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Abstract: Spectroscopic techniques as untargeted methods have great potential in food authenti-
cation studies, and the evaluation of spectroscopic data with chemometric methods can provide
accurate predictions of adulteration even for hard-to-identify cases such as the mixing of vinegar
with adulterants having a very similar chemical nature. In this study, we aimed to compare the
performances of three spectroscopic methods (fluorescence, UV–visible, mid-infrared) in the detection
of acetic-acid/apple-vinegar and spirit-vinegar/apple-vinegar mixtures (1–50%). Data obtained with
the three spectroscopic techniques were used in the generation of classification models with partial
least square discriminant analysis (PLS-DA) and orthogonal partial least square discriminant analysis
(OPLS-DA) to differentiate authentic and mixed samples. An improved classification approach was
used in choosing the best models through a number of calibration and validation sets. Only the
mid-infrared data provided robust and accurate classification models with a high classification rate
(up to 96%), sensitivity (1) and specificity (up to 0.96) for the differentiation of the adulterated samples
from authentic apple vinegars. Therefore, it was concluded that mid-infrared spectroscopy is a useful
tool for the rapid authentication of apple vinegars and it is essential to test classification models with
different datasets to obtain a robust model.

Keywords: vinegar; adulteration; UV–visible spectroscopy; infrared spectroscopy; fluorescence
spectroscopy; chemometrics; spirit vinegar; acetic acid; partial least square discriminant analysis

1. Introduction

Vinegar is a product which can be produced from various raw materials, mostly
belonging to plant origins, with sugar as the substrate using a double fermentation process
(ethanol fermentation and acetification). Vinegar can be classified with respect to its raw
materials or production systems. Common types, considering the raw materials used,
include wine, fruit, spirit/white (produced from diluted ethanol), cereal, malt, honey and
whey vinegars, and they are most commonly produced through either surface culture
(traditional) or submerged culture methods. Compositions of vinegars vary with respect
to the raw materials from which they are produced. The major constituent is acetic acid;
however, they also have various organic acids including citric, formic, lactic, malic and
succinic acids, alcohols, sugars (glucose and fructose), amino acids, volatile compounds and
phenolic compounds. The presence of phenolic compounds such as gallic acid, catechin,
vanillic acid, syringic acid, caffeic acid and volatiles including ethyl heptanoate, ethyl
furoate, ethyl benzoate and sotolon have been determined in vinegars [1]. Regulations
about vinegars generally involve the amounts of acetic acid and ethanol in the product,
which can vary slightly from country to country. The Food and Drug Administration (FDA)
of the USA specifies the level of acetic acid as 4 g/100 mL, while the levels of acetic acid and
ethanol are 50 g/L and less than 0.5% in the Codex, respectively. The European Union set a
minimum of 5% (w/v) acidity and a maximum of 0.5% (v/v) ethanol levels for vinegars.
While some countries allow the mixing of vinegar with acetic acid, others do not [1].
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A projected compound annual growth rate of approximately 1.6% is expected between
2021–2026 for the vinegar market [2]. The increase in the global demand for vinegar
is a result not only of its increased use in the food industry but also of its expanding
applications in the cleaning, healthcare and agricultural industries. Besides its antimicrobial
and antioxidant properties, another factor causing the consumer interest in vinegars is
studies that have uncovered the positive health effects of this product [3,4]. Different
claims such as weight loss, laxative effects and blood glucose lowering effects for type-2
diabetes patients, some of which require further confirmation studies, have also been
made, particularly for apple vinegar [5]. However, this increased interest has also resulted
in a rise in different types of fraud practices surrounding this product. Food fraud is
described as ‘any deliberate action of businesses or individuals to deceive others in regards
to the integrity of food to gain undue advantage’, and it is stated that this definition
includes ‘adulteration, substitution, dilution, tampering, simulation, counterfeiting, and
misrepresentation’ in addition to others [6]. The rising demand of consumers for good-
quality, safe and healthy foods goes in parallel with the increase in the sophisticated ways
that fraudsters misrepresent/adulterate these food products. Chemically similar and
cheaper replacements of products can be very challenging to detect; therefore, there is
always a need for alternative methods to determine different types of food fraud.

