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Abstract: In this study, Tartary buckwheat starch was modified to different degrees of substitution
(DS) with octenyl succinate anhydride (OS-TBS) in order to explore its potential for stabilizing
Pickering nanoemulsions. OS-TBS was prepared by reacting Tartary buckwheat starch with 3, 5 or
7% (w/v) octenyl succinate in an alkaline aqueous solution at pH 8.5. Fourier-transform infrared
spectroscopy gave peaks at 1726 cm−1 (C=O) and 1573 cm−1 (RCOO−), indicating the formation
of OS-TBS. We further studied the physicochemical properties of the modified starch as well as
its emulsification capacity. As the DS with octenyl succinate anhydride increased, the amylose
content and gelatinization temperature of the OS-TBS decreased, while its solubility increased. In
contrast to the original Tartary buckwheat starch, OS-TBS showed higher surface hydrophobicity,
and its particles were more uniform in size and its emulsification stability was better. Higher DS
with octenyl succinate led to better emulsification. OS-TBS efficiently stabilized O/W Pickering
nanoemulsions and the average particle size of the emulsion was maintained at 300–400 nm for
nanodroplets. Taken together, these results suggest that OS-TBS might serve as an excellent stabilizer
for nanoscale Pickering emulsions. This study may suggest and expand the use of Tartary buckwheat
starch in nanoscale Pickering emulsions in various industrial processes.

Keywords: Tartary buckwheat starch; octenyl succinic anhydride; degrees of substitution;
physicochemical property; emulsification stability

1. Introduction

Tartary buckwheat (Fagopyrum tataricum, (L.) Gaertn.) is a traditional edible and
medicinal pseudo-cereal enriched with beneficial phytochemicals, including flavonoids,
phenolics, steroids, fagopyrins, and d-chiro-inositol [1]. As a coarse cereal, starch constitutes
about 70% of the mass of Tartary buckwheat seeds [2]. Tartary buckwheat is traditionally
used to make noodles, breads, sakis and biscuits. Due to its high content of flavonoids
and protein, Tartary buckwheat has become an important ingredient in the processing of
functional foods in recent years. As a result, Tartary buckwheat has been extensively used
in the food industry for the extraction of proteins or flavonoids, leaving Tartary buckwheat
starch (TBS) as a by-product [3]. At present, large quantities of TBS are currently discarded
or used as animal feed because of its untapped industrial value.

TBS has unique physicochemical properties, including a small granule diameter (al-
most 3–14 µm) [3], low starch solubility, high peak viscosity, strong hot and cold paste
stability, low sensitization and low glycemic index [4]. The smaller granule size allows
it to be used as for particle-based stabilization of emulsion, giving it a very wide range
of potential applications in the food, pharmaceutical, cosmetic and other industries [5].
However, the surface properties and microstructure of native TBS particles may partially
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limit their application in certain areas. In order to improve the physicochemical properties
of TBS, attempts have been made to modify it by physical and chemical methods such as
repeated retrogradation, plasma treatment and the addition of polyphenols to reduce the
digestibility or increase light transmission, swelling power and solubility of TBS [6–8].

Octenyl succinic anhydride (OSA)-modified starches, approved for food use by the
US Food and Drug Administration in 1972, have been prepared from oat, quinoa, sago,
maize, and wheat [9–11] and widely applied as a food emulsifier [12]. We hypothesized
that it might be possible to improve the emulsifying properties of TBS by conjugating it
with OSA. In other types of starch, the abundant OH groups along the starch backbone
have been esterified with hydrophobic octenyl succinate to give rise to anionic starch
containing COO [13], leading to better hydrophilicity and lipophilicity and therefore a
higher emulsifying ability [14]. As a result of these advantages, OSA-modified starches from
a variety of sources are being investigated for the stabilization of Pickering emulsions [15].
OSA-modified starch can contribute to Pickering emulsions containing bioactive substances
such as lutein, β-carotene, curcumin, and resveratrol [16–18]. However, in almost all of
these applications the starch-particle-stabilized droplets were limited to micrometric sizes.
Numerous studies have demonstrated that reducing the size of dispersions to nanometric
sizes can improve the stability and rheology of emulsions [19,20]. Therefore, it could
be expected that the construction of Pickering nanoemulsions would be able to improve
their efficacy and stability. Unfortunately, few studies have successfully demonstrated the
preparation of Pickering nanoemulsions with droplet sizes below 500 nm [21].

