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Abstract: The leaves of Engelhardia roxburghiana Wall (LERW) has been used as sweet tea in China
throughout history. In this study, the ethanol extract of LERW (E-LERW) was prepared and the
compositions were identified by HPLC-MS/MS. It indicates that astilbin was the predominant
component in E-LERW. In addition, E-LERW was abundant in polyphenols. Compared to astilbin,
E-LERW presented much more powerful antioxidant activity. The E-LERW also had stronger affinity
with α-glucosidase and exerted more vigorous inhibitory effect on the enzyme. Alloxan-induced
diabetic mice had significantly elevated glucose and lipid levels. Treatment with E-LERW at the
medium dose (M) of 300 mg/kg could reduce the levels of glucose, TG, TC, and LDL by 16.64%,
12.87%, 32.70%, and 22.99%, respectively. In addition, E-LERW (M) decreased food intake, water
intake, and excretion by 27.29%, 36.15%, and 30.93%, respectively. Moreover, E-LERW (M) therapy
increased the mouse weight and insulin secretion by 25.30% and 494.52%. With respect to the astilbin
control, E-LERW was more efficient in reducing the food and drink consumption and protecting
pancreatic islet and body organs from alloxan-induced damage. The study demonstrates that E-LERW
may be a promising functional ingredient for the adjuvant therapy of diabetes.

Keywords: leaves of Engelhardtia roxburghiana Wall; astilbin; antioxidant; α-glucosidase; hypoglycemic
effects in vivo

1. Introduction

Nowadays, diabetes is a high incidence disease seriously challenging human health.
Diabetic patients occupy 10% of the world’s population. The complications of diabetes
include renal injury, retinopathy, diabetic cataract, diabetic foot, coronary disease, and so on,
which not only make the patients suffer great pain but also bring heavy economic burden
on families and society. How to protect and treat diabetes has become a major concern
in food and medicinal fields. Natural plants and their active ingredients exhibit multi-
target, multi-pathway, and multi-directional hypoglycemic characteristics. Compared to
chemical drugs, herbal medicines have mild and sustained effects with low toxicity. The
multi-target property not only benefits glucose modulation, but also contributes to the
alleviation of diabetic complications. A natural product with known hypoglycemic activity
is becoming a promising alternative to the current drugs for diabetic therapy. Engelhardtia
roxburghiana Wall (ERW) is a subtropical tree grown in the Guangdong, Guangxi, and Fujian
provinces of China. The leaves of ERW (LERW) have been used as sweet tea in Chinese
folk medicine to treat obesity, fever, and pain for a long time. Due to the abundance in
flavonoids and phenols, LERW has multiple physiological activities, including inhibition
of aldose reductase, bladder protection, as well as anticoagulant, hypolipidemic, and
antioxidant activities [1]. Flavonoids such as astilbin, taxifolin, and engeletin are the main
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active ingredients responsible for the functions of LERW [2]. Among them, astilbin is the
predominant component and is regarded as an important indicator to evaluate the quality
of LERW.

As the major constituent of LERW, astilbin possesses versatile biological activities.
Astilbin was able to inhibit the generation of superoxide anion and the peroxidation of
microsomal lipid, thereby protecting red blood cells from oxidization and hemolysis [3].
Astilbin had an inhibitory effect on recombinant human aldose reductase and hampered
the formation of advanced glycation end products, showing the potential in the prevention
and treatment of diabetic syndrome [4]. Astilbin also presented its effects in the treatment
of diabetes and related secondary complications [5], such as diabetic nephropathy. In
addition, astilbin displayed the lipid-lowering capacity in rats by increasing the activity of
lipoprotein lipase and promoting the lipolysis of rat fat pads [6].

Astilbin is the chief constituent of LERW. As the hypoglycemic effect of astilbin has
been reported extensively, LERW is also assumed to possess hypoglycemic function. The
safety and low toxicity of LERW have been well verified by its long-term usage as sweet
tea, which makes it hold more immerse prosperity to serve as a healthcare product for the
protection and treatment of diabetes. Astilbin, the primary active component, may be more
efficient than the extract of LERW (E-LERW) in lowering glucose level. Nevertheless, there
is another possibility that owing to the synergetic effect of other polyphenols present in
LERW, the extract might possess stronger strength. It is important to clarify the activity
difference between the purified component and E-LERW before the designing of LERW-
based diabetic care products. This study aimed to compare the antioxidant activity of
E-LERW and astilbin and evaluate their hypoglycemic effect via an in vitro α-glucosidase
inhibitory test and an in vivo diabetic mouse model. HPLC coupled with tandem MS was
used to determine and identify the polyphenols in E-LERW to illustrate the relationship
between the hypoglycemic effect and the compositions of the extract.