Variations in raw materials, production methods and regulations regarding the defini-
tion of the product along with the levels of acetic acid and ethanol add up to difficulties
in adulteration detection for vinegars. Various adulterants are mixed with authentic vine-
gars to obtain economic profit. Adulteration can be achieved by adding chemical acetic
acid, spirit vinegar, coloring compounds such as caramel and by mixing different types of
vinegars. The false labeling of regular vinegars as high-priced vinegars with a protected-
designation-of-origin status (PDO) or mixing PDO vinegars with adulterants is also an
authenticity problem. Besides the economic effects of mixing, the addition of acetic acid
can have particularly negative consequences, since it contains more heavy metals [1].

The targeted and untargeted methods available for the detection of vinegar adulter-
ation have been summarized in several reviews in the literature [7,8]. Targeted methods
such as chromatographic measurements focus on specific compounds such as a particular
organic acid, a pigment or a phenolic compound [9,10]. Although valuable information can
be obtained from the analysis of products using this type of approach, it also has disadvan-
tages, as the used methods require time-consuming steps of sample pre-treatments that
mostly involve the use of chemicals. On the other hand, untargeted methods, depending
on their working principle, provide data originating from the many compounds in the
analyzed product. Spectroscopic techniques, used mostly as untargeted methods, have
the advantages of being rapid and generating relatively less waste, and they produce
fingerprints of the analyzed samples. They are also very suitable for use as sensors [11–13].
Since spectroscopic techniques produce a large number of variables, multivariate statistical
analysis tools are commonly used to evaluate these data. These chemometric methods
can be used in classifying samples or for the prediction of chemical properties. Various
spectroscopic methods have been investigated for the authentication of vinegars in the
literature. Near-infrared (NIR) spectroscopy has been used in the classification of vinegars
with regard to their production methods, and vinegars produced with the submerged and
Orleans methods have been successfully differentiated [14]. The separation of balsamic
and traditional balsamic vinegars of Modena with respect to their ages was achieved
through the evaluation of nuclear magnetic resonance (NMR) spectroscopic data with
chemometric methods, partial least square discriminant analysis (PLS-DA) and naive Bayes
approaches [15]. Various studies about vinegar authentication have also been focused
on the discrimination of vinegars according to their origin, and spectroscopic methods
including NIR, mid-infrared (mid-IR), fluorescence, UV–visible and NMR spectroscopies
have been applied for this purpose [16–21]. UV–visible and fluorescence spectral data were
evaluated with principal component analysis (PCA) and parallel factor analysis (PARAFAC)
in the discrimination of vinegars with respect to the country of production [21]. Spanish
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PDO vinegars, “Vinagre de Jerez” and “Vinagre Condado de Huelva”, were characterized
with mid-IR spectroscopy, and the data were analyzed with PCA [16]. The performances of
several spectroscopic methods, namely mid-IR spectroscopy, NIR spectroscopy, excitation–
emission multidimensional fluorescence spectroscopy and 1H nuclear magnetic resonance
(1H-NMR) spectroscopy, were compared in the classification of Spanish PDO vinegars,
namely Vinagre de Jerez, Vinagre de Condado de Huelva and Vinagre de Montilla-Moriles,
and the data were treated with data fusion techniques [20].

Spectroscopic methods were also used in differentiating mixtures of vinegars and, as
an example, detection of the adulteration of sherry vinegars with molasses, rice, cider and
wine vinegars was investigated with laser diode fluorescence spectroscopy in conjunction
with chaotic algorithms [22]. Excitation–emission fluorescence spectroscopy, on the other
hand, was used in differentiating authentic Shanxi aged vinegars from this vinegar mixed
with acetic acid in combination with chemometric methods, and a 100% discrimination was
achieved [23]. Although there have been many studies focusing on the different aspects
of vinegar authentication, the number of studies on the detection of spirit vinegar and
synthetic acetic acid is limited. In an earlier study, mid-IR and UV–visible spectroscopies
were used to detect the adulteration of grape vinegars with spirit vinegar and acetic acid,
and both techniques in combination with PLS-DA and orthogonal PLS-DA (OPLS-DA) were
found to be successful in identifying adulterated grape vinegars [24]. The current study
compared three spectroscopic techniques (UV–visible, fluorescence and mid-infrared) for
their potential in the authentication of apple vinegars considering two adulterants. There
are a limited number of studies regarding the mixing of vinegars with spirit vinegar and
acetic acid, and the detection of these adulterants poses a challenge due to their similar
chemical nature to vinegar. More studies are required to investigate the effect of the type
of vinegar on the performances of various spectroscopic techniques in combination with
chemometric methods so that suitable analytical and chemometric methods can be chosen
for adulteration detection.