The improvement of the surface properties of the starch granules and the choice of
the appropriate physical treatment technique are essential for the formation of Pickering
nanoemulsions. High-pressure homogenization (HPH) is a non-thermal physical process
for reducing the particle size of a sample (emulsion or suspension) from the micron range
to the nanometer range by using shear, impact and cavitation effects at high pressure [22].
Due to its high production efficiency and stability, HPH has been widely used to produce
emulsions [23], nanosuspensions [24], liposomes [25], etc. However, few studies have
focused on the application of HPH to produce Pickering nanoemulsions.

Therefore, we investigated the potential of OSA-modified TBS (hereafter, “OS-TBS”) as
a stabilizer for Pickering nanoemulsions. In particular, we focused on the effect of the mod-
ification on the physicochemical properties of the starch granules and on the formulation
and process of nanoemulsion preparation. The size, chain length, viscosities and thermal
characteristics of starch influence their emulsifying characteristics [26,27]. Thus, in this
study, OS-TBS with different degrees of substitution were prepared by modification with
OSA, and then the morphology, physicochemical properties and emulsifying properties
of the resulting formulations were systematically studied. The novelty of this study is
the development of an OSA-modified small solid particle stabilizer based on TBS. Based
on this, a new method for the preparation of nanoscale Pickering emulsions using HPH
techniques was developed. This research will provide new information for future research
and applications in starch modification.

2. Materials and Methods
2.1. Materials

Tartary buckwheat was obtained from the Key Laboratory of Coarse Cereal Processing
at the Ministry of Agriculture and Rural Affairs at Chengdu University (Chengdu, China);
2-octenyl succinate anhydride (OSA, 95% pure), from Shanghai Maclean Biochemical
(Shanghai, China); as well as amylose standard (96% pure) and amylopectin standard
(87.2% pure), from Beijing Northern Weiye Institute of Metrology and Technology (Beijing,
China); medium-chain triglycerides from Shanghai Yuanye Bio-Technology (Shanghai,
China). All other chemicals in this study were analytical grade and purchased from
Chengdu Kelong Chemical Company (Chengdu, China).
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2.2. Isolation of TBS

TBS was isolated as described [3] with slight modifications. Briefly, Tartary buckwheat
seeds were hulled, rinsed, crushed through a 100-mesh sieve, then sonicated in 80% ethanol
at a ratio of 1:20 (w/v) for 30 min at 50 ◦C and 500 W in order to remove flavonoids and
lipids. The precipitate was soaked for 24 h at room temperature in 0.3% NaOH solution at
a ratio of 1:10 (w/v), then passed through gauze in order to further remove crude fibers
and other impurities. The resulting starch slurry was centrifuged for 10 min at 4000 rpm;
the supernatant and upper brown layer were discarded, and the remaining white layer
was washed again with 0.3% NaOH. Centrifugation and washing with 0.3% NaOH were
repeated three times. The final precipitate was dispersed in distilled water, neutralized to
pH 7.0 by addition of 0.1 M HCl, washed with distilled water and centrifuged repeatedly
until the supernatant was clear without brown layers and it formed a firm, stable white
precipitate at the bottom of the tube. Finally, the precipitate was dried at 40 ◦C for 48 h,
ground into a powder and passed through a 100-mesh sieve to eliminate agglomeration.
The resulting starch was stored in a polyethylene bag at room temperature for later use.

2.3. Preparation of OS-TBS

OS-TBS was prepared using a method based on a previous report [28,29]. TBS powder
(30%, w/v) was dispersed in distilled water with continuous stirring. OSA was diluted
with anhydrous ethanol and dropped slowly into the TBS dispersion within 2 h while
temperature was maintained at 35 ◦C. The pH of the starch slurry was adjusted to 8.5
with 3% NaOH solution and the esterification reaction was allowed to continue for 3 h at
35 ◦C. Then the pH of the starch slurry was adjusted to 7 using 1 M HCl. The slurries were
centrifuged for 15 min at 4000× g, washed several times with distilled water, washed twice
with 90% ethyl alcohol, dried at 45 ◦C for 24 h, passed through a 100-mesh sieve and stored
in polyethylene bags at room temperature.