2. Materials and Methods
2.1. Materials

LERW was purchased from Youluhuan Ecological Agriculture Co., Ltd. (Bozhou,
China). 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azobis-3-ethylbenzothiazoline-6-sulfonate
(ABTS), α-glucosidase, tannins, acarbose, and rutin were obtained from Shanghai Yuanye
Biotechnology Co., Ltd. (Shanghai, China). p-nitrophenyl-β-D-galactopyranoside (pNPG)
was obtained from Alfa Aesar Chemical Co., Ltd. (Shanghai, China). Astilbin with 98%
purity was purchased from Priva Technology Development Co., Ltd. (Chengdu, China).
Liposomes were prepared by our lab with the size of 131.84 ± 0.67 nm [7].

2.2. Preparation of E-LERW

The dried LERW was crushed, passed through a 60-mesh sieve, and extracted with 60%
ethanol (v/v). The extraction was conducted with a MAR-3 microwave reactor (Shanghai
Yuezong Instrument Company, Shanghai, China) under 56 ◦C for 67 s. The material-to-
liquid ratio was 1:15. After the extraction, the sample was filtered, concentrated under
reduced pressure, and finally freeze-dried to obtain the E-LERW [8].

2.3. Identification by HPLC-MS/MS

The extract was prepared into 1 mg/mL solution with 60% ethanol (v/v), filtered
through a 0.22 µm microporous membrane, and separated on a Waters Acquity UHPLC
BEH-C18 column (2.1 mm × 100 mm, 1.7 µm). The analysis was performed by an UHPLC
system coupled with Xevo triple quadrupole electrospray tandem MS (Micromass Waters,
Milford, MA, USA). The electrospray ionization source (ESI) was used for the determination
of the components, and the full MS/dd-MS2 scan mode for qualitative and quantitative
analysis. The sample of 10 µL was injected into the system. The mobile phase consisted of
acetonitrile and 0.1% acetic acid (22:78, v/v) with the flow rate of 0.7 mL/min. The column
temperature was 35 ◦C. Identification was performed by multiple reaction monitoring
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(MRM). The ions were detected in both positive and negative mode with m/z 100–1000.
The other parameters of MS were set as follows: spray voltage 3.0 kV, S-lens voltage 50 V,
capillary temperature 350 ◦C, and auxiliary gas heating temperature 350 ◦C [9]. In addition,
the on-line UV spectrums of the components were obtained through diode array detection
(DAD). The wavelength with maximum absorbance was determined.

2.4. Determination of Active Ingredients in E-LERW
2.4.1. Total Flavonoids

The sample was prepared into 1 mg/mL with 60% ethanol. The content of to-
tal flavonoids was determined using the sodium nitrite–aluminum nitrate colorimetric
method [10,11] and was expressed as mg rutin equivalent (mg RE)/g. In this study, the
absorbance of the reference rutin changed linearly with the concentration in the range from
10 to 200 µg/mL. The regression equation was A = 11.094C − 0.0018 (r2 = 0.9993).

2.4.2. Total Phenols

The total phenols in E-LERW were determined using the methods reported by Yao
et al. and Dirar et al. [12,13] and were expressed as mg gallic acid (GA) equivalent (mg
GE)/g. The absorbance of the reference GA was linear with the concentration ranging from
10 to 500 µg/mL. The regression equation was Y = 102.2X + 0.0616 (r2 = 0.9991).

2.4.3. Astilbin

The sample was analyzed by a LD-20AD HPLC system (Shimadzu, Tokyo, Japan). The
separation was performed on a SinoChrom ODS-BP column (4.6 mm × 150 mm, 5 µm). The
detection conditions were the same as described in Section 2.3. The detection wavelength
was 291 nm with the injection volume of 20 µL. In the range of 0.02 to 1.0 mg/mL, the peak
area of astilbin was linear with the concentration. The regression equation was Y = 54756X
− 255.86 (r2 = 0.9992).

2.5. Antioxidant Activity
2.5.1. Scavenging DPPH Free Radicals

E-LERW and astilbin were prepared into a series of solutions, which contained astilbin
from 0.2 to 1 mg/mL, respectively. The determination was carried out according to what
Makgatho et al. reported [14]. Ascorbic acid was set as the positive control.

2.5.2. Scavenging ABTS+ Radicals

The measurement was conducted following the method reported by Aruwa et al. [15].

2.5.3. Ferric Reducing Activity of Power

The ferric reducing activity of power (FRAP) of E-LERW and astilbin were determined
conforming to the method proposed by Hao et al. [16].

2.5.4. Inhibition of Lipid Membrane Oxidation

The lyophilized liposomes were re-dispersed in deionized water, from which 0.5 mL
was drawn out and blended with 0.5 mL of E-LERW or astilbin at different concentrations.
The sample was incubated at 37 ◦C for 1 h. Subsequently, 1 mL of 1% thiobarbituric
acid was added, boiled for 10 min, and cooled to room temperature. The solution was
centrifuged at 1000 r/min for 10 min. The absorbance of the supernatant was measured at
532 nm (A). Meanwhile, the absorbance of blank control (A0) was determined using 0.5 mL
deionized water in place of the sample. Tannic acid was set as the positive control. The
inhibitory rate was calculated according to the following equation (Equation (1)) [17]:

