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Abstract: Buffalo milk is a dairy product that is considered to have a higher nutritional value
compared to cow’s milk. Linoleic acid (LA) is an essential fatty acid that is important for human
health. This study aimed to investigate and validate the use of Fourier transform mid-infrared
spectroscopy (FT-MIR) for the quantification of the linoleic acid in buffalo milk. Three machine
learning models were used to predict linoleic acid content, and random forest was employed to
select the most important subset of spectra for improved model performance. The validity of the
FT-MIR methods was evaluated in accordance with ICH Q2 (R1) guidelines using the accuracy profile
method, and the precision, the accuracy, and the limit of quantification were determined. The results
showed that Fourier transform infrared spectroscopy is a suitable technique for the analysis of linoleic
acid, with a lower limit of quantification of 0.15 mg/mL milk. Our results showed that FT-MIR
spectroscopy is a viable method for LA concentration analysis.

Keywords: FT-MIR; linoleic acid; machine learning; accuracy profile

1. Introduction

Milk is an important route in humans for nutrient intake, and the fatty acids in milk are
associated with many biological functions in humans [1]. The dietary intake of fatty acids
has an important influence on coronary disease; specifically, saturated fatty acids (SFA)
increase serum cholesterol levels, whereas polyunsaturated fatty acids (PUFAs) reduce the
risk of coronary disease [2]. In addition, studies have shown that the fatty acids in milk are
also related to the technological properties of milk and the processing of dairy products [3].
The composition of milk fat and fatty acid content reflects to a certain extent the health
status of the cow [4].

Linoleic acid (LA) is a type of PUFA that has been shown to have various health bene-
fits, including reducing the risk of chronic diseases and improving insulin sensitivity [5,6].
Milk is an important source of LA, which is considered a potential anticarcinogen and can
be manipulated through dietary management [7]. As the economy continues to develop,
there is a growing demand for milk that is nutritionally valuable. The dairy industry,
therefore, faces two major challenges: (1) aligning the fatty acid composition of milk with
consumer preferences, and (2) finding reliable and precise methods to quantify the FA com-
position of milk [8]. The traditional methods for determining LA content in milk products
are gas chromatography (GC) [9] or gas chromatography–mass spectrometry [10], which
are time-consuming and labor-intensive and often involve the use of harmful chemicals.
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Fourier transform mid-infrared spectrometry (FT-MIR) is a widely utilized ana-
lytical technique that has been demonstrated to be effective in a range of applications
within the dairy industry. Specifically, FT-MIR has been demonstrated to be valuable in
the analysis of antibiotics present in milk [11,12], the quantification of fat and protein
content in milk [13], the prediction of methane emissions [14], and the prevention of early
lactation diseases in cattle [15,16]. FT-MIR has been increasingly used for the analysis of
fatty acids in milk due to its advantages of high throughput in real-time, sensitivity, and
low sample preparation requirements [17].

In recent years, there has been a growing interest in using FT-MIR in combination
with multivariate analysis techniques, such as partial least squares regression (PLSR),
to quantify the PUFA content in milk products. Mid-infrared spectroscopy has been
widely used in the rapid prediction of fatty acids. PLSR is probably the most widely
used technique in spectral analysis. Many researchers have successfully measured the
fat, protein, solid non-fat, and fatty acid content in milk using PLSR regression [18–21].
With the development of computational power and machine learning methods, more and
more multivariate models are used to calibrate the concentration of components in milk.
The principal component regression (PCR) algorithm downscales the original features
using principal components analysis (PCA) and performs linear regression on the reduced
predictor variables, which are the principal components, to predict the target variable.
By utilizing a smaller number of principal components that explain the majority of the
variance in the data with respect to the target variable, PCR is more effective in mitigating
overfitting than linear regression on all original features, particularly for high-dimensional
data such as spectra [22]. In recent studies, artificial neural networks (ANNs) have recently
been investigated in FT-MIR spectroscopic analysis [23,24]. Random forests (RF) employ
an evaluation of the relevance of variables to selectively choose informative variables,
thereby facilitating the construction of models that are both parsimonious and robust, and
ultimately enhancing the predictive power [25,26].