This study was designed to test and compare the potentials of various spectroscopic
methods, namely UV–visible, fluorescence and mid-infrared, in conjunction with chemo-
metric methods for detecting mixtures of apple vinegars with spirit vinegar and synthetic
acetic acid.

2. Materials and Methods
2.1. Vinegar Samples and Adulteration

Seventeen authentic apple vinegars were supplied by eleven trusted producers. Two
batches were obtained from each of two producers and five batches were obtained from
one producer while the other producers supplied one batch. Two adulterated sample sets
were prepared: apple-vinegar/spirit-vinegar and apple-vinegar/acetic-acid mixtures. Each
set had adulterant levels of 1, 5, 10, 20, 30, 40 and 50% (v/v). Glacial acetic acid used as an
adulterant was diluted to a typical vinegar acetic acid level of 4% (v/v) before mixing with
the vinegars. Eight apple vinegars were randomly chosen among seventeen vinegars to
mix with two spirit vinegars and acetic acid separately, and one hundred and eighty-five
adulterated samples were prepared.

2.2. Measurement of Quality Parameters

pH and Brix values of the authentic vinegars were determined with a pH meter (WTW,
Weilheim, Germany) and a digital refractometer (Isolab, Wertheim, Germany), respectively.
Total acidity expressed as a volumetric percentage was measured via titration analysis
using sodium hydroxide [25]. A microscale Folin–Ciocalteu spectrophotometric assay was
used in the measurement of the total phenolic content in terms of mg gallic acid/L of the
authentic vinegars [26]. The total phenolic contents of the authentic apple vinegars were
determined using a 5-point gallic acid standard curve.
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2.3. Fluorescence Spectroscopy

Spectra of authentic and adulterated samples were collected with a fluorescence
spectrophotometer (Thermo Scientific Varioskan, Fisher Scientific, Vantaa, Finland) at
320–800 nm with 1 nm intervals. Excitation wavelengths were 320, 330, 340 and 350 nm [27].
The best results were obtained at 320 nm. The slit width was 5 nm. Samples were diluted
5 times, and the spectra of 200 µL samples in a black 96-well flat bottom polystyrene plate
(Isolab, Wertheim, Germany) were collected. Two spectra from each sample were averaged.

2.4. UV–Visible Spectroscopy

A total of 200 µL from all the samples diluted 5× with distilled water in 96-well
flat bottom polystyrene plates (Isolab, Wertheim, Germany) was scanned in 200–550 nm
range with a UV–vis spectrophotometer (Thermo Scientific Multiskan GO Microplate
Spectrophotometer, Fisher Scientific, Vantaa, Finland). The average of two spectra for each
sample was used in the statistical analyses.

2.5. Fourier Transform Infrared Spectroscopy

Mid-IR spectra of the samples were obtained with a Fourier transform infrared (FTIR)
spectrophotometer with a horizontal ZnSe ATR accessory and a deuterated triglycine
sulfate (DTGS) detector (Spectrum 100, Perkin Elmer, Waltham, MA, USA). The spectra
were collected in 4000–800 cm−1 range with 128 scans and a 4 cm−1 resolution against an
air spectrum. Two measurements were taken for each sample, and they were averaged.

