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Abstract: Acid-catalyzed depolymerization is recognized as the most practical method for analyzing
subunit composition and the polymerization degree of proanthocyanidins, involving purification
by removing free flavan-3-ols, as well as acid-catalyzed cleavage and the identification of cleavage
products. However, after the removal of proanthocyanidins with low molecular weights during pu-
rification, the formation of anthocyanidins from the extension subunits accompanying acid-catalyzed
cleavage occurred. Thus, grape seed extract other than purified proanthocyanidins was applied
to acid-catalyzed depolymerization. Hydrophilic interaction chromatography was developed to
quantify free flavan-3-ols in grape seed extract to distinguish them from flavan-3-ols from terminal
subunits of proanthocyanidins. Reverse-phase chromatography was used to analyze anthocyanidins
and cleavage products at 550 and 280 nm, respectively. It is found that the defects of the recognized
method did not influence the results of the subunit composition, but both altered the mean degree of
polymerization. The established method was able to directly analyze proanthocyanidins in grape
seed extract for higher accuracy and speed than the recognized method.

Keywords: proanthocyanidins; anthocyanidin; hydrophilic interaction chromatography; direct
analysis; mean degree of polymerization

1. Introduction

Proanthocyanidins are oligomers or polymers of monomeric flavan-3-ols joined through
interflavan linkages resistant to hydrolytic cleavage, which are considered to be one of
the most abundant phenolic compounds in the plant kingdom, second to lignin. They
are abundant in many plant foods, such as fruits, legumes, seeds, and cereals, as well as
in various drinks, such as fruit juices, wine, tea, and cider [1,2]. Previous research about
proanthocyanidins was scarce because they were recognized by their ability to precipitate
proteins and provide an astringent taste when being ingested from the perspective of food
processing. In previous decades, proanthocyanidins have been studied extensively for
their physiological activities. Epidemiological studies have provided evidence supporting
the beneficial impact of dietary proanthocyanidins in scavenging free radicals and pre-
venting relevant human diseases, such as tumors, obesity, diabetes, inflammation, and
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neurological disorders [3,4]. Interestingly, the close correlation between proanthocyani-
dins and gut microbiota has attracted the attention of scientists. Proanthocyanidins have
been proven to promote the growth of beneficial bacteria and maintain intestinal microe-
cological homeostasis [4]. Therefore, more studies have focused on the mutual effects
between proanthocyanidins and gut microbiota, including how proanthocyanidins change
the composition of bacteria, and which metabolites are produced from their interactions [4].
However, specific physiological activities of proanthocyanidins have not been studied
thoroughly in vivo, due to the complexity of their structures [5,6].

The flavan-3-ol unit at the end of the structure of proanthocyanidins is called the
terminal unit, and the other units are extension units. The structures of proanthocyanidins
are determined by three factors, including linkage type, monomeric subunits, and polymer-
ization degree. Proanthocyanidins are classified as type-A or -B according to interflavanol
linkage. Type-B proanthocyanidins are linked through C4→C6 or C4→C8 bonds, while
type-A are characterized by an additional C2→O7 bond. Type-B proanthocyanidins are the
predominant ones in many types of plants, such as grapes, cocoa, and Chinese bayberry
leaves, while type-A proanthocyanidins mainly exist in limited varieties of plants, such as
cranberries, and black elderberries [7]. Different proanthocyanidins from different plants
have different compositions or linkages of monomers. For instance, proanthocyanidins
from grape seeds consist of (+)-catechin (C) and (−)-epicatechin (EC) mostly through type-B
linkages, while proanthocyanidins from cranberries are composed of C and EC through
type-A linkages [4]. Subunits, including (epi)catechin, (epi)gallocatechin, (epi)afzelechin,
and their gallic acid esters, are all found in nature, and their respective polymer names are
procyanidins, prodelphinidins, and propelargonidins. Among them, (epi)catechin forms
the largest class of proanthocyanidins [7]. Polymerization degree commonly varies between
2 and 11 but can reach up to 50 or even more. Polymerization degree is a key feature which
determines the physicochemical properties and bioavailability of proanthocyanidins [8,9].
Generally speaking, the bioavailability of proanthocyanidin dimers is only 5–10% of that of
their monomers. Trimers and tetramers have lower absorption rates than dimers. Proan-
thocyanidins with a degree of polymerization over 4 (DP > 4) are not absorbable because of
their large molecular size and gut barrier [9].