Some recent endeavors employing FT-MIR spectroscopy have explored quantifying
linoleic acid. Beriain et al. [27] predicted the α-linolenic acid and LA in intramuscular fat
by using the ANN algorithm and achieved good forecasted results. In the field of dairy
analysis, Bonfatti et al. [28] successfully developed a milk fatty acid prediction model for
Italian Simmental cattle using MIR with PLSR algorithm on 1040 milk samples. Similarly,
Coppa et al. [21] used GC combined with FT-MIR to develop a fatty acid prediction model
for 250 Holstein milk samples. However, although GC is a useful technique for analyz-
ing monounsaturated fatty acids, its accuracy may be reduced when analyzing complex
mixtures of polyunsaturated fatty acid methyl esters containing trans double bonds, such
as LA and alpha-linolenic acid [29]. In addition, the complexity and cost associated with
GC analysis for large numbers of samples and the need for expert operators are important
factors to consider. Notably, there have been no previous investigations on the prediction
of linoleic acid content in buffalo milk using FT-MIR, and only a limited number of studies
have assessed the accuracy and precision of FT-MIR-based predictions of PUFA [30].

Direct or spectral interference is a common issue in chemical analysis based on spectro-
scopic methods, where the sensor is not perfectly specific for the analyte [31]. Unintended
interference can occur, especially when utilizing PLSR for the compositional analysis of
highly complex samples [32]. It is important to carefully evaluate and control potential
sources of interference in spectroscopic methods to ensure accurate and reliable chemical
analysis. Therefore, the objectives of this study were twofold: (1) to modify the FT-MIR
method by incorporating the standard addition technique and establish a more streamlined
machine learning prediction model for linoleic acid in milk, and (2) to employ a novel
validation strategy to evaluate the accuracy and precision of FT-MIR for the determination
of linoleic acid in milk.
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2. Materials and Methods
2.1. Sampling

Over a 3-month period from April to June 2022, milk samples were collected from
31 buffaloes in Hubei, China. For each sampling day, 50 mL of milk was collected in the
morning and another 50 mL in the afternoon, and then mixed into a single sample to reflect
changes in milk composition throughout the day. In total, 12 L milk samples were collected
and stored at −20 ◦C for further analysis.

2.2. FT-MIR and Preprocessing Method

To process the samples, they were first rapidly thawed in a 40 ◦C water bath and then
centrifuged at 2 ◦C, using a refrigerated centrifuge, at 3000 rpm for 15 min to eliminate
fat [33]. The composition of skimmed milk was analyzed using the MilkoScan FT-6000
(FOSS Analytical A/S, Hillerød, Denmark), which revealed that the fat content of whey
was less than 0.05%.

Linoleic acid (LA) was randomly added to skimmed milk samples in seven different
concentrations (1, 5, 10, 20, 50, 70, 100 mg/100 mL milk). Isopropanol was utilized as
the diluent for the LA [34]. There were 15 samples for each concentration, and a total of
105 samples were used for FT-MIR analysis. MIR spectra were obtained for each sample
using the Milkoscan FT 6000. The acquisition was performed twice, and the results were
subsequently averaged. The MIR spectra were recorded in the region between 926 and
5012 cm−1 and omitted the O–H bending region (1600–1710 cm−1) and the O–H stretching
region (3020–5012 cm−1) due to the high water content in milk [35]. The remaining region
(926 to 1618 cm−1 and 1705 to 3025 cm−1; 524 data points) was selected for analysis [36].

To further process the raw spectra, 7 different preprocessing methods were applied, in-
cluding standard normal variate (SNV), 11-point Savitzky–Golay algorithm (SG),
first derivative + Savitzky–Golay algorithm (SG-1), second derivative + Savitzky–Golay al-
gorithm (SG-2), SNV + Savitzky–Golay algorithm (S-SG), SNV + Savitzky–Golay algorithm
+ first derivative (S-SG-1), and SNV + Savitzky–Golay algorithm + second derivative (S-
SG-2) (Figure 1). The R packages “prospect” (version 0.26) and “baseline” (version 1.3-4)
were utilized for the preprocessing steps.