Inhibitory rate = (A0 − A)/A0 × 100 (1)
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2.6. Inhibitory Effect on α-Glucosidase

The inhibitory effect on α-glucosidase was examined according to the method de-
scribed by Broholm et al. [18]. Briefly, the sample of 50 µL was blended with 50 µL
α-glucosidase of 0.5 U/mL, and incubated under 37 ◦C for 30 min. Afterward, 1 mM
substrate pNPG of 50 µL was added and reacted at 37 ◦C for another 30 min. The reaction
was terminated by adding 0.2 M sodium carbonate of 50 µL. The absorbance at 405 nm
was determined. In addition, using PBS to replace the enzyme, the background absorbance
was measured in parallel. The inhibitory curve was constructed using the inhibitory rates
versus astilbin concentrations. Acarbose was set as the positive control.

Kinetic Analysis on the Inhibition of α-Glucosidase

The concentration of α-glucosidase was fixed at 0.5 U/mL. The inhibitory velocity of
E-LERW and astilbin on α-glucosidase was determined under different concentrations of
substrate pNPG [19]. The double reciprocal curves were plotted based on the following
Lineweaver–Burk equation:

1
v
=

Km

vmax

[
1 +

[I]
Ki

]
1
[S]

+
1

vmax

[
1 +

[I]
αKi

]
(2)

and a secondary plot was constructed as Equation (3):

Slope =
Km

Vmax
+

Km[I]
VmaxKi

(3)

where v is the inhibitory velocity of the sample on α-glucosidase and [I] and [S] represent
the concentration of inhibitor and substrate, respectively. Ki and Km are the inhibition
constant and Michaelis–Menten constant, respectively. α is a constant standing for the ratio
of uncompetitive inhibition to competitive inhibition.

2.7. Hypoglycemic Activity In Vivo
2.7.1. Animal Experiment Design

The animal experiment was approved by the Ethics Committee of Chengdu Uni-
versity, Chengdu, China (protocol number: CDPS 2020-122), and all procedures adhered
to European Community Guidelines (86/609/EEC) for the Care and Use of Laboratory
Animals. Male Kunming mice, weighing 18 to 22 g, were purchased from Chengdu Dashuo
Experimental Animal Company (Chengdu, China). Before the experiment, all mice were
allowed to adapt to the environment for 3 days. The mice in the normal control (NC) group
were fasted but had free access to water for 12 h, and fasting blood glucose (FBG) was
measured via the tail vein, which was used as the basic blood glucose level of normal
mice. The rest of the mice were fasted for 24 h, followed by the intraperitoneal injection of
alloxan at 200 mg/kg to develop a diabetic mouse model [20]. The fasting blood glucose
was measured after 3 days. The mice with the blood glucose level over 11.1 mmol/L were
diagnosed as diabetic mice and were randomly divided into 6 groups with 6 mice in each
group. The groups include the model control of diabetes (MC); astilbin control (AC) with
the dosage of 30 mg/kg; the positive control (PC) of metformin hydrochloride at the dose of
100 mg/kg; and E-LERW groups of high (H), medium (M) and low dose (L) at 600, 300, and
150 mg/kg, which were equivalent to the dose of 56.88, 28.44, and 14.22 mg astilbin/kg,
respectively. The oral gavage was performed twice a day and consecutively lasted for
28 d [21]. The scheme of the experimental design was displayed in Figure 1.
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Figure 1. The scheme of animal experimental design. NC: The normal control of mice without alloxan
injection. MC: The model control of diabetic mice without any treatment. PC: The positive control of
mice treated with metformin. AC: The control of mice treated with astilbin (30 mg/kg). E-LERW (H),
E-LERW (M), and E-LERW (L): The diabetic mice treated with ethanol extract of leaves of Engelhardtia
roxburghiana Wall (E-LERW) at high dose (600 mg/kg), medium dose (300 mg/kg), and low dose
(150 mg/kg), respectively. FBG: fasting blood glucose.

2.7.2. Oral Glucose Tolerance Test

At the final week of treatment, all mice were orally given a glucose solution of 1.5 g/kg
after being fasted for 12 h [22]. The blood glucose level was measured every half hour. Oral
glucose tolerance test was expressed as AUC in 2 h.

2.7.3. Blood Sample Analysis

When the experiment was completed, the mice were sacrificed by breathing carbon
dioxide. The mouse blood was collected in a tube pre-coated with heparin sodium and was
centrifuged at 3000 r/min for 10 min. The supernatant serum was stored at −20 ◦C until
measurement. The levels of insulin, triglyceride (TG), total cholesterol (TC), high density
lipoprotein (HDL), and low-density lipoprotein (LDL) were measured by commercial ELISA
kits (Nanjing Jiancheng Bioengineering Institute, Najing, China). All the determinations
were carried out according to the instructions of the reagent kits.

2.7.4. Organ Index

After the mice were sacrificed, the livers and kidneys were detached from the body,
placed on filter paper to remove blood, and weighed, respectively. The weight ratios of
organ to body (organ indexes) were calculated.