The different amounts of OSA (3, 5, and 7% based on the weight of TBS) were added
to the TBS dispersion, and resulting slurries were denoted by OS-TBS-3, -5, -7, respectively.

2.4. Determination of the Degree of Substitution (DS) in OS-TBS

DS of OS-TBS samples was determined using a titration-based method [30]. Briefly,
0.5 g OS-TBS was stirred into 3 mL 2.5 M HCl for 30 min, then 10 mL 90% (v/v) isopropanol
was added to each sample, stirring was continued for 10 min, and the mixture was cen-
trifuged at 3000× g for 10 min. The sediment was washed thoroughly with 90% isopropanol
until addition 0.1 M AgNO3 did not lead to appreciable formation of AgCl. The washed
sediment was suspended in 30 mL of distilled water, heated in a boiling water bath for
30 min, and titrated with 0.1 M NaOH solution using phenolphthalein as the end-point
indicator. DS was calculated using the formula [31]:

DS =
162 × (A × M)/W

1000 − 210(A × M)/W
(1)

where A was the titration volume of NaOH solution (mL), M was the molarity of NaOH
solution, and W is the dry weight (g) of the OS-TBS. Native TBS served as the reference.

2.5. Amylose Content

The amylose content of TBS and OS-TBS was determined using an iodine-binding
method [32]. Starch samples or standards were added to 90% dimethyl sulfoxide, incubated
at 95 ◦C for 60 min, then reacted with 3.04 g/L iodine liquid dissolved in 90% dimethyl
sulfoxide. Standard solutions of amylose and amylopectin were prepared in 90% dimethyl
sulfoxide and used to create standard curves for amylose content based on absorbance at
510 nm and 620 nm. A solution of 90% dimethyl sulfoxide served as a blank control.
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2.6. Physicochemical Properties of OS-TBS
2.6.1. Fourier-Transform Infrared (FT-IR) Spectroscopy

The chemical structure of TBS and OS-TBS was analyzed qualitatively using a Spec-
trum Two FT-IR spectrometer (PerkinElmer, Boston, MA, USA). Samples were prepared by
grinding the finely powdered starch with KBr (1:100, w/w) and spectra were obtained from
400 to 4000 cm−1 at a resolution of 4 cm−1 [33].

2.6.2. Particle Size Distribution and Granule Morphology

The size of TBS and OS-TBS particles was analyzed using a Mastersizer 2000 (Malvern
Instruments, Malvern, UK). Starch samples were suspended in distilled water over a range
of light obscurations from 10 to 20%. Volume-averaged droplet size (D) was determined as
described [3,4] by assuming refractive indices of 1.33 for water and 1.54 for starch [28,34].

Granules were observed under a scanning electron microscope (Hitachi Regulus 8100,
Tokyo, Japan). Samples were mounted on double-sided adhesive tape on an aluminum
stub, a layer of gold was sputtered on top, and the samples were imaged at an accelerat-
ing voltage of 15 kV. Images were taken at different magnifications (×2000 and ×5000)
at a working distance (WD) of 14 mm to observe the dense structure of the particles
and pores [35].

2.6.3. X-ray Diffractometry (XRD)

The crystalline structure of TBS and OS-TBS was examined using an X-ray diffrac-
tometer (Bruker-AXS D8 Advance, Sigersdorf, Germany) operating at 40 kV and 40 mA
with Cu-Kα radiation. Diffractograms were obtained over a range of diffraction angles
(2 θ) from 5 to 40◦ at a rotational speed of 6.35 ◦/min [9]. Relative crystallinity (Rc), which
indicates the proportion of the total diffractogram area that is crystalline, was calculated as
described [36] using MDI-Jade software (version 6.0, Second Street, Livermore, CA, USA).

2.6.4. Thermal Properties

The onset temperature (To), peak temperature (Tp), conclusion temperature (Tc) and
gelatinization enthalpy (∆H) were measured as described [37] using a Sirius DSC 3500
system (Netzsch Gerätebau, Selb, Germany). Starch (3 mg) and deionized water (triple
mass) were weighed into an aluminum crucible, which was sealed and equilibrated at
room temperature for 2 h, then heated from 30 to 130 ◦C at a rate of 10 ◦C/min. A sealed
empty crucible served as the reference [38].