2.3. Machine Learning Algorithms

In this study, we aimed to determine the optimal quantitative model for the estimation
of linoleic acid in milk using various machine learning techniques. All the machine learning
algorithms utilized the CARET package version 6.0–93 in R program (version 4.2.2 https:
//www.r-project.org/ (accessed on 8 September 2022)) [35].

The FT-MIR data (n = 105) was randomly divided into a training set (80%) and a test
set (20%) for building and validating the models, respectively. The numerical parameters
for each model were entered using the “expand.grid” function and optimized using cross-
validation (CV) statistics. We selected the model with the lowest root mean square error
of cross-validation (RMSECV) from all preprocessing methods. PLSR is a widely utilized
chemometric method in the analysis of spectroscopic data, utilizing latent variables (LV)
to decompose the spectral data into systematic variations that account for the observed
variance [37]. In comparison, the latent variable of PCR is the number of principal com-
ponents and the minimum number of principal components required to explain 95% of
the variance [38]. ANNs represent a nonlinear extension of traditional linear regression
models [39]. While linear regression is limited to modeling linear relationships between
features and targets, ANNs have the capability to model complex nonlinear relationships
through the utilization of hidden layers [40]. Regularization techniques play a crucial role
in preventing overfitting in ANN models, thus improving their accuracy on novel data
sets [41]. In the context of the CARET package, the parameter “size” refers to the number
of units in a hidden layer, and the parameter “decay” represents the regularization strength.
For PLSR and PCR, the maximum number of latent variables was set to 25. The number of
the hidden layer for the ANN was varied from 1 to 5, and the decay values were tested for 0,

https://www.r-project.org/
https://www.r-project.org/
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0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5. The performance of each model was evaluated
using internal 10-fold cross-validation statistics, including RMSECV and coefficients of
determination (R2 cv). The models were then validated by estimating RMSE of prediction
(RMSEP) on the external test set.
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lay algorithm processing; (d) Mid-infrared spectra after first derivative and Savitzky–Golay algo-
rithm processing; (e) Mid-infrared spectra after second derivative and Savitzky–Golay algorithm 
processing; (f) Mid-infrared spectra after SNV and Savitzky–Golay algorithm processing; (g) Mid-
infrared spectra after SNV, Savitzky–Golay algorithm, and first derivative processing; (h) Mid-in-
frared spectra after SNV, second derivative, and Savitzky–Golay algorithm processing. 

2.3. Machine Learning Algorithms 
In this study, we aimed to determine the optimal quantitative model for the estima-

tion of linoleic acid in milk using various machine learning techniques. All the machine 
learning algorithms utilized the CARET package version 6.0–93 in R program (version 
4.2.2 https://www.r-project.org/ (accessed on 8 September, 2022)) [35]. 

The FT-MIR data (n = 105) was randomly divided into a training set (80%) and a test 
set (20%) for building and validating the models, respectively. The numerical parameters 

Figure 1. Mid-infrared spectra after various preprocessing methods. (a) Raw spectra; (b) Mid-infrared
spectra after standard normal variables processing; (c) Mid-infrared spectra after Savitzky–Golay
algorithm processing; (d) Mid-infrared spectra after first derivative and Savitzky–Golay algorithm
processing; (e) Mid-infrared spectra after second derivative and Savitzky–Golay algorithm processing;
(f) Mid-infrared spectra after SNV and Savitzky–Golay algorithm processing; (g) Mid-infrared spectra
after SNV, Savitzky–Golay algorithm, and first derivative processing; (h) Mid-infrared spectra after
SNV, second derivative, and Savitzky–Golay algorithm processing.