Chromatography is the most common approach to analyze the structure of proantho-
cyanidins. Gel permeation chromatography, size-exclusion chromatography, and normal-
phase high-performance liquid chromatography are used to analyze intact proanthocyani-
dins, which provides information on their average molecular weight [10,11]. Hydrophilic
interaction chromatography (HILIC) coupled with specific chromatography conditions has
been established to separate proanthocyanidins with (epi)catechin as exclusive subunits
based on their polymerization degree [12]. However, the HILIC method is not feasible to
analyze proanthocyanidins containing subunits except (epi)catechin. To obtain information
on linkage type, subunit composition, and polymerization degree, proanthocyanidins are
purified to remove free flavan-3-ols, followed by acid-catalyzed depolymerization with
nucleophiles [6,13,14]. Under acidic conditions, proanthocyanidins are depolymerized to
release terminal subunits as flavan-3-ols and extension subunits as electrophilic intermedi-
ates, which can be trapped by nucleophiles to produce analyzable adducts. Flavan-3-ols
and analyzable adducts reveal the linkage type and subunit composition of proanthocyani-
dins. Mean degree of polymerization (mDP) is calculated based on moles of terminal and
extension subunits. Acid-catalyzed depolymerization with nucleophiles is advantageously
applied to analyze the structure of proanthocyanidins. However, free flavan-3-ols are found
to keep in purified proanthocyanidins [5,12], which increases the amount of flavan-3-ols
from terminal subunits after acid-catalyzed depolymerization. In fact, electrophilic inter-
mediates can be oxidized into anthocyanidins [15], which may competitively inhibit the
nucleophilic reaction. Thus, acid-catalyzed depolymerization with nucleophiles should be
improved to obtain a more accurate structure of proanthocyanidins.

Grapes are one of the richest sources of phytochemicals among commonly consumed
fruits. The health benefits of the seeds or its extracts, and grape-derived products, such
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as wine, have been attributed to its polyphenolic compounds [16,17]. Grape seed extract
is an outstanding source of polyphenols, mostly proanthocyanidins (approximately 90%)
that can be found in red wine (rather than white wine) but also commercially available
as capsules or tablets at different concentrations [17]. Grape seeds contain an abundance
of proanthocyanidins, which are mostly dimers, trimers, and oligomers of monomeric
catechins [18]. Grape seed proanthocyanidins are one of the earliest proanthocyanidins
studied, because they are easy to obtain and have a mature extraction process. Therefore,
grape seed proanthocyanidins will be used as an example in the present study.

Acid-catalyzed depolymerization, coupled with a HILIC analysis of free flavan-3-ols,
was established to directly analyze proanthocyanidins in grape seed extract without purifi-
cation. We found that proanthocyanidins were violently transformed into anthocyanidins,
along with acid-catalyzed depolymerization with nucleophiles. Anthocyanidins were ana-
lyzed with reverse-phase high-performance liquid chromatography (RPHPLC) to quantify
extended flavan-3-ols transformed into anthocyanidin. The comparison of the recognized
method reported previously and the direct method established in the present study is
shown in Figure 1.
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Figure 1. Scheme of the recognized method reported previously and the direct method established in
the present study for analyzing the structure of proanthocyanidins in grape seed extract.