2.6.5. Solubility Determination

The water solubility index (WSI) and swelling power (SP) of starch samples were
determined as described [39]. The TBS and OS-TBS samples were dissolved at 2% (w/v) in
deionized water and incubated for 30 min in a water bath at 50, 60, 70, 80 or 90 ◦C, then
centrifuged at 4000 rpm for 15 min. The supernatant was recovered and dried to a constant
weight at 105 ◦C. The WSI and SP were calculated using the following equations:

WSI =
W1

W0
× 100% (2)

SP =
Ws

W0 × (1 − WSI)
× 100% (3)

where W0 was the weight of starch; Ws, the weight of the sediment after centrifugation;
and W1, the weight of the supernatant after drying.

2.7. Contact Angle Measurement

Starch powder was compacted into a standard tablet 2 mm thick and the tablet was
then immersed in medium-chain triglycerides. Then, 16 µL of deionized water was dripped
lightly onto the surface of the tablet for 1 min and allowed to equilibrate. Three-phase
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contact angles were determined using a JY-82B device (Kruss, Hamburg, Germany) based
on taking photos and the protractor method [40].

2.8. Preparation and Characterization of Pickering Emulsions
2.8.1. Fabrication

The preparation of Pickering emulsion samples were determined as described [13,41]
with slight modifications. OS-TBS particles (1–5 wt%) were fully dispersed in aqueous
NaCl solution at various concentrations (0–100 mM), vortexed for 3 min to disperse the
starch homogeneously, mixed with medium-chain triglycerides with or without Sudan III
(10–50 vol%), homogenized at 200 bar for 1 min to form a coarse emulsion, then further
homogenized at 1000 bar for 5 min using a high-pressure homogenizer (AH-Nano, ATS
Engineering, Shanghai, China). The resulting Pickering emulsions were stored in capped,
flat-bottom glass vials for further analysis (see below). The influence of pH (3–11) on
Pickering emulsion stability was also investigated.

2.8.2. Microstructure and Zeta Potential

The distribution of drop size in Pickering emulsions was observed using a TL3900CA
optical microscope (Teelen, Shanghai, China) at an image magnification of 10 × 100. The
emulsions were diluted 1:5 (v/v) in deionized water, and one drop of emulsion was poured
onto the glass microscope slide. The distribution of drop sizes was also measured using a
Zetasizer Nano 90 system (Malvern Instruments, Malvern, UK), based on refractive indices
of 1.414 for medium-chain triglycerides and 1.33 for water [26]. The same device was used
to determine zeta potential.

2.8.3. Emulsification Index (EI) and Centrifugation Stability

An aliquot of emulsion (12 mL) was transferred to a 15 mL sample vial, sealed and
stored at room temperature and photographed at 0, 15 and 30 days. The emulsification
index (EI) of the corresponding Pickering emulsions were evaluated by the volume/height
of the emulsified and precipitated layers after 1d and the EI was calculated as described [42]
using the formula:

EI =
Hemulsion

Htotal
(4)

where Hemulsion was the volume of the observed emulsion and Htotal was the sum of all
the phases.

The stability of emulsions with centrifugation was investigated after centrifugation at
10,000× g for 10 min as described [43] using a 5810R refrigerated centrifuge (Eppendorf,
Hamburg, Germany).

2.9. Statistical Analysis

All experiments were performed in triplicate, and data were reported as mean ± standard
deviation. Data were analyzed statistically using one-way analysis of variance (ANOVA) in
SPSS 25.0 (IBM, Chicago, IL, USA). Differences were considered significant if p < 0.05. Data
plots were prepared using Origin 2021 software (OriginLab, Northampton, MA, USA).