2.6. Statistical Analysis

One of the unsupervised techniques, principal component analysis (PCA), was per-
formed as a preliminary analysis. A discrimination trend between the authentic and
adulterated samples in the scatter plot of the first and second principal components was
observed; therefore, it was decided to continue with a higher-level multivariate analysis.
Differentiation of the authentic and adulterated apple vinegars was conducted with two
supervised chemometric methods, namely partial least square discriminant analysis (PLS-
DA) and orthogonal partial least square discriminant analysis (OPLS-DA). PLS-DA and
OPLS-DA are supervised multivariate classification techniques, and they convert data to
a lower dimension through linear transformation. The authentic samples were defined
as one class, and all the adulterated samples were assigned to another class. The raw
and transformed data from the 3 spectroscopic techniques were used in the chemometric
model building. Along with intensity values at different emission wavelengths for flu-
orescence spectroscopy, the absorption values of the samples at different wavenumbers
and wavelengths for the mid-IR and UV–vis spectroscopy, respectively, were individually
collected in column-wise vectors. After the collection of the data, individual observations
were combined in a row-wise matrix prior to the multivariate analysis. The following data
transformations were applied: first (FD), second (SD) and third (TD) derivatives, square,
standard normal variate (SNV), multiplicative scatter correction (MSC) and Savitzky–Golay
(SG). In addition, the following combinations of these transformations were also used: FD
+ SNV, FD + MSC, SD + SNV, SD + MSC, TD + MSC and TD + MSC. Every feature in the
collected and transposed dataset was normalized using the scaling of 0–1, which is called
a min-max normalization. Models were created using the ‘ropls package’ (Version 3.12)
in the R programming language [28]. Two-thirds of the data were used for building the
calibration models, while the external validation was conducted with the rest of the data.
The samples were assigned to the calibration and validation sets using stratified random
sampling [29]. The goodness of the classification models was evaluated using the number
of latent variables (LV), R2 values for calibration (R2

cal) and validation (R2
val), root mean

square of error (RMSE), sensitivity, specificity, correct classification rates for calibration
and validation. Definitions of correct classification rates, sensitivity and specificity are
provided in the literature [30]. Sensitivity was measured as the ratio of the true number of
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correctly identified apple vinegars to all the samples identified as apple vinegar and was
calculated using:

Sensitivity =
TP

TP + FN
where TP and FN are samples identified as true positive and false negative, respectively.

On the other hand, dividing the number of correctly identified adulterated samples to
all the samples identified as adulterated provided the specificity:

Speci f icity =
TN

TN + FP

where TN and FP are samples identified as true negative and false positive, respectively.
The correct classification rate was calculated by dividing the number of correctly

determined samples to all the samples, and it was determined for both the calibration and
validation sets as follows:

Correct classi f ication rate =
TP + TN

Total number o f samples
× 100

3. Results and Discussion

Various properties of the authentic apple vinegars are shown in Table 1. The authentic
vinegar samples had pH and Brix ranges of 2.74–2.99 and 0.6–5.3, respectively. The total
acidity of these samples varied between 4.08 and 5.49%. The vinegars had total phenolic
contents of 163.15–547.40 mg gallic acid/L. These measurements were in agreement with
the values given in the literature [31].

Table 1. Various properties of authentic apple vinegar samples.

Number of Samples pH Range Brix Range Total Phenolic Content Range (mg Gallic Acid/L)

17 2.74–2.99 0.6–5.3 163.15–547.40

3.1. Spectroscopic Profiles

The authentic apple vinegars had strong double absorption peaks in 280–300 nm
range of the UV–visible spectra (Figure 1a), and these peaks were associated with phenolic
compounds, as reported in the literature [32,33]. The authentic vinegars had a wide
absorption range in the UV–visible range, which was most probably due to their varying
phenolic compositions, and this was confirmed by the measured total phenolic contents of
the authentic apple vinegars, which were in the range of 163.15–547.4 mg gallic acid/L. The
UV–visible, fluorescence and mid-IR spectra of an example set of adulterated spirit vinegar
and acetic acid vs. authentic vinegars are shown in Figure 2. In general, the absorbance of
the adulterated samples in 280–400 nm range decreased with increasing adulteration ratio
due to the dilution of phenolic compounds with an adulterant (Figure 2a,b). This decrease
was more obvious in the spirit-vinegar-adulterated samples, while the dilution effect
was visible at around 20% for the acetic-acid-mixed samples for this particular sample
set. Spirit vinegar is produced from bio-resources through fermentation, while acetic
acid is a synthetic product without any ingredients from biological sources. Therefore,
these differences in the adulterated sample spectra can be related with the sources of
the adulterants.