2. Materials and Methods
2.1. Materials

Analytical standards of cyanidin chloride (≥98.0%), gallic acid (≥98.0%), (epi)catechin
(≥98.0%), (epi)catechin gallate (≥98.0%), (epi)gallocatechin gallate (≥98.0%), and polystyrene
were obtained from Sigma-Aldrich (St. Louis, MO, USA). Methanol, acetic acid, and tetrahy-
drofuran (HPLC grade) were purchased from Thermo Fisher Scientific (Fair Lawn, NJ, USA).
Grape seed extract (proanthocyanidins content: 95.0%) and procyanidin B1 (≥95.0%) were
purchased from Yuanye Biotechnology Co., Ltd. (Shanghai, China). Deionized water was
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prepared by a Millipore water purification system and used throughout the experiments.
All other chemicals used were of analytical grade.

2.2. Purification of Proanthocyanidins from Grape Seed Extract with a Sephadex LH-20 Column

Proanthocyanidins were purified from grape seed extract using Sephadex LH-20 ac-
cording to our previous report with minor modification [19]. The column (300 × 15 mm)
was equilibrated with a methanol/water solution (1:1, v/v) containing 0.1% v/v trifluo-
roacetic acid. Grape seed extract (2.0 g) was dissolved in the mobile phase and loaded
onto the column. The column was first eluted with 3 column volumes of the mobile phase
to remove free flavan-3-ols, and the eluent of free flavan-3-ols was collected. Proantho-
cyanidins were then eluted with 3 column volumes of an acetone/water solution (2:1 v/v)
containing 0.1% v/v trifluoroacetic acid, and the eluent of proanthocyanidins was collected.
Both eluents were concentrated under reduced pressure at 40 ◦C to remove methanol and
acetone, and then lyophilized to dry powder.

2.3. Depolymerization of Proanthocyanidins in the Presence of Excess Phloroglucinol

The depolymerization of proanthocyanidins was carried out as described previ-
ously [6]. Briefly, a solution of 0.1 M HCl in methanol, containing 50 mg/mL phloroglucinol
and 10 mg/mL ascorbic acid, was prepared. Purified proanthocyanidins, or grape seed
extract (5 mg), was added to 1 mL of the solution and depolymerized at 50 ◦C for 20 min.
The reaction solution was immediately applied to an optical absorption analysis as de-
scribed below. Proanthocyanidins in anhydrous methanol were set as a negative control,
while proanthocyanidins in acidified methanol (0.1 M HCl) were set as a positive control.
For HPLC analysis, the reaction was stopped with 5 volumes of 40 mM aqueous sodium
acetate and stored immediately at −20 ◦C for further analysis.

2.4. Optical Absorption Analysis

Optical absorption of the reaction solution with a 10-fold dilution was measured
over a visible band range (400 to 800 nm) using a UV-visible spectrophotometer (UV-2550,
Shimadzu, Japan). Cyanidin in acidified methanol (0.1 M HCl) was also applied to optical
absorption analysis. The length of the light path was 1 cm.

2.5. Analysis of Cleavage Products by RPHPLC-MS

Cleavage products of proanthocyanidins after depolymerization were analyzed by
HPLC using a Waters e2695 HPLC system with a Waters 2489 UV-vis detector. The instru-
ment was fitted with an Eclipse XDB-C18 column (250 mm × 4.6 mm, 5.0 µm; Agilent,
Santa Clara, CA, USA) protected by an XDB-C18 guard column. Mobile phases consisted of
H2O containing 1% acetic acid (Solvent A) and methanol containing 1% acetic acid (Solvent
B). The linear gradient program was as follows: 0–10 min, 5% B; 10–30 min, 5–20% B;
30–55 min, 20–40% B. Detector was set at 280 and 550 nm. Column temperature was set
up to 30 ◦C. Flow rate was 1.0 mL/min. Samples were filtered with a 0.22 µm membrane.
Then, samples (10 µL) were injected into the column.

MS analyses were performed on a Shimadzu 8060NX mass spectrometer. The mass
spectrometer was operated at a positive ion mode with an atmospheric pressure chemical
ionization probe at a temperature of 450 ◦C and a voltage of 4.5 kV. The mass scan range
was 200–1000 amu.