Random forests (RF) have been demonstrated to hold promise in the realm of fea-
ture selection [42]. This procedure involves creating a random forest model and then
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performing 1000 iterations. Through the creation of a random forest model and subse-
quent iterations, the importance scores of features were evaluated based on the accuracy of
model predictions of the target variable (LA) after replacing the response variable (spectral
bands). Spectral bands that are more predictive of the outcome will have relatively high
importance scores in each run, while other spectral bands with lower predictivity will
only have randomly importance scores. This process enables the significance of features
to be calculated [43]. In this study, we employed the rfPermute package (version 2.5.1) in
R to perform variable selection using RF. The number of trees utilized in the RF model
was set at 500 [44]. The PLS, PCR, and ANN models were again constructed by selecting
spectral regions with significance levels less than 0.05. These models underwent variable
optimization and performance evaluation in a manner consistent with the methodology
previously described.

2.4. Quality Control for the Method

The developed method underwent validation in accordance with the International
Conference on Harmonization (ICH) Q2 (R1) guidelines. The Limit of Detection (LOD)
was determined by utilizing 10 skimmed milk samples, and calculating the standard
deviation of the matrices. The LOD was determined as three times the standard deviation
of the ten sample [45].

LOD = 3× S0 (1)

S0 is the estimated standard deviation of single results at zero concentration.
In terms of relative bias, recovery, repeatability, intermediate precision, lower limit of

quantification (LLOQ) and upper limit of quantification (ULOQ), the validation protocol
employed a 3 × 5 × 3 (i × k × j) full factorial experiment design [46]. Five different
concentration levels (k) of linoleic acid (5 mg/100 mL, 10 mg/100 mL, 20 mg/100 mL,
50 mg/100 mL and 100 mg/100 mL) were investigated, with each level being conducted in
three replicates (i) on three different days (j), resulting in a total of 45 samples [46].

The trueness of the method was evaluated through the expression of Bias and Recovery.

Bias(%) =
Ȳ−Yr

Yr
× 100 (2)

Recovery(%) =
Ȳ
Yr
× 100 (3)

where Yr is the theoretical value, Ȳ is the average value of a series of measurements.
Precision is evaluated at two levels: repeatability and intermediate precision. This

requires the calculation of the mean square of inter-series (MSB) and intra-series (MSE) [47].
If MSE < MSB, then:

Repeatability : σRe
2 = MSE (4)

Intermediate precision : σIn
2 =

MSB−MSE
n

(5)

Otherwise:

Intermediate precision = Repeatability =
1

mn− 1

m

∑
i=1

n

∑
j=1

(Yij − Ȳ)2 (6)

where Yij is the average of the calculated concentration of the j-th concentration level of the
i-th series; m is the number of days; n is the number of replicates per series.

The current assay acceptance criteria in practice require that at least four out of
six samples have an observed mean at the lower limit of quantitation (LLOQ) within 20% of
the theoretical value (β = 4/6 ≈ 66.7%), and the observed precision to be ≤20% coefficient
of variation [48].
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The accuracy profile based on β-content tolerance intervals is a powerful tool for
method validation and quality control [49]. This ideal acceptance criterion would ensure
that a high proportion (β = 66.7%) of future observations lie within acceptance limits
(±20%), with a high level of confidence (confidence level = 0.9). By calculating the lower
limit (L) and upper limit (U) of the tolerance at a particular concentration, the tolerance of
the measured value of a specified proportion (β) of all samples will be within the interval
[L,U] with the specified confidence level. It can be considered that if the number of observed
values Yn+1 within the tolerance interval [L,U] accounts for more than 0.667 of the total
Yn, and the confidence level is 0.9, then the detection method is valid, and the formula is
shown as follows.

Confidence level = P[P[L ≤ Yn+1 ≥ U/Yn] ≥ β] (7)

For instance, for β = 0.667 and confidence level is 0.9, the β- content tolerance interval
represents a 90% probability (p) that 66.7% of the individual observations of the population
are included in the interval [L,U] [50]. The determination is accepted if the resulting
tolerance limits L and U are completely within acceptance limits (±20%) of the theoretical
value; Otherwise, it’s not.

