Products Secondary Oxidation Products

Time/h

E,E-
Conjugated
Hydroperox-

ides

Z,E-
Conjugated
Hydroperox-

ides

(E)-2-
Alkenals

(E,E)-2,4-
Alkadienals n-Alkanals

4-Hydroxy-(E)-2-
alkenals +

4-Hydroperoxy-
(E)-2-alkenals

4,5-Epoxy-(E)-
2-alkenals 4-Oxoalkanals

Control

0 ND ND ND ND ND ND ND ND
6 1.90 ± 0.04 b ND 1.49 ± 0.02 d 1.52 ± 0.12 b 1.28 ± 0.02 d 0.54 ± 0.02 a 0.25 ± 0.01 c ND
12 2.62 ± 0.36 ab ND 3.28 ± 0.08 c 1.98 ± 0.06 a 3.06 ± 0.10 c 0.56 ± 0.01 a 0.25 ± 0.01 c 0.12 ± 0.02 c

18 2.62 ± 0.24 ab ND 5.14 ± 0.06 b 1.96 ± 0.20 a 5.64 ± 0.14 b 0.76 ± 0.03 a 0.60 ± 0.10 b 0.41 ± 0.11 b

24 3.33 ± 0.52 a ND 6.05 ± 0.09 a 1.82 ± 0.12 a 6.77 ± 0.17 a 1.15 ± 0.69 a 0.77 ± 0.05 a 0.74 ± 0.26 a

Frying

0 0.74 ± 0.12 e ND 0.75 ± 0.33 d 0.72 ± 0.19 b 0.47 ± 0.01 e 0.50 ± 0.06 c 0.04 ± 0.03 c ND
6 2.08 ± 0.08 cd ND 2.77 ± 0.04 c 1.46 ± 0.45 a 1.04 ± 0.05 d 1.25 ± 0.12 b 0.23 ± 0.04 a 0.13 ± 0.04 b

12 3.59 ± 0.07 a 0.55 ± 0.11 a 2.93 ± 0.32 c 1.62 ± 0.02 a 3.44 ± 0.37 c 1.32 ± 0.06 b 0.16 ± 0.03 ab 0.14 ± 0.02 b

18 2.46 ± 0.88 bc 0.40 ± 0.10 a 3.51 ± 0.18 b 1.38 ± 0.33 a 4.39 ± 0.03 b 1.47 ± 0.05 a 0.12 ± 0.01 bc 0.19 ± 0.12 b

24 3.41 ± 0.12 ab 0.49 ± 0.01 a 4.97 ± 0.28 a 1.66 ± 0.03 a 5.44 ± 0.31 a 1.24 ± 0.01 b 0.23 ± 0.11 a 0.44 ± 0.13 a

Note: “ND” meant that the substance was not detected. Different lowercase letters indicated that there were
significant differences among the samples prepared with the same deep-frying treatment and different frying
times (p < 0.05).
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During frying, hydrolysis products such as 1,2-DAG, 1,3-DAG, and 1-MAG were also
generated (Figure 5C,D) [46,47]. As shown in Figure 6, the quantities of hydrolysis products
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in the control and deep-fried groups was concentrated in the range of 15–30 mmol/mol
oil and reached their maxima at 6–12 h, indicating that the breakage of ester bonds was
the most intense at this time [48]. It was also discovered that the hydrolysis products were
only minor products of the frying process [49,50]. Furthermore, the majority of the polar
components in the frying oil were formed through the oil’s oxidation and polymerization,
and these polar compounds were more hazardous than those produced via hydrolysis.
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4. Conclusions

The oxidation and hydrolysis processes of high-oleic sunflower oil during frying
of L. vannamei shrimp at 180 ◦C were examined in this study. The results showed that
the chroma ∆E* and a* values of the oil increased and the L* and b* values decreased
after high-temperature heating. The AV, p-AV, CV, and TOTOX of the oil reached their
maxima after continuous frying for 24 h, indicating the accumulation of free fatty acids and
oxidation products during the frying process. 1H NMR provided information on the fatty
acid composition, oxidation, and hydrolysis products of high-oleic sunflower oil. After
being used to fry L. vannamei shrimp for 24 h, the oleic acid proportion of the oil reached
80.5%; however, the amounts of linoleic and linolenic acids declined with the extension
of frying time. Furthermore, the frying process generated large amounts of oxidation
products, primarily Z,E-conjugated hydroperoxides, (E)-2-alkenals, (E,E)-2,4-alkadienals,
n-alkanals, and so on, which accumulated and present potential health risks. These findings
provide a theoretical foundation for further research on the utilization of high-oleic oils in
practical industrial applications.
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