2.6. Analysis of Free Flavan-3-Ols in Grape Seed Extract by HILIC

Grape seed extract was analyzed by HILIC using a Luna HILIC column (250× 4.6 mm,
5 µm; Phenomenex, Torrance, CA, USA). Mobile phases consisted of acetonitrile containing
0.5% acetic acid (A) and water containing 0.5% acetic acid (B). The linear gradient program
was as follows: 0–30 min, 3–13% B. The detector was set at 280 for quantitative purposes,
the column temperature was set up to 30 ◦C, and the flow rate was 0.35 mL/min. The
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samples were filtered with a 0.22 µm syringe filter, and then the samples (10 µL) were
injected into the column.

2.7. Analysis of Free Flavan-3-Ols and Proanthocyanidins Removed from Grape Seed Extract
by HILIC

Free flavan-3-ols and proanthocyanidins removed from grape seed extract were ana-
lyzed by HILIC using a Luna Hilic column (250 × 4.6 mm, 5 µm; Phenomenex). Mobile
phases consisted of acetonitrile containing 0.5% acetic acid (A) and water containing 0.5%
acetic acid (B). The linear gradient program was as follows: 0–5 min, 10–13% B; 5–20 min,
13–80% B. The detector was set at 280 nm, the column temperature was set up to 30 ◦C, and
the flow rate was 1.0 mL/min. The samples were filtered with a 0.22 µm syringe filter, and
then the samples (10 µL) were injected into the column.

2.8. Analysis of Molecular Weight Distribution by Gel Permeation Chromatography (GPC)

Purified proanthocyanidins after acid-catalyzed cleavage in the absence of phloroglu-
cinol and ascorbic acid were dried under reduced pressure at 40 ◦C to remove methanol
and HCl. The sample was applied to an analysis of molecular weight distribution by
GPC according to the reported method. Purified proanthocyanidins were set as a control.
The samples (3.0 mg) were suspended in acetyl bromide/glacial acetic acid (1:9, v/v) for
2 h. The solvent was then removed under reduced pressure. The residues were dissolved
in tetrahydrofuran and filtered over a 0.22 µm syringe filter before injection. GPC anal-
yses were performed with reported method [20] using a Shimadzu system, consisting
of a pumping subunit (LC 20AT), a column oven (CTO-20AC), a diode array detector
(SPD-M20A), a degasser subunit (DGU-20A3), and a controller subunit (CBM-20A). The
Shimadzu LabSolution software package was used for system control. Three GPC columns
(7.5 mm × 30 mm, 5 µm, 10,000, 1000 and 500 Å; Agilent PLgel, Santa Clara, CA, USA)
were connected in a series for the analyses. Polystyrene standards with molecular weight
ranging from 162 × 106 to 5 × 106 g/mol were used to establish calibration.

2.9. Determination of Proanthocyanidins with Butanol-HCl Assay

The contents of proanthocyanidins in grape seed extract and polyphenols removed
by the Sephadex LH-20 column were determined with butanol-HCl assay, as reported
previously [21]. Butanol-HCl reagents were prepared by dissolving 40 mg of ammonium
iron (III) sulfate dodecahydrate in 3.0 mL of water, followed by adding 5.0 mL of 12 M
HCl and 92 mL of n-butanol. Grape seed extract or removed polyphenols were mixed
with 15 mL of butanol-HCl reagent in 25 mL glass tubes sealed with Teflon-lined screw
caps. Aliquots (2 mL) of a nonheated mixture were removed to be read as controls. A
reaction was performed by heating to 70 ◦C for 2.5 h. Their amounts were determined
with a UV-visible spectrophotometer (UV-2550, Shimadzu, Japan) at 550 nm, based on the
calibration established with a set of designated concentrations of procyanidin B1.

2.10. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.0.0 (GraphPad Software,
Boston, MA, USA). Samples were prepared and analyzed in triplicate. Data are shown
as mean ± standard deviation (SD). Multiple comparisons were performed by one-way
analysis of variance (ANOVA) followed by Bonferroni’s post hoc test. p values < 0.05 were
considered statistically significant.