3. Results and Discussion
3.1. Degree of Substitution (DS) and Amylose Content

Increasing the amount of OSA from 3 to 7% during the preparation of OSA-modified
Tartary buckwheat starch increased the DS from 0.0184 to 0.0312 (Table 1), reflecting the
greater availability of OSA groups to replace OH groups in the starch [10], while de-
creasing the amylose content from 9.61 to 7.73%. The negative correlation between DS
and amylose content is consistent with the idea that starch esterification occurs primar-
ily in the more accessible amorphous region, where amylose chains concentrate, rather
than in the crystalline region [11,44]. The amylose content of TBS in our study was
12.11%, lower than the range from 19.63 to 25.63% previously reported for other TBS [45].
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This discrepancy may reflect differences in the genetics and growth environment of the
starch sources [46].

Table 1. Amylose content, degree of substitution (DS) and thermal properties of TBS and OS-TBS.

Sample
Amylose

Content (%)
DS To (◦C) Tp (◦C) Tc (◦C) ∆H (J/g)

TBS 12.11 ± 0.60 a NA 61.90 ± 0.08 a 66.63 ± 0.09 a 72.40 ± 0.68 a 11.89 ± 0.99 a

OS-TBS-3 9.61 ± 0.36 b 0.0184 ± 0.0017 c 60.83 ± 0.17 b 65.57 ± 0.12 b 71.47 ± 0.24 b 8.90 ± 1.24 a

OS-TBS-5 8.48 ± 0.13 c 0.0251 ± 0.0010 b 60.37 ± 0.19 c 64.77 ± 0.05 c 71.37 ± 0.19 b 8.71 ± 0.22 a

OS-TBS-7 7.73 ± 0.10 d 0.0312 ± 0.0007 a 58.83 ± 0.23 d 63.47 ± 0.32 d 70.63 ± 0.20 b 8.79 ± 0.17 a

Values are mean ± standard deviation. Different letters within a column indicate significant differences (p < 0.05).

3.2. FT-IR Analysis

FT-IR analysis of TBS revealed strong O-H stretching vibration peaks at 3800–3000 cm1,
tensile vibrations of C-H and bending vibrations of absorbed water at 2930–1640 cm−1 [42],
and stretching of C-O bonds at 1200–800 cm−1 [14] (Figure 1). FT-IR analysis of OSA-TBS
contained two additional peaks: one at 1726 cm−1, due to the C-O telescopic vibration
of the ester carbonyl; and one at 1573 cm−1, due to asymmetric stretching of the RCOO
vibration. These peaks were interpreted to indicate successful formation of OS-TBS because
they were similar to previous reports [11,28]; they were consistent with the formation of
the desired ester carbonyl group, and their area correlated positively with the DS.
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Figure 1. Fourier-transform infrared (FTIR) spectra (two peaks that appeared in the spectra of OS-TBS
are indicated in the top spectrum) of TBS with and without OSA modification.

3.3. Morphology and Particle Size Distribution

Scanning electron microscopy showed TBS granules to be irregular polygons with
smooth, angular surfaces (Figure 2), similar to previous work [3]. The low water solubility
of OSA limited the diffusion of OSA into starch and, therefore, the esterification of starch
on the granule surface. Increasing the DS in OS-TBS particles increased surface erosion
and abrasion; yet, most granules retained the native starch morphology (Figure 2A). While
some studies have reported similar findings [12,28,47], other work has shown that OSA
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esterification created small surface pores in starch [40]. It is speculated that this may be
related to the different sources of starch.
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and (B) particle size distribution of TBS and OS-TBS granules.

The volume-averaged droplet size was smaller for OS-TBS at all three DS (12.1–17.6 µm)
than for the unmodified TBS (18.8 µm), (Figure 2B). Addition of NaOH during modification
with OSA may lead to TBS granule shrinkage [47]. OS-TBS prepared with an OSA at 7%
showed a bimodal distribution, suggesting greater aggregation of the hydrophobically
modified starch granules than at lower DS [9].

3.4. XRD Analysis

XRD analysis revealed TBS to have an A-type X-ray diffraction pattern with intense
peaks at 2θ = 15, 17, 18 and 23◦ [3,48]. The crystallinity of TBS was 29.49% (Figure 3),
consistent with previous work [3]. OSA esterification did not substantially change TBS
crystal structure, although it did reduce crystallinity slightly. These results are consistent
with the idea that OSA modification occurred primarily in amorphous regions of starch
granules, with only a small number of OSA groups penetrating into the crystalline regions
of the starch granules [12,42,49].