2.8. Data Analysis

All data are expressed as mean ± standard error. The diagrams were plotted using
Origin 8.0 (OriginLab Corporation, Northampton, MA, USA). The difference between
the data was evaluated by one-way analysis of variance (ANOVA) and Duncan’s test
using SPSS version 10.0 software (IBM SPSS Inc., Chicago, IL, USA). The difference was
considered statistically significant when p < 0.05.

3. Results
3.1. HPLC-MS/MS Analysis

The chromatogram and MS identification results of E-LERW are shown in Figure 2
and Table 1, respectively. A total of 10 components were identified with reference to
the database of the instrument. α-Lactose was determined by the molecular ions of m/z
360.1497 (M+NH4)+ and 365.1050 (M+Na)+. The ion with m/z 145.0494 was assigned to
hydroxypropyl pyran, which removed one water and formed the ion of m/z 127.0390. The
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ion further dissociated one propylene and yielded the ion with m/z 85.0289. Malic acid
had the MS2 fragments of m/z 115.0023 (M-H-H2O, A) and 71.0125 (A-CO2). Compound 3
displayed the ion of hydroxyl triazole ring with m/z 96.9682, which eliminated one water
and produced the ion of m/z 78.9576. Quercetin presented the MS2 fragments of m/z 285.0385
(M+H-H2O, C), 257.0442 (C-CO, D), and 238.9389 (D-CO). In addition, the fragment of m/z
183.0285 was the reduced product from the flavone bone structure exclusive of catechol [23].
The ion 153.0181 was catechol lactone ring (C6H2(OH)2(OCOO)). Astilbin displayed the
MS2 fragments of m/z 303.0607 (M-H-rhamnose, E) and 285.0400 (E-H2O). The ion of m/z
178.9975 was the oxidized flavone bone structure in the absence of catechol. This fragment
removed one carbon oxide and formed the ion of m/z 151.0024. The compound engeletin
and taxifolin also had the characteristic ions of 179 and 151, as astilbin presented. In
addition, the peak of m/z 269.0452 in the spectrum of engeletin attributed to the detachment
of one rhamnose from the parent molecule. Taxifolin presented the ions with m/z 285.0401
(M-H-H2O) [24] and 125.0231, which were assigned to pyrogallol [23]. The MS2 of citric
acid included the ions of m/z 111.0074 and 87.0074, which was in accordance with what
AliAbadi et al. reported [25]. Compound 6 and 7 failed to be detected in the MS2 due to
the weak fragment signals.
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Figure 2. High-performance liquid chromatography with diode array detection (HPLC-DAD) chro-
matograms (291 nm) of E-LERW. Compounds are numbered as listed in Table 1.

The flavonoid-like compounds from 4 to 9 had the maximum absorbance wavelength
of around 290–295 nm [26]. Quercetin and maritimetin included the maximum wavelength
of over 300 nm due to longer conjugate structure.
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Table 1. Composition identifications by HPLC-MS/MS.

No. RT (min) Molecular Ion
m/z

Molecular
Weight

Fragment λmax Formula Compound

m/z Abundance
(%)

1 2.84 360.1497 (M+NH4)+,
365.1050 (M+Na)+ 342.1158

85.0289
127.0390
145.0494

100
65.63
68.75

C12H22O11 α-Lactose

2 3.26 133.0129 (M−H)− 134.0202 115.0023
71.0125

100
64.76 C4H6O5 Malic acid

3 4.42 277.0325 (M−H)− 278.0398 96.9682
78.9576

100
36.52 C9H6N6O5

3,5-Dinitro-N-
(4H-1,2,4-

triazole-4-yl)-
benzamide

4 9.38 303.0497 (M+H)+ 302.0426

303.0497
285.0385
257.0442
238.9389
183.0285

100
1.18
2.35
29.41
32.35

234
291
360

C15H10O7 Quercetin

5 11.30 449.1083 (M−H)− 450.1155

303.0607
285.0400
178.9975
151.0024

19.23
50.00
0.12
100

228
291 C21H22O11 Astilbin

6 13.36 465.1024 (M+H)+ 464.0951 229
290 C21H20O12 Bractein

7 14.27 287.0548 (M+H)+ 286.0473 295
338 C15H10O6 Maritimetin

8 17.08 433.1133 (M−H)− 434.1206

433.1133
269.0452
178.9975
152.0103

68.29
78.05
97.56
100

293 C21H22O10 Engeletin

9 23.73 303.0508 (M−H)− 304.0579 285.0401
125.0231

58.33
100 291 C15H12O7 Taxifolin

10 24.97 191.0188 (M−H)− 192.0260 111.0074
87.0074

100
52.17 C6H8O7 Citric acid

λmax is the wavelength with the maximum absorbance in the UV spectrum, which was determined by DAD.

3.2. Determination of Active Components

The contents of astilbin, total flavonoids, and total phenols in E-LERW were
94.79 ± 2.49 mg/g, 153.42 ± 2.74 mg RE/g, and 255.74 ± 4.16 mg GE/g, respectively.
It indicates that E-LERW is enriched in polyphenols.