3. Results and Discussion
3.1. Transformation of Proanthocyanidins to Anthocyanidins along with
Acid-Catalyzed Depolymerization

It is known that proanthocyanidins can be hydrolyzed into anthocyanidins in acidified
1-butanol [22]. Temperature, metal ions, and pH have a great influence on the side reaction.
The cleavage of interflavan bonds in proanthocyanidins is mediated by H+ ions to form
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electrophilic intermediates from extension subunits. The electrophilic intermediates un-
dergo structural rearrangement to form anthocyanidins. The formation of anthocyanidins
may occur during acid-catalyzed depolymerization of proanthocyanidins in the pres-
ence of excess nucleophiles, such as phloroglucinol. As shown in Figure 2A, methanolic
solutions of purified proanthocyanidins became red under acidic conditions, whether
phloroglucinol was present or not. Both optical absorption spectra of proanthocyanidins
in acidified methanol exhibited a new maximum at around 550 nm, which was consistent
with the maximum of anthocyanidins. To verify the red product, an HPLC-MS analysis
was performed at 550 nm. As shown in Figure 2B, an obvious peak was detected after
acid-catalyzed degradation in the presence of excess phloroglucinol at 48.29 min, which
was identified as cyanidin, according to the same retention time and m/z 287.3 [M]+ with
cyanidin standard [23,24]. The concentration of cyanidin from extended flavan-3-ols of
proanthocyanidins was 48.4 ± 3.2 µg/mL. Thus, the formation of cyanidin occurred along
with acid-catalyzed depolymerization of proanthocyanidins in the presence of phloroglu-
cinol, which would change the results of the structure analysis related to the extension
subunits. The transformation of proanthocyanidins to anthocyanidins is an autoxidation
mediated by metal-ion impurities in samples containing proanthocyanidins [22,25]. Thus,
the yield of anthocyanidin is critically dependent on the amount of metal ion impurities.
To remedy the negative impact of anthocyanidin on the structure analysis of proantho-
cyanidins, anthocyanidins should be analyzed to obtain complete information on the
extension subunits.
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Figure 2. Acid-catalyzed transformation of proanthocyanidins purified from grape seed extract
into cyanidin. (A) Optical absorption spectra of cyanidin, proanthocyanidins in pure methanol,
and proanthocyanidins after acid catalysis in the presence of excess phloroglucinol or not (insets
are visual images of the methanolic solutions of proanthocyanidins). (B) HPLC chromatograms of
cyanidin standard and proanthocyanidins after acid catalysis in the presence of excess phloroglucinol
at 550 nm (inset is a mass spectrum of the peak detected at 48.29 min after acid catalysis).

3.2. The Effect of Cyanidin Formation on the Molecular Weight Distribution of Proanthocyanidins

Although only a small part of the proanthocyanidins was transformed into cyanidins,
it may influence the structure results of proanthocyanidins, especially mDP, analyzed by
acid-catalyzed depolymerization in the presence of excess phloroglucinol. To verify the
assumption, GPC was used to analyze the molecular weight distributions of the starting
proanthocyanidins and those after acid-catalyzed cleavage in the absence of phloroglucinol
and ascorbic acid. Cyanidin and catechin standards were used to locate anthocyanidins
and terminal subunits. As shown in Figure 3, it is clear that proanthocyanidins after acid-
catalyzed cleavage showed a significantly lower molecular weight distribution than the
starting proanthocyanidins. Apparently, this finding points towards the occurrence of de-
polymerization of proanthocyanidins into cyanidin and terminal flavan-3-ols with the same
molecular weight as catechin. The change in the molecular weight distribution suggested
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that the cyanidin formation would reduce the results of mDP; however, whether it would
influence the results of the subunit composition or not was unclear. Therefore, the effect of
cyanidin formation on the results of subunit composition needs to be studied further.
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3.3. Purification of Proanthocyanidins from Grape Seed Extract