According to Kulkarni’s approach [51], the tolerance interval [L,U] can be rewritten
into the following form:

[L(%), U(%)] = [bias(%)− χk × RSD(%), bias(%) + χk × RSD(%)] (8)

Where:
RSD(%) =

σIn
Yr
× 100 (9)

χk =
2

√√√√ k× χ2
1;0.667(λ)

χ2
k;0.9(0.1)

(10)

χ2
1;0.667τ is the 66.7th quantile of a noncentral chi-square distribution with the degree of

freedom 1. λ is the noncentrality parameter. χ2
f ′ ;0.9(0.1) is the 90th quantile of a noncentral

chi-square distribution with the degree of freedom k. χk denotes the chi-square distribution
associated with the variable k [50,52].

k =
(R′ + 1)2(

R′ + 1
n

)2
/(m− 1) +

(
1− 1

n

)
/mn

(11)

λ =
nR′ + 1

mn(R′ + 1)
(12)

R′ = MAX
[

0,
1
n

(
MSB/MSE

F0.85(m(n− 1)); (m− 1)
− 1
)]

(13)

F0.85(m(n− 1)); (m− 1) is the 85th percentile value of F distribution with the degree
of freedom m(n−1) and m−1. The concentration at which the tolerance interval is less
than acceptance limits is the limit of quantification. The acceptance limits is typically
set at ±20% [52,53].

The procedure for building an accuracy file can be outlined as follows:

(1) Calculate the β-content tolerance interval at a confidence level of 0.9 for each concen-
tration level using Equations (13) or (8), resulting in a lower and upper limit for the
interval, denoted as [L,U].

(2) Graphically represent the results in a 2D plot, with the concentration level plotted on
the horizontal axis and the tolerance interval limits (L,U) plotted on the vertical axis.

(3) Compare the tolerance interval limits (L,U) with the acceptance limits of −20% to
+20% around the theoretical value. If the tolerance interval falls entirely within
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this acceptance range, the analytical method is deemed valid for the corresponding
concentration level. However, if the tolerance interval exceeds these limits, the method
is not accepted for use at that concentration level.

3. Results and Discussion
3.1. Set Up of the Prediction Models

First, we implemented a 10-fold cross-validation process to avoid overfitting. Cross-
validation has proven to be a good method for model resampling and is widely used for
the mid-infrared prediction of milk composition [54,55]. The performances of the various
methods (PLSR, PCR, and ANN) are summarized in Table 1, with the RMSE and coefficient
of determination (R2). The best model was determined by the smallest RMSE and highest R2.
The RMSECV values for the PLSR, PCR, and ANN models were all found to be below ten. In
our study, the RMSECV values of the training set were always lower than the one observed
for test set, as mentioned by Soyeurt and Grelet [35]. Results showed that RMSECV values
for PLSR, PCR, and ANN were similar, ranging from 5.1 mg/100 mL–7.3 mg/100 mL,
with R2

CV values also globally similar and ranging from 0.96–0.98. This indicates that the
predictive performance of the three models is similar. There were also some differences in
correlation values between predictions on the test set. Higher correlation was observed
between the predictions given by PLSR and PCR(0.98) compared to those given by ANNs.
Our analysis revealed that the PCR method outperformed the PLSR method, with slightly
higher predictive accuracy. This difference in performance may be attributed to the distinct
component extraction processes employed by PCR and PLSR. Specifically, PLSR identifies
regressors from predictors that maximize the covariance with the response variable, while
PCR employs principal component analysis (PCA) to identify the direction of greatest
variability in the predictor variables and project them into a low-dimensional space to form
principal components, which are subsequently used to explain the response variable. The
component extraction step in PCR is capable of identifying superior candidate regression
components by meticulously scrutinizing the covariance structure among the predictor
variables, which may be overlooked by PLSR. Such phenomena have been observed in
previous studies as well [56,57]. It is worth noting that the performance of different methods
depends on the nature of the analyzed data and the data processing methods used. This is
one of the reasons why it is not recommended to use the same milk fatty acid prediction
model across different species.