3.3. Antioxidant Activity

The results of E-LERW in scavenging DPPH free radicals, ABTS+ free radicals, FRAP,
and inhibition against lipid membrane oxidation are shown in Figure 3. The activity of both
E-LERW and astilbin presented a concentration-dependent mode. The activity increased
with the elevation of concentration. At different concentrations, the capacity of E-LERW in
scavenging free radicals was significantly higher than that of astilbin (p < 0.05, Figure 2A,B).
Meanwhile, E-LERW also exhibited much stronger FRAP over astilbin (p < 0.05, Figure 2C).
E-LERW presented a more potent capacity in inhibiting the oxidation of lipid membrane
as well (Figure 2D). When the concentration amounted to 2 mg/mL, E-LERW prevented
75% lipid membrane from oxidation while the inhibitory rate of astilbin was only less
than 20% at the same concentration. The inhibitory effect of astilbin kept low even as the
concentration reached 10 mg/mL. The control of ascorbic acid presented much stronger
antioxidant activity over both astilbin and E-LERW in the examined concentration range
(p < 0.01). When the concentration was below 1.5 mg/mL, tannic acid exhibited significantly
higher inhibitory capacity against lipid membrane oxidation (p < 0.01).
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Figure 3. Antioxidant ability of E-LERW and astilbin: (A) Scavenging rate against DPPH radicals.
(B) Scavenging rate against ABTS+ radicals. (C) FRAP. (D) Inhibitory rate against lipid membrane
oxidation. All values were expressed as the mean ± SD from triplicate experiments. The different
letters represent significant difference at p < 0.05 by ANOVA and Duncan’s test. FRAP: Ferric reducing
antioxidant power. Other abbreviations are as in Figure 1.

3.4. Inhibitory Effects on α-Glucosidase
3.4.1. Inhibition on α-Glucosidase

The inhibitory effect of E-LERW and astilbin on α-glucosidase is shown in Figure 4A.
The inhibitory rates of both the samples and the control acarbose presented a concentration-
dependent manner. The effect increased with the elevation of concentration. The inhibitory
strength of E-LERW was remarkedly higher than that of astilbin in the examined con-
centration range (p < 0.05). Meanwhile, the control acarbose displayed much stronger
inhibitory activity than E-LERW and astilbin (p < 0.05). The concentration with 50% in-
hibitory rate (IC50) of E-LERW, astilbin, and acarbose was 0.46 ± 0.09, 1.12 ± 0.17, and
0.19 ± 0.03 mg/mL, respectively.

3.4.2. Inhibitory Kinetic Analysis

The Lineweaver–Burk curves of E-LERW and astilbin are shown in Figure 4B,C,
respectively. The increase of the concentration accompanied with the elevation of the
vertical axis intercept (1/Vmax), as well as the decrease of the net value of horizonal axis
intercept, indicate that the interaction between the samples and α-glucosidase belonged
to a mixed mode [19]. The secondary plot using slope-versus-inhibitor concentration was
linear (Figure 4D,E), showing that both E-LERW and astilbin had a single inhibitory site on α-
glucosidase. The calculated Ki of E-LERW and astilbin was 0.145 and 0.474 mg/mL, respectively.
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Figure 4. (A) The inhibitory activity of E-LERW and astilbin on α-glucosidase. (B) Lineweaver–Burk
curve of E-LERW. (C) Lineweaver–Burk curve of astilbin. (D) The secondary plot of slope versus
E-LERW concentration. (E) The secondary plot of slope versus astilbin concentration. (A–E): 0.05,
0.1, 0.2, 0.4, 0.8 mg/mL. All values were expressed as the mean ± SD of triplicate experiments. The
different letters represent significant difference at p < 0.05 by ANOVA and Duncan’s test.

3.5. Hypoglycemic Activity In Vivo
3.5.1. Body Weight, Food Intake, Water Intake and Excretion

Table 2 shows the body weight, the amounts of excretion, and food and water con-
sumption of mice in different groups. On the first day of alloxan injection, the diabetic
mice had similar food intake to normal mice, but with more than threefold the water
consumption and, as a result, over three times the excretion compared to the normal mice.
This demonstrated a successful establishment of a diabetic mouse model. Though the body
weights of mice in all groups increased after 28 d, the weights of the mice injected with
alloxan were significantly lower than those in normal control (NC) group, who received
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no injection (p < 0.05). Nevertheless, compared to the model control (MC) group without
any therapy, the groups with the treatment of metformin (PC), astilbin (AC), and E-LERW
of high (H) and medium dosage (M) had the weight increment of 49%, 18%, 38%, and
25%, respectively, affirming the remedy effectiveness of metformin, astilbin, and E-LERW
on diabetes. Though the weights of diabetic mice decreased, their food intake, water
intake, and excretion increased dramatically (p < 0.01). The food and drink consumed
by the mice in MC group were 1.8 and 6.3 times the amount consumed by normal mice.
After the treatment of metformin, astilbin, and E-LERW at high (H), medium (M), and
low dosage (L), the food intake diminished to 1.13, 1.38, 1.18, 1.31, and 1.74 times the
normal intake, respectively. The drinking dropped to 2.79, 4.38, 3.33, 4.02, and 6.16 times
normal drinking, respectively. The excretion of MC mice was seven times that of normal
mice. Through treatment with different samples, the excretion reduced to 3.21, 6.30, 3.93,
5.04, and 7.09 times the normal amount, respectively. The results show that metformin
(PC) has the most powerful therapeutic effect, followed by E-LERW (H) and (M). Astilbin
(AC) and E-LERW (L) have weak activity in alleviating the symptoms triggered by a high
glucose level.