Before acid-catalyzed depolymerization in the presence of excess phloroglucinol, the
purification of proanthocyanidins from different materials was carried out, involving
the extraction of polyphenols and the removal of free flavan-3-ols with low molecular
weight [6,26,27]. However, parts of the free flavan-3-ols were not removed [12]. The
residual flavan-3-ols were considered to be the flavan-3-ols from terminal subunits of
proanthocyanidins, which would influence the results of the structure analysis related
to terminal flavan-3-ols. Whether the proanthocyanidins are removed along with free
flavan-3-ols or not has not been investigated. Here, polyphenols removed from grape seed
extract by a Sephadex LH-20 column were analyzed with HILIC. Since proanthocyanidins
exhibited extremely low solubility in acetonitrile, 10% of water was added to acetonitrile
for full solubilization of the samples. Thus, the elution program started from 10% of water
and 90% of acetonitrile, which would lead to low resolutions between free flavan-3-ols.
Procyanidin B1 was used to mark the initial elution time of proanthocyanidins because it is
the proanthocyanidin with the lowest molecular weight from grape seed extract. As shown
in Figure 4, the free flavan-3-ols and proanthocyanidins were removed from the grape seed
extract during the purification of proanthocyanidins. As determined with butanol-HCl
assay, 6.63% of proanthocyanidins were removed after their purification. The peak of
proanthocyanidins in removed polyphenols appeared earlier than the starting proantho-
cyanidins, which indicated that proanthocyanidins with low molecular weights were apt
to be removed, along with free flavan-3-ols. Thus, the removal of proanthocyanidins led
to the incomplete structure information of proanthocyanidins, which was analyzed by
acid-catalyzed depolymerization. The influence of both the removal of proanthocyani-
dins and the residue of free flavan-3-ols on the structure of proanthocyanidins needs to
be considered.

3.4. Analysis of Flavan-3-Ol Monomers in Grape Seed Extract

As the purification of proanthocyanidins would induce the removal of proanthocyani-
dins from grape seed extract and the residue of free flavan-3-ols, purification should not
be carried out to obtain an accurate structure of proanthocyanidins analyzed with acid-
catalyzed depolymerization. Therefore, free flavan-3-ols in grape seed extract should be an-
alyzed to distinguish them from flavan-3-ols from terminal subunits of proanthocyanidins.
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It is hard to separate free flavan-3-ols with other polyphenols, including proanthocyani-
dins in grape seed extract, with RPHPLC [5,28], which makes the quantification of free
flavan-3-ols inaccurate. Here, HILIC was first used to analyze free flavan-3-ols in grape
seed extract. To separate free flavan-3-ols with high resolutions, the elution program must
start from a low content of water. In the present study, 3% of water and 97% of acetonitrile
was used as an initial elution. Since gallic acid may also be present in grape seed extract, it
was analyzed along with the potential free flavan-3-ols. As shown in Figure 5, it is practical
to separate free flavan-3-ols and gallic acid with resolutions of more than 1.5 (except flavan-
3-ol epimers) using HILIC analysis. The peaks of flavan-3-ol epimers overlapped with each
other due to the same hydrophilicity. As the molar absorption of flavan-3-ol epimers is
exactly the same [6], the amounts of free flavan-3-ols required for structure analysis are
calculable. The grape seed extract contained gallic acid, (epi)catechin, (epi)catechin gallate,
(epi)gallocatechin gallate, and proanthocyanidins. The contents of gallic acid, (epi)catechin,
(epi)catechin gallate, and (epi)gallocatechin gallate in the grape seed extract were 0.32,
42.75, 0.47, and 0.29 mg/g, respectively.
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3.5. Direct Analysis of Proanthocyanidins in Grape Seed Extract in the Presence of
Excess Phloroglucinol