Table 1. Performance of 10-fold cross-validation and external validation for predicting LA in milk
using 5 different machine learning algorithms 1.

Pre-Processing LV RMSECV RMSECV SD R2
CV RMSEp R2

p

PLSR SG-1 nLV 2 = 20 7.325 0.546 0.958 4.094 0.984
PCR SG Nlv = 17 5.198 0.725 0.980 3.662 0.987

ANN SNV-SG-1 Size 3 = 5
Decay = 0.3

6.274 1.809 0.963 6.426 0.961

1. PLSR = partial least squares regression; PCR = principle component regression; ANN = artificial neural network;
RMSECV = root mean square error in cross-validation; R2cv = cross-validation R2; RMSECV SD = standard
deviation of RMSECV; R2

P = R2 in prediction; RMSEP = RMSE in prediction. 2. nLV = number of latent variables.
3. Size = the number of nodes in the hidden layer; decay = the penalty used for ANN.

3.2. Models Built with the Spectral Regions Selected by RF

Our research on importance measures in random forests has focused on finding data
points where the predictor variables are highly correlated. The application of RF results
in a significant reduction in the number of variables in each model. The number of data
points dropped from 524 before the selection to 135.

RF is widely used to assess the importance of features. Wang et al. [58] employed RF
feature selection to investigate the relative contributions of soil factors, microbial parame-
ters, and climatic factors in altering soil organic carbon levels. Chen et al. [59] used RF to
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evaluate the most significant drivers of soil fungal diversity, including plant communities
and soil physicochemical properties. Similarly, Andreas et al. [60] utilized RF to identify
tillage type as the most important factor affecting dairy cows with Fasciola hepatica, with
higher-ranking variables yielding more accurate predictions than those with lower impor-
tance scores. The variable importance measure can be used by RF to select and order the
spectral regions that are most predictive. Usually, MIR data points are ranked according to
decreasing asymptotic p-values and importance value. The process of changing random
number seeds will result in slightly different results for random forests [61]. Therefore,
the response variable was permuted 1000 times to generate new RF models, and the data
points that were most correlated with linoleic acid and significant at a p-value of less than
0.05 were selected for modeling [62,63]. Most of the selected data points were included in
the spectral subsets 940–1215 cm−1, 1342–1489 cm−1, 2364–2399 cm−1, 2823–2935 cm−1,
and 3715–3846 cm−1 (Figure 2). These regions are highly correlated with fatty acids. The
first region (940–1215 cm−1) is related to the asymmetric vibrations of the C-O-C group
in esters; the second region (1342–1489 cm−1) is characteristic of the C = O ester Fermi
resonance; the third region (1720–1766 cm−1) is characteristic of the stretching vibrations
of the carbonyl group in esters; the fourth region (2350–2357 cm−1) is a synergistic region
associated with fatty acids and has been shown to assist in the prediction of fatty acids
in milk to some extent [30]. The fourth region (2823–2935 cm−1) is characteristic of C-H
stretching absorption [64].
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The validation results for the prediction models built using the wavelengths selected
by RF are presented in Table 2, along with the number of latent variables. The results
indicate that compared to the full spectrum model, the RMSECV value of the RF model is
generally lower. The application of RF resulted in a reduction of the R2

P value by 0.2% in
the ANN mode, while the R2

P value increased by 0.3% in the PCR model. No differences
were observed in the R2

P value of the PLSR model, but the R2
cv value of PLSR increased

by 2.1% after RF feature selection. Thus, the application of RF has produced simpler
models, and the predictive power of these simplified models is comparable to that of full
spectrum models. As mentioned above, the performance of a method is closely related to
the characteristics of the data set, the preprocessing methods, and the relationship between
the predictor and response variables. After using RF to extract the original features, the
performance of the PLS method was slightly better than that of the PCR method.

Table 2. Performance of 10-fold cross-validation and external validation of LA in predicted milk
based on 5 different machine learning algorithms after random forest algorithm variable selection 1.