Table 2. Body weight, food intake, water intake, and excretion of mice treated with astilbin and E-LERW.

Group
Body Weight (g) Food Intake (g) Water Intake (mL) Excretion (g)

1st Day 28th Day 1st Day 28th Day 1st Day 28th Day 1st Day 28th Day

NC 22.72 ± 0.69 41.08 ± 1.23 a 5.76 ± 0.53 6.68 ± 0.28 a 5.49 ± 0.36 6.42 ± 0.42 a 5.38 ± 0.63 5.14 ± 0.57 a

MC 22.83 ± 0.48 23.56 ± 0.41 e 6.57 ± 0.26 12.02 ± 1.57 d 18.12 ± 1.63 40.47 ± 2.36 f 16.84 ± 1.58 36.03 ± 2.14 f

PC 23.55 ± 0.61 35.13 ± 0.74 b 6.42 ± 0.54 7.57 ± 0.83 b 17.32 ± 1.34 17.89 ± 1.25 b 16.80 ± 1.27 16.50 ± 1.16 b

AC 23.41 ± 0.43 27.87 ± 0.37 d 6.21 ± 0.68 9.24 ± 0.76 c 19.77 ± 2.31 28.13 ± 1.57 e 16.90 ± 1.93 32.37 ± 1.38 e

E-LERW[H] 23.39 ± 0.57 32.47 ± 0.26 c 6.31 ± 0.36 7.88 ± 0.33 b 18.68 ± 0.93 21.38 ± 0.73 c 17.37 ± 0.83 20.18 ± 1.11 c

E-LERW[M] 23.36 ± 0.27 29.52 ± 0.52 d 6.12 ± 0.72 8.74 ± 0.63 c 19.83 ± 1.35 25.84 ± 1.24 d 17.50 ± 0.92 28.49 ± 1.39 d

E-LERW[L] 22.85 ± 0.36 23.07 ± 0.27 e 6.27 ± 0.63 11.64 ± 1.14 d 18.85 ± 0.83 39.56 ± 2.34 f 18.23 ± 1.46 36.44 ± 2.12 f

NC: The normal control of mice without alloxan injection. MC: The model control of diabetic mice without any
treatment. PC: The positive control of mice treated with metformin. AC: The control of mice treated with astilbin
(30 mg/kg). E-LERW [H], E-LERW [M], and E-LERW [L]: The diabetic mice treated with E-LERW at high dose
(600 mg/kg), medium dose (300 mg/kg), and low dose (150 mg/kg), respectively. Data analysis was performed
by one-way ANOVA and Duncan’s test. All values were expressed as the mean ± SD (n = 6). Different letters
represent significant difference (p < 0.05).

3.5.2. Fasting Blood Glucose and Insulin

Figure 5A shows the fasting blood glucose (FBG) levels of mice receiving different
treatments during 28 d. As time progressed, the MC and the group fed with E-LERW
(L) maintained high and invariable glucose levels. Other diabetic mice treated with dif-
ferent samples had a gradually declining FBG. On day 28 of the therapy, the FBG of the
mice receiving metformin, astilbin, and E-LERW (H) and (M) was reduced to 35%, 87%,
65%, and 83% level of MC group, respectively. Metformin again presented the strongest
hypoglycemic activity. Astilbin and E-LERW exhibited moderate strength. E-LERW (M)
included approximately 10% astilbin, which was equivalent to the AC group.

Figure 5B indicates that the injection of alloxan severely damaged the function of islet.
The insulin level of MC mice was only 4.7% that of normal mice. Under the treatment of
metformin, astilbin, and E-LERW (H, M and L), insulin secretion was restored to 72.0%,
15.0%, 59.5%, 28.0%, and 5.4% normal level, implying that astilbin and E-LERW helped to
restore the damaged islets.
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Figure 5. Effects of astilbin and E-LERW on the fasting blood glucose level (A), insulin secretion
(B), oral glucose tolerance test (C), and AUC (D). All values were expressed as the mean ± SD (n = 6).
Data analysis was performed by one-way ANOVA and Duncan’s test. Different letters indicate
significant differences among groups (p < 0.05).