Foods 2023, 12, 1139 6 of 13
Foods 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 1. (a) UV–visible, (b) fluorescence and (c) mid-IR spectra of all authentic apple vinegars used 
in this study. 

Figure 1. (a) UV–visible, (b) fluorescence and (c) mid-IR spectra of all authentic apple vinegars used
in this study.



Foods 2023, 12, 1139 7 of 13Foods 2023, 12, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. UV–visible spectra of (a) spirit-vinegar-added and (b) acetic-acid-added samples; fluores-
cence spectra of (c) spirit-vinegar-added and (d) acetic-acid-added samples; and mid-IR spectra of 
(e) spirit-vinegar-added and (f) acetic-acid-added samples vs. authentic apple vinegars for a sample 
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Figure 2. UV–visible spectra of (a) spirit-vinegar-added and (b) acetic-acid-added samples; fluores-
cence spectra of (c) spirit-vinegar-added and (d) acetic-acid-added samples; and mid-IR spectra of (e)
spirit-vinegar-added and (f) acetic-acid-added samples vs. authentic apple vinegars for a sample set.

For the authentic apple vinegars, a wide variation in intensity was also observed in
their fluorescence spectra (Figure 1b). The spectra could be characterized by strong intensity
peaks in 300–600 nm region. Phenolic compounds are designated as having fluorescent
properties, and this range corresponds to the intensity due to these compounds [23,34].
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The peak at around 470–500 nm was attributed to brown pigments, which can be produced
by acetic acid bacteria [27]. As was observed in the UV–visible spectra, the fluorescence
spectra of the authentic vinegar vs. the spirit vinegar adulterated apple vinegar and the
authentic vinegar vs. acetic acid adulterated apple vinegar sample sets indicated a dilution
effect but at higher concentrations compared to the UV–visible spectra (Figure 2c,d).

The mid-IR spectra were collected in 4000–800 cm−1 region; however, it is gener-
ally hard to see major differences if the full spectra are shown. Therefore, part of the
spectra corresponding to 1500–800 cm−1 region are presented for all the authentic apple
vinegars in Figure 1c. The mid-IR spectra of the adulterated and authentic samples had
significant differences, especially in 1500–1000 cm−1 region (Figure 2e,f). The peaks in the
1400–1350 cm−1 region were attributed to –OH stretching of alcohol and organic acids [24],
and the adulterated samples had a higher absorption in this region, as was expected.
However, the absorption intensity decreased with respect to the ratio for the adulterated
samples in 1150–1000 cm−1 region where absorption took place due to compounds such
as sugars and phenolic compounds, and this decrease in the absorption intensity was also
attributed to the addition of adulterants. Differences in the spectra obtained by these three
spectroscopic methods were also evaluated by chemometric methods, which can reveal
even small changes in the spectra that are not very visible, and this is especially useful for
spectroscopic methods with large number of variables, as is the case in mid-IR spectroscopy.

3.2. Chemometric Analyses

A set of randomly chosen vinegars were adulterated with spirit vinegar and diluted
acetic acid (4%) separately. The adulterated set contained both apple-vinegar/spirit-vinegar
and apple-vinegar/acetic-acid mixtures, and PLS-DA and OPLS-DA chemometric models
were constructed to differentiate the authentic apple vinegars from the mixtures. Separate
models were not created for each adulterant since the nature of the adulterant would not
be known in a more realistic scenario. Therefore, two classes were created as the authentic
and adulterated sets. The whole collected spectral ranges of all the spectroscopic methods
were used in the chemometric analyses.

An improved approach was used in deciding on the best classification models (Figure 3).
Both raw and transformed data, as indicated in Section 2.6, were used in generating the
PLS-DA and OPLS-DA models. This procedure was repeated three times, and each time a
new randomly chosen data set for calibration and validation was used. For each trial, the
statistical performance parameters (LV, R2

cal, R2
val, RMSE, sensitivity, specificity, correct

classification rates for calibration and validation) of the models were determined. The
models which provided good and robust results for all the trials were designated as our
final models. The purpose of this approach was to eliminate the effect of the samples in the
model building. Therefore, the chosen robust models had high R2 values for the calibration
and validation models, high correct classification rates for classification and validation sets,
high sensitivity and specificity values and a low RMSE value regardless of the sample.