To compare the recognized and direct methods for a structure analysis of proan-
thocyanidins, purified proanthocyanidins and grape seed extract were applied to acid-
catalyzed depolymerization in the presence of excess phloroglucinol, followed by an
analysis with RPHPLC. As shown in Figure 6, adduct products from purified proantho-
cyanidins and grape seed extract were the same, which indicated that both methods were
feasible to analyze the extension subunits of proanthocyanidins. The extension subunits
of proanthocyanidins consisted of catechin, epicatechin, and epicatechin gallate. The
formation of anthocyanidin did not influence the result of the extension subunits. The
concentrations of adduct products from purified proanthocyanidins were higher than those
from grape seed extract due to their higher content of proanthocyanidins than grape seed
extract. Regarding terminal subunits, the two methods obtained different concentrations of
flavan-3-ols. The concentrations of catechin, epicatechin, and epicatechin gallate from puri-
fied proanthocyanidins were obviously lower than those from grape seed extract, which
resulted from the removal of free flavan-3-ols through purification. The concentrations of
catechin, epicatechin, and epicatechin gallate from grape seed extract were 56.9, 46.2, and
34.3 µg/mL, respectively, which were markedly higher than free (epi)catechin (36.4 µg/mL)
and epicatechin gallate (4.1 µg/mL) from grape seed extract. Therefore, the terminal sub-
units of proanthocyanidins comprised catechin, epicatechin, and epicatechin-3-O-gallate,
which was in agreement with the results of the recognized method.
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Figure 6. HPLC chromatograms of cleavage products from purified proanthocyanidins and
grape seed extract following acid-catalysis in the presence of excess phloroglucinol. (1) catechin–
phloroglucinol; (2) epicatechin–phloroglucinol; (3) catechin; (4) epicatechin gallate–phloroglucinol;
(5) epicatechin; and (6) epicatechin gallate.

To obtain an accurate result of mDP with the direct method, free flavan-3-ols in grape
seed extract before acid-catalysis must be considered. The mDP analyzed with the direct
method was calculated on a molar basis as follows:

mDP =
C− ph + EC− ph + ECG− ph

(C + EC + ECG)RPHPLC − (C/EC + ECG)HILIC
+1 (1)

where C, EC, ECG, and ph were catechin, epicatechin, epicatechin gallate, and phlorogluci-
nol, respectively.
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To remedy the negative impact of anthocyanidin formation, mDP should be calculated
on a molar basis as follows:

mDP =
C− ph + EC− ph + ECG− ph + cyanidin

(C + EC + ECG)RPHPLC − (C/EC + ECG)HILIC
+1 (2)

The results of the mDP obtained with the recognized and direct methods, considering
anthocyanidin formation or not, were compared to analyze the effect of proanthocyani-
din purification and anthocyanidin formation on mDP. As shown in Figure 7, the mDP
obtained with the recognized method was significantly higher than the direct method,
which indicated that purification through removal of free flavan-3-ols increased the mDP
of proanthocyanidins. The formation of cyanidin exhibited different effects on the results
of the mDP analyzed with the recognized and direct methods. The formation of cyanidin
significantly decreased the mDP of purified proanthocyanidins, while the mDP of proantho-
cyanidins in grape seed extract showed a highly significant difference. This was consistent
with the results of the molecular weight distribution analysis. Since the yield of cyanidin
is critically dependent on the amount of metal ion impurities [22], parts of metal-ion im-
purities in grape seed extract were removed during the purification of proanthocyanidins,
which led to the formation of less cyanidin. Even so, the formation of cyanidin might
decrease the mDP of proanthocyanidins, depending on the amount of metal ion impurities
in the samples.
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24. Ştefănuţ, M.N.; Căta, A.; Pop, R.; Moşoarcă, C.; Zamfir, A.D. Anthocyanins HPLC-DAD and MS characterization, total phenolics,
and antioxidant activity of some berries extracts. Anal. Lett. 2011, 44, 2843–2855. [CrossRef]