Pre-Processing LV RMSECV RMSECV SD R2
CV RMSEP R2

P

PLSR SG nLV 2 = 8 4.714 1.188 0.983 4.113 0.984
PCR SG nLV = 14 5.669 0.836 0.976 4.161 0.983

ANN SNV Size 3 = 6
Decay = 0.4

7.616 2.373 0.951 6.566 0.959

1. PLSR = partial least squares regression; PCR = principle component regression; ANN = artificial neural network.
RMSECV = root mean square error in cross-validation; R2cv = cross-validation R2; RMSECV SD = standard
deviation of RMSECV; R2

P = R2 in prediction; RMSEP = RMSE in prediction. 2. nLV = number of latent variables.
3. Size = the number of nodes in the hidden layer; decay = the penalty used for ANN.

In detail, lower RMSEP values were observed between the predictions given by the
PLSR and PCR (4.1) compared with ANNs (6.5). This suggests that nonlinear methods,
such as ANN models, were not suitable, but linear PLSR showed good performance.
Previous research has suggested that FT-MIR predictions with partial least square models
are promising approaches [65,66]. This is in agreement with Soyeurt et al. [35], showing
that PLSR has better predictive performance than ANNs in orange variety classification.
Improving the performance of ANNs requires a large training data set to learn complex data
interactions by tuning its hyperparameters, such as size and decay, in this study [67]. In
addition, epochs, activation function, and learning rate all affect the predicting capabilities
of the ANN. From our results, the ANN does not seem to perform well when the training
population is small. The RMSE values for the other four linear models are smaller than
those with the ANN, which also suggests that the complex nonlinear relationship between
the predictors and target traits is limited [68,69]. It was evident from the values of R2

and RMSE that, even though all three models (PLSR, PCR, and SVR) fitted well to the
experimental design, PLSR offered better predictive and approximation accuracy. The best
predictive performance was achieved by the PLSR with the mean R2

P value of 0.984 and a
RMSEp value of 4.113 mg/100 mL.

We observed a higher predictive ability for linoleic acid content compared with previ-
ous studies on FT-MIR predictions, which obtained R2 values ranging from 0.43–0.89 [30].
This improvement could be attributed to the expression of fatty acid content estimated in
g/100 mL milk, which is more accurate than g/100 g FA [21,70]. Additionally, the utiliza-
tion of the standard addition method, which is commonly used in the method validation of
other analytical methods such as GC, was instrumental in avoiding interference from other
fatty acids [34]. To the best of our knowledge, it was the first time that the RF method was
used on FT-MIR data to select salient features. Although this method appears promising,
further studies will be needed to fully understand its limitations.
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3.3. MIR Method Validation

The method detection limit for LA was determined using FT-MIR spectroscopy
according to the ICH Q2 (R1). The LOD was found to be 3.42 mg/100 mL based on
the standard deviation of the blank sample signals (n = 10). The FT-MIR method was
validated towards recovery, repeatability, intermediate precision, range, and accuracy for
the quantification of LA according to the ICH Q2 (R1). The acceptable limits were set at
±20% for the IR method [53,71].

The trueness represents the closeness of the average to the true value, and precision
is the closeness among a series of measurements [72]. The uncertainty is a dispersion of
measured values from the expected value [73]. The total uncertainty includes the random
error and the systematic error.

Table 3 illustrates that the results for LA at 20, 50, and 100 mg/100 mL concentration
levels have good relative bias and recovery, with relative bias ranging from −0.56% to
2.15% and recovery ranging from 99.44% to 102.47%. The repeatability and intermediate
precision of LA at 10 mg/100 mL and 20 mg/100 mL concentrations were 1.89% and
2.07% respectively. The repeatability and inter-assay precision of LA at 50 mg/100 mL
were 8.34% and 9.46% respectively, while the repeatability and inter-assay precision of LA
at 100 mg/100 mL were 11.76% and 13.61%, respectively. In our results, the intermediate
precision is worse than the repeatability, which means that there is an effect of day-to-day
variability on the spectral data at these concentration levels [74].

Table 3. Trueness, precision, and accuracy results for each concentration level in the validation data 1.