Furthermore, the models improved significantly when the samples with a 1% adulter-
ation level were eliminated from the sample set. Since this is a very low level of mixing
for the economic gain of fraudsters, the 1% samples were taken out from the sample set,
and the models were constructed with the samples with higher adulteration levels. After
the removal of the 1%-adulterated samples, the models were built with 107 samples and
validated with 52 samples.

The only good model, which was built with the fluorescence spectra and had correct
classification rates of 90% for calibration, 92% for validation, a sensitivity of 1 and a
specificity of 0.92, belonged to the PLS-DA analysis of the MSC-transformed data (Table 2).
As can be seen from Table 2, the sensitivity and specificity values were unacceptable for the
second and the third sample sets. It was concluded that this transformation and any other
transformations of the fluorescence spectra did not result in any good classification model
for the differentiation of the authentic and adulterated vinegars when different calibration
and validation sets were used in the second and the third runs. The same type of results



Foods 2023, 12, 1139 9 of 13

was also obtained with the UV–visible spectral data. Although there were models with high
correct classification rates for the validation models for the first sample set, similar results
were not obtained in the second and the third runs with different sample sets. For example,
the OPLS-DA model after SNV transformation of the data with a correct classification rate
of 93% for calibration, a correct classification rate of 92% for validation, a sensitivity of 0.67
and a specificity of 0.94 was the best model (Table 2). However, this model with different
sample sets did not result in any good specificity value, although these models had high
correct classification rates. Therefore, it was concluded that the robustness of classification
models had to be decided not only with the correct classification rates but also with the
sensitivity and specificity values and that the models had to be checked with different
sample sets.
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Table 2. Statistical measures of models generated using UV–visible and fluorescence spectroscopic
data with three different data sets.

Statistical Measures *

LV R2
cal R2

val RMSE Sensitivity Specificity CCcal% CCval%

MSC-transformed
fluorescence data

with PLS-DA

First sample set 3 0.96 0.11 0.303 1 0.92 90 92
Second sample set 7 0.97 0.87 0.119 0.2 0.91 100 85
Third sample set 4 0.96 0.43 0.243 NaN 0.9 94 90

SNV-transformed
UV–visible data
with OPLS-DA

First sample set 1 + 7 0.98 0.47 0.241 0.67 0.94 93 92
Second sample set 1 + 7 0.99 0.46 0.243 0 0.9 93 88
Third sample set 1 + 7 0.99 0.44 0.247 NaN 0.9 93 90

* LV: number of latent variables; RMSE: root mean square of error; CCcal%: correct classification rate for calibration;
CCval%: correct classification rate for validation, NaN: cannot be calculated.
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The same type of approach was also used for evaluating the mid-IR data. Six chemo-
metric models constructed with the FTIR data resulted in robust models: the PLS-DA and
OPLS-DA models of the raw data, the square-transformed data and the SG-transformed
data. Table 3 shows the statistical measures related with the performance of these models
for three different sets of samples. For each sample set, these models had a high sensitivity
and specificity as well as high correct classification rates for calibration and validation.
These models had very close performance parameters when they were created with dif-
ferent sample sets. For example, the OPLS-DA model generated with raw data had the
same sensitivity value of 1 and specificity values of 0.92, 0.94 and 0.94 for each sample
set. Both the PLS-DA and OPLS-DA models produced very similar results in terms of the
performances of the models. As an example, the PLS-DA and OPLS-DA models of the
SG-treated mid-IR data had the same sensitivity (1), specificity (0.92) and correct classifi-
cation rate for validation (92%) with the first and the second sample sets (sensitivity: 1,
specificity: 0.96, correct classification rate: 96%) (Table 3). All six models shown in Table 3
were quite satisfactory and could be used successfully in detecting the adulteration of
apple vinegar with acetic acid and spirit vinegar. Score plots of the OPLS-DA model of
the SG-transformed mid-IR data for three different sample sets are given in Figure 4. As
can be seen from this figure, the authentic and adulterated samples could be accurately
differentiated from each other with respect to the first LV regardless of the sample set. In
addition, this study indicates the importance of constructing classification models with
different sample sets so that a more robust and accurate model can be obtained. In addition,
not only the correct classification rates but also the sensitivity and specificity values have
to be considered in evaluating models.