3.5.3. Oral Glucose Tolerance Test

Oral glucose tolerance and the corresponding area under the curve (AUC) of each
group are displayed in Figure 4C,D, respectively. The results show that the glucose peak
values of all groups were reached in 30 min after the oral administration of glucose, followed
by a gradual decrease. The glucose peak concentration of MC was increased to 3.74 times
that of normal mice. After the treatment of metformin, astilbin, and E-LERW (H, M, and L)
for 28 d, the peak level was reduced to 1.81, 3.38, 2.70, 3.41, and 3.71 times the normal level,
showing the therapeutic effect of metformin, astilbin, and E-LERW in improving the oral
glucose tolerance of diabetic mice.

AUC is another indicator to assess the oral glucose tolerate. The AUC of MC was
3.94 times that of normal mice, verifying the alloxan-induced impairment of glucose
tolerate. The value was reduced to 1.67 and 3.43 times the normal level after the remedy
of metformin and astilbin, respectively. E-LERW (H, M, and L) decreased the AUC to
2.64, 3.33, and 3.93 times the normal value. The trend was similar to the effects of various
samples in diminishing glucose peak concentration. Meanwhile, the hypoglycemic activity
of E-LERW (M) was consistent with that of astilbin control.

3.5.4. Blood Lipid Analysis

Patients with diabetes and prediabetes are always at increased risk of dyslipidemia and
cardiovascular disease [27]. As shown in Table 3, the injection of alloxan also significantly
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increased the levels of TG, TC, and LDL, and remarkedly reduced the concentration of
HDL in MC mice (p < 0.01). The administration of various samples decreased the lipid
levels and boosted HDL concentration to different degrees. The lipid lowering strength
was metformin > E-LERW (H) > astilbin and E-LERW (M) > E-LERW (L) (p < 0.05). E-LERW
(M) presented stronger activity in reducing TC and LDL with respect to astilbin, but the
difference was not significant (p > 0.05).

Table 3. Lipid levels of mice treated with astilbin and E-LERW of different doses.

Group TG (mmol/L) TC (mmol/L) HDL (mmol/L) LDL (mmol/L)

NC 0.727 ± 0.13 a 0.409 ± 0.09 a 5.673 ± 1.21 a 0.526 ± 0.14 a

MC 1.484 ± 0.52 c 1.162 ± 0.11 d 2.211 ± 0.35 e 2.436 ± 0.25 e

PC 0.734 ± 0.23 a 0.411 ± 0.17 a 4.521 ± 0.56 b 0.885 ± 0.22 b

AC 1.174 ± 0.2 b 0.848 ± 0.24 c 2.982 ± 0.28 d 2.045 ± 0.31 c

E-LERW[H] 0.786 ± 0.15 a 0.573 ± 0.16 b 3.897 ± 0.51 c 0.961 ± 0.13 b

E-LERW[M] 1.293 ± 0.03 b 0.782 ± 0.22 c 2.794 ± 0.17 d 1.876 ± 0.47 c

E-LERW[L] 1.423 ± 0.21 c 1.149 ± 0.12 d 2.355 ± 0.33 e 2.378 ± 0.36 e

All values were expressed as the mean ± SD (n = 6) of triplicate experiments. Data analysis was performed by
two-way ANOVA and Duncan’s test. Different letters mean significant difference (p < 0.05).

3.5.5. Effects of E-LERW on Organ Indexes of Liver and Kidney

The status of high glucose level impairs livers and kidneys as well. The organ indexes
of mice in each group are shown in Table 4. Compared to the normal mice, the liver index
of the MC group increased 33%. Other groups such as metformin, astilbin, and E-LERW
(H, M, and L) elevated 8%, 27%, 12%, 21%, and 34%, respectively. The kidney index of the
MC group increased 67%, while that of the treatment groups rose 8%, 51%, 27%, 44%, and
65%, respectively. It indicates that diabetes exerts a more detrimental impact on kidneys.
E-LERW has the function of preventing liver and kidney swelling. The medium dose
exhibited stronger capacity than the purified compound astilbin in protecting the organs.

Table 4. The effect of astilbin and E-LERW on the organ indexes of diabetic mice.

Group Liver (%) Kidney (%)

NC 4.76 ± 0.34 a 1.47 ± 0.25 a

MC 6.33 ± 0.41 f 2.45 ± 0.37 d

PC 5.16 ± 0.18 b 1.59 ± 0.48 a

AC 6.06 ± 0.07 e 2.22 ± 0.28 c

E-LERW[H] 5.32 ± 0.16 c 1.87 ± 0.23 b

E-LERW[M] 5.78 ± 0.37 d 2.11 ± 0.14 c

E-LERW[L] 6.37 ± 0.73 f 2.42 ± 0.21 d

All values were expressed as the mean ± SD (n = 6) of triplicate experiments. Data analysis was performed by
two-way ANOVA as well as Duncan’s test. Different letters mean significant difference (p < 0.05).

4. Discussion

Compared to astilbin, the LERW presented much stronger antioxidant as well as
α-glucosidase-inhibitory activity in vitro. Perez-Najera et al. obtained astilbin enriched
extract from Smilax aristolochiifolia Root with astilbin at 48.76 mg/g [28]. The inhibitory
rate of the extract against α-glucosidase was lower than 10%. The vigorous strength of
E-LERW may originate from the integrative effect from both astilbin and other flavonoids
present in LERW, such as quercetin and engeletin. Moreover, in the inhibitory kinetic
test, the Ki of astilbin was 3.27 times that of LERW, implying that the affinity between the
enzyme and LERW was much stronger than astilbin.