3.5. Thermal Properties

Differential scanning calorimetry of the heat changes in the starch during heating
gelatinization indicated that esterification reduced To, Tp, Tc and ∆H (Table 1). In fact,
the effect of DS on the thermal stability parameters of the three modified samples was
not significant, similar to previous work [50]. However, the introduction of bulky OSA
groups reduces the integrity of the crystalline regions and the number of double helix
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structures in the starch granules, making the hydrogen bonds more prone to breakage
during heating [9]. This results in a lower paste temperature and ∆H. This ultimately results
in starch granules expanding at lower temperatures and reduces the energy required for
pasting. In conclusion, our results suggest that OSA groups are present in the amorphous
regions of TBS, where they may be predominant.

Foods 2023, 12, x FOR PEER REVIEW 8 of 16 
 

 

Figure 2. (A) Scanning electron micrographs (SEM) at different magnifications (×2000 and ×5000) 
and (B) particle size distribution of TBS and OS-TBS granules. 

The volume-averaged droplet size was smaller for OS-TBS at all three DS (12.1–17.6 
μm) than for the unmodified TBS (18.8 μm), (Figure 2B). Addition of NaOH during mod-
ification with OSA may lead to TBS granule shrinkage [47]. OS-TBS prepared with an OSA 
at 7% showed a bimodal distribution, suggesting greater aggregation of the hydrophobi-
cally modified starch granules than at lower DS [9]. 

3.4. XRD Analysis 
XRD analysis revealed TBS to have an A-type X-ray diffraction pattern with intense 

peaks at 2θ = 15, 17, 18 and 23° [3,48]. The crystallinity of TBS was 29.49% (Figure 3), 
consistent with previous work [3]. OSA esterification did not substantially change TBS 
crystal structure, although it did reduce crystallinity slightly. These results are consistent 
with the idea that OSA modification occurred primarily in amorphous regions of starch 
granules, with only a small number of OSA groups penetrating into the crystalline regions 
of the starch granules [12,42,49]. 

 
Figure 3. X-ray diffraction (XRD) patterns of TBS with and without OSA modification. 

3.5. Thermal Properties 
Differential scanning calorimetry of the heat changes in the starch during heating 

gelatinization indicated that esterification reduced To, Tp, Tc and ΔH (Table 1). In fact, the 
effect of DS on the thermal stability parameters of the three modified samples was not 
significant, similar to previous work [50]. However, the introduction of bulky OSA groups 
reduces the integrity of the crystalline regions and the number of double helix structures 
in the starch granules, making the hydrogen bonds more prone to breakage during heat-
ing [9]. This results in a lower paste temperature and ΔH. This ultimately results in starch 
granules expanding at lower temperatures and reduces the energy required for pasting. 
In conclusion, our results suggest that OSA groups are present in the amorphous regions 
of TBS, where they may be predominant. 

3.6. Water Solubility Index (WSI) and Swelling Power (SP) 
WSI of TBS and OS-TBS increased with increasing temperature, particularly from 70 

°C (Table 2), and it increased with DS. Sample solubility increased significantly when the 
temperature was higher than the conclusion temperature Tc, based on WSI and thermal 
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3.6. Water Solubility Index (WSI) and Swelling Power (SP)

WSI of TBS and OS-TBS increased with increasing temperature, particularly from
70 ◦C (Table 2), and it increased with DS. Sample solubility increased significantly when
the temperature was higher than the conclusion temperature Tc, based on WSI and thermal
properties (Table 1), which may reflect the weakening of intermolecular hydrogen bonds
by the introduction of OSA groups [49,51]. This increase in solubility may also improve
viscosity, viscoelasticity, and emulsification [51,52].

Table 2. The water solubility index (%) and swelling power (%) of TBS and OS-TBS.