Table 3. Statistical measures of models generated using mid-IR data with three different data sets.

Statistical Measures *

LV R2
cal R2

val RMSE Sensitivity Specificity CCcal% CCval%

PLS-DA

Raw First sample set 8 0.99 0.77 0.159 1 0.92 99 92
Second sample set 10 0.99 0.85 0.128 1 0.94 100 94
Third sample set 10 0.99 0.86 0.125 1 0.94 100 94

Square First sample set 10 0.99 0.85 0.13 1 0.94 100 94
Second sample set 10 0.99 0.84 0.135 1 0.94 99 94
Third sample set 10 0.99 0.83 0.139 1 0.94 99 94

Savitzky–Golay
First sample set 8 0.99 0.75 0.165 1 0.92 99 92

Second sample set 10 0.99 0.83 0.138 1 0.96 100 96
Third sample set 10 0.99 0.84 0.134 1 0.94 100 94

OPLS-DA

Raw First sample set 1 + 8 0.99 0.84 0.133 1 0.92 99 92
Second sample set 1 + 9 0.99 0.85 0.128 1 0.94 100 94
Third sample set 1 + 9 0.99 0.86 0.125 1 0.96 100 96

Square First sample set 1 + 8 0.99 0.81 0.143 1 0.94 100 94
Second sample set 1 + 8 0.99 0.78 0.157 1 0.94 99 94
Third sample set 1 + 7 0.00 0.83 0.139 1 0.96 99 96

Savitzky–Golay
First sample set 1 + 8 0.99 0.82 0.14 1 0.92 99 92

Second sample set 1 + 9 0.99 0.83 0.138 1 0.96 100 96
Third sample set 1 + 5 0.99 0.84 0.134 1 0.92 95 92

* LV: number of latent variables; RMSE: root mean square of error; CCcal%: correct classification rate for calibration;
CCval%: correct classification rate for validation.

Most studies about vinegar authentication using spectroscopic techniques have fo-
cused on differentiation with respect to the source or type of vinegar [15–21]. However,
studies which investigated the determination of the mixing of different types of adulterants
with vinegar also exist in the literature. An electronic nose system was used in detecting
the addition of acetic acid and spirit vinegar to apple vinegar in conjunction with the use
of PCA and an artificial neural network (ANN), and correct classification rates of 93.3%
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for acetic acid and 94.7% for synthetic vinegar were determined for the ANN models [35].
Laser diode fluorescence spectroscopy data were evaluated with various intelligent chaotic
algorithms to detect the presence of molasses, rice, cider and white wine vinegars in sherry
vinegar; as a result, relative errors in predicting the adulterant concentration as low as
1.4% were obtained [22]. One study which investigated the determination of glacial acetic
acid in Shanxi aged vinegars used excitation–emission matrix fluorescence spectroscopy
data in combination with various chemometric approaches, and a model with a correct
classification rate of 84.2%, a sensitivity of 0.83 and a specificity of 0.85 was obtained [20].
Since the adulterated product was a special type and was aged, the larger compositional
differences between the authentic and adulterated samples could be the reason for the
better success rate in that study compared to our case. In another study, in which the
detection of spirit-vinegar- and acetic-acid-adulterated grape vinegars were studied using
UV–visible and FTIR spectroscopy, the models created with UV–visible data had a correct
classification rate of 95.2%, a sensitivity of 0.857 and a specificity of 0.964, and the FTIR
data resulted in a model with 96.7% correct classification rate, a sensitivity of 0.857 and a
specificity of 0.982 [24]. The same success was not obtained for apple vinegar adulteration
with spirit and acetic acid using UV–visible spectroscopy in the current study. This could
be related to the pigment composition of the apple vinegars. The authentic apple vinegars
used in this study had a wide phenolic content range, and this was also reflected in the
UV–visible spectra of the authentic vinegars (Figure 1a) and hence in the models generated
using these spectra. In addition, the type of phenolic compounds present in apple and
grape vinegars are different. Since UV–visible spectroscopy measurements are based on
absorption due to colored compounds, the types and amounts of these compounds could
be associated with the difference in the success of UV–visible spectroscopic data in the
detection of adulteration of apple and grape vinegars. However, the evaluation of the FTIR
spectral data resulted in a very good differentiation of apple vinegar adulteration, and the
results of this study are comparable with the results of a previous study done using grape
vinegar [24]. While fluorescence and UV–visible spectroscopic measurements are based on
the detection of fluorescent and colored compounds, respectively, FTIR spectral data can
provide more compositional information of all the organic constituents of analyzed sam-
ples, and this could be the reason for the more satisfactory performance of this technique,
regardless of the vinegar type.
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4. Conclusions