In the animal experiment, E-LERW significantly lowered blood glucose levels of mice
triggered by alloxan. The group of E-LERW (M) had a similar content of astilbin to the
group of astilbin control (AC). Though E-LERW exhibited much stronger antioxidant
and glucosidase-inhibitory effects over astilbin, compared to AC, E-LERW (M) did not
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display more powerful effect in lowering fasting glucose level or enhancing oral glucose
tolerance. The possible reason is that the hypoglycemic process involves various complex
mechanisms—for example, decreasing glucose absorption from small intestine, hinder-
ing glucose production in vivo, prompting glucose uptake by tissues, enhancing glucose
clearance from body, and so on [29]. Recent studies found that DNA methylation, his-
tone modification, and non-coding RNA expressing also contribute to the pathogenesis
of diabetes [30]. Inhibition on α-glucosidase only means the yield of glucose is reduced
and glucose absorption is slowed down. It indicates that compound astilbin is the major
component responsible for the hypoglycemic function of E-LERW.

Though the glucose level of the mice treated with E-LERW (M) was similar to those
with astilbin, E-LERW (M) group had significantly higher insulin concentration than AC
group, implying the protective capacity of flavonoids and polyphenols present in the
extract on the islet β-cells. Flavonoids were able to increase the numbers of islets and
β-cells, restore the pancreatic tissues impaired by alloxan, decrease β-cell apoptosis, and
activate insulin receptors, which resulted in the increase of insulin secretion [31]. The
underlying mechanisms for flavonoids and polyphenols to preserve β-cells include the
blocking of NF-kappa B signaling, activation of the PI3K/Akt pathway, as well as the
release decrease of nitric oxide (NO) and reactive oxygen species (ROS) [32].

Alloxan injections led to hyperglycemia accompanied with significant weight loss,
while food intake, water intake, and excretion amount increased dramatically (Table 2).
The phenomena were in accordance with what Leme et al. reported [33]. Administration
of astilbin and E-LERW (H) and (M) significantly alleviated diabetes-induced weight loss,
food intake, water intake, and excretion amount (p < 0.05). Compared to astilbin, E-LERW
(M) reduced water intake and excretion more efficiently (p < 0.05). Hyperglycemia also
damaged the liver and kidney and made the two organs swell. E-LERW protected the liver
and kidney by remarkedly diminishing the organ indexes. The group with E-LERW (M)
had lower organ indexes of liver and kidney compared to the astilbin group, exhibiting
more potent protective power on organs. This function is associated with the strong an-
tioxidant activity of E-LERW [34]. Hyperglycemia mellitus is related to high yield of ROS,
which may cause DNA oxidation. High levels of genomic damage led to liver and renal
failure [35,36]. Antioxidant phytochemicals such as phenolic compounds and flavonoids
help to scavenge ROS and protect the organs from radical related impairment [34]. The
antioxidant components could also enhance the activity of antioxidant enzymes such as
glutathione peroxidase and catalase [37] and lower the elevated levels of malondialdehyde
(MDA) and NO in streptozotocin (STZ)-induced diabetic rats [38]. In addition, polyphenols
and flavonoids were able to hinder the activity change of hepatic enzymes, for example, ala-
nine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase
(LDH), and attenuated the hepatic toxicity caused by STZ [39].

5. Conclusions

Astilbin was the principal component of E-LERW. Compared to astilbin, E-LERW
presented significantly higher activity in scavenging radicals, FRAP, and inhibiting the oxi-
dation of lipid membrane. E-LERW also displayed stronger affinity with α-glucosidase with
more powerful inhibitory strength on the enzyme, which was evidenced by Lineweaver–
Burk curves. After the alloxan injection, the plasma levels of FBG, oral glucose tolerance,
TG, TC, and LDL of the mice increased to 4.18, 3.93, 2.04, 2.84, and 4.63 times the normal
levels, respectively. Meanwhile, insulin secretion and HDL levels were reduced to 4.72%
and 38.97% of normal mice. Alloxan also impaired the organs, causing the indexes of the
liver and kidney to elevate 33% and 67%, respectively. Treatment with E-LERW (M) and (H)
can efficiently lower the increased glucose and lipid levels induced by alloxan and boost the
levels of insulin and HDL. In addition, E-LERW alleviated hyperglycemia-induced organ
damage and decreased the liver and kidney indexes. Compared to astilbin control, E-LERW
did not show more potent capacity in lowering glucose level and oral glucose tolerance,
but presented a more efficient ability in preventing weight loss, reducing food intake, water
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intake, and excretion. Moreover, E-LERW was superior to astilbin in enhancing insulin
secretion and protecting organs. The study indicates that E-LERW may be a promising
functional ingredient in alleviating symptoms of diabetic patients.
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