Trueness Precision Accuracy

Level (mg/100 mL)
Mean

Calculated
Concentration 2

(mg/100 mL)

Relative
Bias
(%)

Recovery
(%)

Repeatability
(%)

Intermediate
Precision (%)

Relative β-Expectation
Tolerance Limits (%) 3

β-Expectation
Tolerance Limits

(mg/100 mL) 4

5 6.52 ± 1.72 30.4 130.4 3.89 8.21 [−59.18, 119.99] [2.04, 10.99]
10 10.67 ± 1.29 6.7 106.7 1.89 1.89 [−14.8, 28.21] [8.51, 12.82]
20 20.43 ± 1.35 2.15 102.15 2.07 2.07 [−9.11, 13.41] [18.17, 22.68]
50 49.72 ± 2.85 0.56 99.44 8.34 9.46 [−10.17, 9.07] [44.91, 54.53]
100 102.02 ± 3.42 2.63 102.63 11.76 13.61 [−10.24, 14.96] [96.05, 108.66]

1. The validation criteria are based on the ICH guide to the validation of analytical methods. 2. Mean ± SD. 3. The
β-CTI (%) is the relative β-content tolerance interval. 4. Abs β-CTI is the absolute β-content tolerance interval.

The accuracy of LA at 20 mg/100 mL (−9.11, 13.41), 50 mg/100 mL (−10.17, 9.07), and
100 mg/100 mL (−10.24, 14.96) concentration were found to be within the acceptable range
of −20 to 20%. The accuracy of 5 mg and 10 mg/100 mL level were outside the acceptance
limits. This suggests that systematic and random errors increase as the concentration
level decreases [46].

As shown in Figure 3a, the relationship between the predicted concentrations and the
true concentrations was evaluated by the linear equation: y = 1.013x + 0.4959 with R2 of
0.9948. The slope and R2 values of the linear equation demonstrate the good agreement
between the MIR predictions and the theoretical values.

The accuracy profile is a pictorial tool that is widely used for the quality control of
medicines [75]. LLOQ and ULOQ are the lowest and highest concentration levels where
the β-tolerance expectation limits are included within the acceptable limits. In our study,
the LLOQ value was 15.54 mg/100 mL, and the ULOQ value was 100 mg/100 mL.

In this study the acceptable limit was set at ±20%, and in the other literature the
acceptable limit has been set at ±5% to ±30% [50,75,76]. It is a widely recognized stan-
dard in the field of bioanalytical methods that pre-study acceptance criteria mandate that
the observed mean should be within ±15% of the theoretical value, and the precision’s
coefficient of variation should not exceed 15% [50]. The levels of linoleic acid in buffalo
milk measured using gas chromatography ranged from 51 mg/100 mL to 85.4 mg/100 mL,
which is in between our quantitative ranges [8,77]. Our results show that the MIR method
within the quantitative interval fully meets the above criteria.
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4. Conclusions

The objective of this study was to assess the efficacy of three machine learning models
in quantifying the levels of linoleic acid (LA) in raw milk and to theoretically determine the
upper and lower bounds of LA quantification. These models included partial least squares
(PLSR), principal component regression (PCR), and artificial neural networks (ANNs).
The study applied random forest feature selection to the models in order to improve the
model performance and reduce complexity. The results of calibration and cross-validation
analyses showed that the random forest partial least squares (RF-PLSR) model had the
best performance among the three models, with low error values and high regression
coefficients. The accuracy profile of the model was further validated using accuracy files,
and it was demonstrated that Fourier transform mid-infrared (FT-MIR) could reliably
quantify LA levels in the range of 15.54 mg/100 mL to 100 mg/100 mL. In conclusion,
the results of this study highlight the potential of FT-MIR as a tool for rapid and reliable
identification of LA content in milk. Further research efforts are recommended to develop
comprehensive spectral databases for the robust assessment and reliable identification of a
wider range of fatty acid concentrations. This will aid in the expansion of FT-MIR in the
dairy industry and other relevant fields.
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