The mixing of spirit vinegar and acetic acid with apple vinegar was investigated with
UV–visible, fluorescence and mid-IR spectroscopy in combination with chemometric tools.
Classification models used to separate the authentic and adulterated samples were created
with testing models with three different data sets, and it was concluded that this step is
important in choosing robust and accurate classification models. The performance of only
the mid-IR spectroscopy was considered as successful in determining the presence of spirit
vinegar and acetic acid in the apple vinegar, and models were able to determine adulteration
with at least a correct classification rate of 92%, a sensitivity of 1 and a specificity of 0.92.
Therefore, mid-IR spectroscopy in combination with a chemometric classification system
can be used as a rapid analysis technique in determining the adulteration of apple vinegars.
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33. Włodarska, K.; Piasecki, P.; Lobo-Prieto, A.; Pawlak-Lemańska, K.; Górecki, T.; Sikorska, E. Rapid screening of apple juice quality
using ultraviolet, visible, and near infrared spectroscopy and chemometrics: A comparative study. Microchem. J. 2021, 164, 106051.
[CrossRef]

34. Rodriguez-Delgado, M.A.; Malovana, S.; Perez, J.P.; Borges, T.; Montelongo, F.G. Separation of phenolic compounds by high-
performance liquid chromatography with absorbance and fluorimetric detection. J. Chromatogr. A 2001, 912, 249–257. [CrossRef]

35. Mirzaee, E.; Rahmanpour, M.; Mostafaei, M. Detecting the adulteration in apple vinegar using olfactory machine coupled PCA
and ANN methods. Agric. Eng. Int. 2022, 24, 164–173.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.foodcont.2017.02.065
http://doi.org/10.1016/j.foodchem.2017.02.118
http://www.ncbi.nlm.nih.gov/pubmed/28407890
http://doi.org/10.1016/j.foodcont.2018.01.031
http://doi.org/10.1016/j.chemolab.2019.06.001
http://doi.org/10.1016/j.talanta.2019.01.100
http://doi.org/10.1016/j.foodchem.2020.126791
http://doi.org/10.1016/j.foodcont.2019.106860
http://doi.org/10.1007/s12161-019-01586-5
http://doi.org/10.1016/j.foodchem.2022.132150
http://www.ncbi.nlm.nih.gov/pubmed/35065489
https://www.oiv.int/public/medias/2697/oeno-52-2000.pdf
https://www.oiv.int/public/medias/2697/oeno-52-2000.pdf
http://doi.org/10.1016/j.lwt.2015.03.003
http://doi.org/10.1016/j.talanta.2011.11.014
http://www.ncbi.nlm.nih.gov/pubmed/22265526
http://doi.org/10.1021/acs.jproteome.5b00354
http://doi.org/10.1016/j.foodchem.2016.07.140
http://doi.org/10.3390/antiox8040078
http://www.ncbi.nlm.nih.gov/pubmed/30934715
http://doi.org/10.1016/j.foodchem.2012.11.020
http://doi.org/10.1016/j.microc.2021.106051
http://doi.org/10.1016/S0021-9673(01)00598-2

	Introduction 
	Materials and Methods 
	Vinegar Samples and Adulteration 
	Measurement of Quality Parameters 
	Fluorescence Spectroscopy 
	UV–Visible Spectroscopy 
	Fourier Transform Infrared Spectroscopy 
	Statistical Analysis 

	Results and Discussion 
	Spectroscopic Profiles 
	Chemometric Analyses 

	Conclusions 
	References