Parameter
Sample

Temperature (◦C)

50 ◦C 60 ◦C 70 ◦C 80 ◦C 90 ◦C

WSI (%)

TBS 0.91 ± 0.01 d 1.06 ± 0.01 d 4.75 ± 0.27 d 7.20 ± 0.37 d 9.99 ± 0.53 d

OS-TBS-3 1.06 ± 0.01 c 2.03 ± 0.11 c 8.18 ± 0.08 c 31.36 ± 1.55 c 76.55 ± 1.19 c

OS-TBS-5 1.52 ± 0.07 b 5.73 ± 0.81 b 26.66 ± 0.80 b 50.81 ± 1.88 b 78.37 ± 1.89 b

OS-TBS-7 1.91 ± 0.31 a 8.39 ± 0.58 a 53.53 ± 0.48 a 65.75 ± 0.50 a 80.50 ± 0.31 a

SP (%)

TBS 3.55 ± 0.89 c 2.47 ± 0.11 d 7.39 ± 0.07 d 8.49 ± 0.42 d 8.53 ± 0.29 d

OS-TBS-3 3.55 ± 0.84 c 4.42 ± 0.27 c 10.70 ± 0.65 c 14.19 ± 1.18 c 38.72 ± 0.30 c

OS-TBS-5 3.83 ± 0.25 b 5.82 ± 1.16 b 22.12 ± 0.82 b 31.48 ± 2.8 b 52.84 ± 5.15 b

OS-TBS-7 4.29 ± 0.41 a 10.36 ± 0.25 a 36.18 ± 2.97 a 52.41 ± 4.49 a 78.63 ± 2.44 a

Values shown are means ± standard deviations. Different letters within a column indicate significant differences
(p < 0.05).

3.7. Particle Wettability

The hydration capacity of starch is usually measured by SP. The SP of TBS before
and after OSA treatment at different temperatures is shown in Table 2. As expected, OSA
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modification significantly increased SP compared to native TBS. Higher OSA additions
(higher DS) resulted in higher starch swelling forces and the OS-TBS-7 had the highest
SP (78%, 90 ◦C). The swelling behavior of the starch was related to the granule sizes and
also closely associated with the fine structure of the starch [9]. OS-TBS is a small granular
starch that usually has more amorphous regions and a branched starch structure. At high
temperatures, the amorphous regions and the parts of the starch granules that are close to
the crystalline regions become sticky and absorb excess water to form swollen granules.
The OSA modification introduces hydrophobic carbon chains into the amorphous regions
of the starch, weakening the strength of the internal hydrogen bonds which bind the starch
molecules, thereby increasing SP [20].

The contact angle θ between the particle and the water phase was smaller than 90◦

not only for TBS but also for OS-TBS at different DS (Figure 4), suggesting that all these
starches are more inclined to stabilize the O/W type of emulsions [53]. The contact angle
increased from 61.5 to 71.3◦ as DS in OS-TBS increased, which is consistent with previous
work [28,54] and can be attributed to the replacement of hydrophilic hydroxyl groups
by the OSA group [14]. Thus, octenylsuccinylation can improve the hydrophobicity of
starch granules and facilitate the adsorption of OS-TBS granules at the oil–water interface,
implying usefulness as a good Pickering stabilizer.
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3.8. Formation and the Storage Stability of OS-TBS-Based Pickering Emulsions

Whether Pickering emulsions were prepared with TBS or OS-TBS at different DS,
the EI increased first and then decreased as stabilizer concentration increased at a con-
stant oil-phase volume fraction of 20 vol% (Figure 5A). The EI was lower for Pickering
emulsions prepared from TBS than for those prepared from OS-TBS, regardless of DS, oil-
phase volume fraction, pH, or ionic strength (Figure 5B–D). Pickering emulsions prepared
from the TBS group showed delamination after centrifugation, and emulsions containing
4–5 wt% concentrations showed extensive oil separation (Figure 5E). At the other extreme,
OS-TBS-5 and OS-TBS-7 showed excellent stability when the concentration of stabilizer was
>3 wt%. These observations likely reflect that increasing stabilizer concentration increases
the viscosity of the continuous phase, resulting in the formation of an emulsion microgel
on the surface of Pickering emulsions after centrifugation. We conclude that an OS-TBS
concentration of 4 wt% may be optimal for stabilizing Pickering emulsions.
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Figure 5. Effects of (A) TBS or OS-TBS concentration (c), (B) oil-phase volume fraction (Φ),
(C) pH and (D) NaCl concentration (i) on the emulsification index (EI). (E) Photographs of Pickering
emulsions stabilized by TBS or OS-TBS for the different conditions indicated, after centrifugation at
10,000× g for 10 min; (c) 20 vol% MCT, deionized water, without pH adjustment and salt free ions; (Φ)
4 wt% starch concentration, deionized water, without pH adjustment and salt free ions; (pH) 4 wt%
starch concentration, 30 vol% MCT and salt free ions; (i) 4 wt% starch concentration, 30 vol% MCT,
deionized water, without pH adjustment.