http://doi.org/10.1002/mnfr.200400082
http://www.ncbi.nlm.nih.gov/pubmed/14988456
http://doi.org/10.1016/j.biopha.2019.108999
http://www.ncbi.nlm.nih.gov/pubmed/31146109
http://doi.org/10.1111/1541-4337.12444
http://www.ncbi.nlm.nih.gov/pubmed/33336996
http://doi.org/10.1016/j.chroma.2009.06.071
http://doi.org/10.1021/jf001030o
http://doi.org/10.3945/jn.110.133900
http://doi.org/10.1016/j.chroma.2007.01.004
http://doi.org/10.1016/j.jff.2013.08.004
http://doi.org/10.1016/S0021-9673(99)01038-9
http://doi.org/10.1039/C7GC02009K
http://doi.org/10.1016/j.chroma.2017.03.030
http://doi.org/10.1021/jf9607573
http://doi.org/10.1016/j.foodchem.2018.02.097
http://www.ncbi.nlm.nih.gov/pubmed/29606439
http://doi.org/10.1186/s13007-017-0213-3
http://www.ncbi.nlm.nih.gov/pubmed/28775761
http://doi.org/10.3390/nu6010391
http://doi.org/10.1016/j.canlet.2008.03.049
http://doi.org/10.1021/jf103918v
http://doi.org/10.1021/acssuschemeng.6b00904
http://doi.org/10.1021/jf304158m
http://www.ncbi.nlm.nih.gov/pubmed/23383722
http://doi.org/10.1016/S0031-9422(00)94533-3
http://doi.org/10.1021/jf034596w
http://www.ncbi.nlm.nih.gov/pubmed/14969517
http://doi.org/10.1080/00032719.2011.582550


Foods 2023, 12, 1319 12 of 12

25. Liu, H.; Zou, T.; Gao, J.M.; Gu, L. Depolymerization of cranberry procyanidins using (+)-catechin, (-)-epicatechin, and (-)-
epigallocatechin gallate as chain breakers. Food Chem. 2013, 141, 488–494. [CrossRef]

26. Gong, Y.; Pegg, R.B. Separation of ellagitannin-rich phenolics from US pecans and Chinese hickory nuts using fused-core HPLC
columns and their characterization. J. Agric. Food Chem. 2017, 65, 5810–5820. [CrossRef]

27. Sommella, E.; Pepe, G.; Pagano, F.; Ostacolo, C.; Tenore, G.C.; Russo, M.T.; Novellino, E.; Manfra, M.; Campiglia, P. Detailed
polyphenolic profiling of Annurca apple (M. pumila Miller cv Annurca) by a combination of RP-UHPLC and HILIC, both
hyphenated to IT-TOF mass spectrometry. Food Res. Int. 2015, 76, 466–477. [CrossRef]

28. Montero, L.; Herrero, M.; Prodanov, M.; Ibáñez, E.; Cifuentes, A. Characterization of grape seed procyanidins by comprehensive
two-dimensional hydrophilic interaction× reversed phase liquid chromatography coupled to diode array detection and tandem
mass spectrometry. Anal. Bioana. Chem. 2013, 405, 4627–4638. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.foodchem.2013.03.003
http://doi.org/10.1021/acs.jafc.7b01597
http://doi.org/10.1016/j.foodres.2015.05.044
http://doi.org/10.1007/s00216-012-6567-5

	Introduction 
	Materials and Methods 
	Materials 
	Purification of Proanthocyanidins from Grape Seed Extract with a Sephadex LH-20 Column 
	Depolymerization of Proanthocyanidins in the Presence of Excess Phloroglucinol 
	Optical Absorption Analysis 
	Analysis of Cleavage Products by RPHPLC-MS 
	Analysis of Free Flavan-3-Ols in Grape Seed Extract by HILIC 
	Analysis of Free Flavan-3-Ols and Proanthocyanidins Removed from Grape Seed Extract by HILIC 
	Analysis of Molecular Weight Distribution by Gel Permeation Chromatography (GPC) 
	Determination of Proanthocyanidins with Butanol-HCl Assay 
	Statistical Analysis 

	Results and Discussion 
	Transformation of Proanthocyanidins to Anthocyanidins along with Acid-Catalyzed Depolymerization 
	The Effect of Cyanidin Formation on the Molecular Weight Distribution of Proanthocyanidins 
	Purification of Proanthocyanidins from Grape Seed Extract 
	Analysis of Flavan-3-Ol Monomers in Grape Seed Extract 
	Direct Analysis of Proanthocyanidins in Grape Seed Extract in the Presence of Excess Phloroglucinol 

	References