When the oil-phase volume fraction of TBS was 10 vol%, the surface coverage of oil
emulsions was relatively low. It was better when the oil-phase volume fraction was 20%,
when EI > 0.90. (Figure 5B). The EI of OS-TBS increased with the increasing oil-phase
volume fraction (10–30 vol%). Further increases in the volume fraction actually decreased
the coverage of starch particles, weakening the interfacial film and enlarging the droplet
size, thereby destabilizing the emulsion. These results suggest an optimal oil-phase volume
fraction of 30 vol%.

At pH 3.0–9.0, Pickering emulsions stabilized by TBS or OS-TBS showed good emul-
sion stability, and those based on OS-TBS showed an EI > 0.90 (Figure 5C). At pH 11,
phase separation occurred in all cases (Figure 5C,E), which was consistent with previous
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work [55] and may reflect alkaline degradation of starch granules. These results suggest
that OS-TBS stabilizes Pickering emulsions best at pH 7.0.

Finally, we identified lower ionic strength as best for OS-TBS to stabilize Picker-
ing emulsions because increasing the ionic strength from 25 to 100 mM destabilized
the emulsions, increasing emulsion particle size, particle flocculation and sedimentation
(Figure 5D,E). These results suggest that salt ions can induce electrostatic shielding of
droplet charges and possible aggregation. Therefore, we do not recommend the addition of
salt ions when using OS-TBS for the preparation of Pickering emulsions.

The distribution of droplet size in Pickering emulsions is shown in (Figure 6A); it
can be seen that the droplet sizes in the OS-TBS groups were smaller and more uniform
compared to the TBS group. During storage at 25 ± 0.5 ◦C for 30 days, the TBS group
was stratified significantly, while the OS-TBS groups remained uniform and stable without
delamination occurring (Figure 6B). In addition, the droplet size and polydispersity index
(PDI) of the TBS group increased substantially; the PDI was close to 1. The OS-TBS groups,
in contrast, remained essentially constant. (Figure 6C,D). The initial z-average of our OS-
TBS groups, ~250 nm, was much smaller than the value reported in previous work [11,54],
which may reflect that we used a high-pressure homogenizer. The resulting nanoscale
emulsions may be stabler than those prepared with a high-shear mixer, and they may lead
to good stability and better bioaccessibility of the encapsulated compounds.
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(d) OS-TBS-7 after the indicated storage times. (C,D) Particle size and polydispersity index (PDI) of
the emulsions during storage.
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4. Conclusions

This study investigated the changes in the crystalline structure, SP and emulsifying
ability of TBS modified by different percentages (3, 5 and 7%) of OSA. The OSA modification
slightly increased the particle size distribution of TBS and reduced the apparent straight-
chain starch content. XRD patterns showed that the OSA modification occurred mainly
in the amorphous region and had less effect on the crystalline region, which is consistent
with the OSA treatment maintaining the morphological results of the starch, which are
consistent with the OSA treatment maintaining the shape and integrity of the granules. We
also investigated the effect of various factors on the emulsification properties of Pickering
emulsions prepared by the HPH method using OS-TBS as a stabilizer. Our results suggest
that Pickering nanoemulsions can be maximally stabilized by OS-TBS when the HPH
method is used with a stabilizer concentration of 4 wt%, an oil phase volume fraction of
30 vol%, minimal ionic strength and neutral pH. The higher DS in OS-TBS result in smaller
and more stable emulsified particles. Although the effects of various factors (e.g., DS, ratio
of straight-chain to branched starch) on the physicochemical properties of OSA starch have
been extensively investigated, this study further demonstrates the synergistic effects of
OSA treatment, small particle-size characteristics and HPH methods in the preparation
of Pickering nanoemulsions. Our work provides the first demonstration that a combined
strategy offers the unique advantage of significantly improving the properties of TBS and
lead to stable Pickering nanoemulsions for various industrial applications.
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