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Abstract: In this study, series networks (AlexNet and VGG-19) and directed acyclic graph (DAG)
networks (ResNet-18, ResNet-50, and ResNet-101) with transfer learning were employed to iden-
tify and classify 13 classes of apples from 7439 images. Two training datasets, model evaluation
metrics, and three visualization methods were used to objectively assess, compare, and interpret
five Convolutional Neural Network (CNN)-based models. The results show that the dataset con-
figuration had a significant impact on the classification results, as all models achieved over 96.1%
accuracy on dataset A (training-to-testing = 2.4:1.0) compared to 89.4–93.9% accuracy on dataset
B (training-to-testing = 1.0:3.7). VGG-19 achieved the highest accuracy of 100.0% on dataset A and
93.9% on dataset B. Moreover, for networks of the same framework, the model size, accuracy, and
training and testing times increased as the model depth (number of layers) increased. Furthermore,
feature visualization, strongest activations, and local interpretable model-agnostic explanations tech-
niques were used to show the understanding of apple images by different trained models, as well as
to reveal how and why the models make classification decisions. These results improve the inter-
pretability and credibility of CNN-based models, which provides guidance for future applications of
deep learning methods in agriculture.

Keywords: apple varieties; Convolutional Neural Network; transfer learning; visualization methods;
model interpretability

1. Introduction

Fresh apples are one of the main fruits consumed worldwide due to their nutritional
value and health benefits, with more than 7500 varieties available, the most popular ones
including Granny Smith, Gala, Fuji, Red Delicious, Golden Delicious, and Braeburn [1,2].
Typically, several varieties of apples are grown simultaneously in an apple orchard, so it is
easy to mix different varieties of apples with similar appearances during the harvesting
and marketing process [3]. Although different varieties of apples are similar in external
appearance, they have different intrinsic qualities in terms of taste and nutritional value,
which is why people spend a lot of time sorting, packing, and labeling apples before selling
them [4,5]. In addition, the identification and classification of apples is a necessary task,
as it facilitates agricultural and industrial applications, such as automated apple grading
systems, nutritional predictions, or meeting consumers’ dietary needs for specific apple
varieties [6]. Traditional methods for apple variety recognition rely mainly on manual labor,
which is subjective, slow, and unable to meet large-scale applications, while commonly used
physicochemical analysis methods based on apple component testing are time-consuming,
expensive to run, and complex in terms of sample preparation [7,8]. Subsequently, with
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industrial development and technological advances, a number of rapid and non-destructive
techniques for differentiating apple varieties have emerged, such as electronic noses, visible
and near-infrared spectroscopy, and image processing-based methods [9,10].

Deep learning has been successfully applied as a non-destructive technique for the
automatic identification, classification, and detection of fruits and vegetables with the
advantages of speed, convenience, low cost, and high accuracy [11]. In particular, Convolu-
tional Neural Networks (CNNs), deep learning-based frameworks with strong capabilities
in the automatic feature learning of images, have achieved impressive results in various
food and agricultural challenges [12,13]. Recently, CNNs have been used for apple recogni-
tion tasks, but mainly for quality assessment and bruise detection. For instance, Unay [14]
proposed a CNN-based model to realize the quality grading of bi-colored apples using mul-
tispectral images, Lu et al. [15] applied a CNN-based model to detect immature or mature
apples on trees in an orchard, Fan et al. [16] used a CNN-based model to detect defective
apples on a fruit sorting machine, and Hu et al. [17] applied a CNN-based model to identify
bruised apples in apple grading systems. In addition, a few studies have reported on the
use of CNNs in apple variety recognition. For example, Chu et al. [18] developed a suppres-
sion mask R-CNN to recognize two varieties of apples with distinct yellow and red colors
in orchard environments; Xue et al. [19] combined CNNs with a convolution autoencoder
to classify 26 different fruits, including nine classes of apples; and Chen et al. [20] used a
CNN-based approach to classify apple varieties by using 30 kinds of leaf images from differ-
ent growth periods in nature. In general, apple quality detection and grading tasks involve
fewer classes (e.g., organic/conventional apple, premium/middle/poor grades) [21,22],
while the task related to apple variety classification is recommended to be performed with
as many classes as possible to approximate real-world scenarios. Moreover, the apple
variety classification task is challenging due to the inter-class similarities and intra-class ir-
regularities in apple size, shape, and color [23]. Compared to binary classification, the more
classes in a multiclass classification, the more difficult the task becomes, as the classification
accuracy may decrease significantly as the number of classes increases [24].

Furthermore, the related work mentioned above and most applications of CNN ap-
proaches in the food field are generally focused on the performance of different models,
such as the comparison of model evaluation metrics (e.g., accuracy, precision, recall) to
obtain the optimal model, while fewer studies have involved and investigated the inter-
pretability of models. However, it is important to discuss model interpretability because
a deep learning model is a “black box” and its inner working mechanism is not known,
and even if the model achieves good performance in applications, it is still limited by its
“black box” problem and leads to “not being trusted”. Thus, the interpretability of a deep
learning model is highly correlated with its credibility, which has made interpretability
analysis a hot research topic in the application of deep learning in other domains [25]. In
the process of human interaction with CNN models, visualization tools can give a certain
level of interpretability to the model, helping people to understand its working mechanism
and increasing confidence and trust in the model.

Based on the above, an automated system for apple variety classification would benefit
the development of smart farming in orchards, sorting systems in the agricultural industry,
and checkout systems in supermarkets [6]. In this study, we employed two frameworks
of CNNs (series networks and directed acyclic graph networks) with transfer learning to
automatically classify 13 types of apples. The aim of this study was not only to develop an
automated system for classifying apple varieties but also to find out the impact of different
CNN frameworks, network depths (under the same framework), and dataset configurations
on the results of a multi-class classification task, as well as to explore the interpretability of
models using visualization methods to further improve the performance and credibility of
the models. The obtained results contribute to autonomous robotic fruit harvesting and
post-harvest technology and further accelerate the development of agro-based industries.

Accordingly, the contributions of this study are as follows.
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1. We used five CNNs from two different frameworks, i.e., series networks (AlexNet
and VGG-19) and DAG networks (ResNet-18, ResNet-50, and ResNet-101), to classify
13 classes of apple. The performance of the different models was evaluated and
compared in detail, and the strengths and weaknesses of each model were clarified
and summarized.

2. We set up two datasets to investigate the dataset configuration on the classification
results of CNN-based models. Specifically, one is a common dataset configuration,
i.e., more training data–less testing data, and the other is designed to approach the
reality that the testing set is infinite, i.e., less training data–more testing data.

3. We used three visualization methods (feature visualization, strongest activations, and
local interpretable model-agnostic explanation techniques) step by step to reveal how
the “black box” models make classification decisions.

2. Material and Methods
2.1. Fruits-360 Dataset

“Fruits-360” (https://www.kaggle.com/moltean/fruits, Version: 2020.05.18.0, ac-
cessed on 10 October 2022) is a publicly available benchmark fruit dataset [4,26], which has
been used by several studies to validate their proposed models. For example, Siddiqi [27]
used this dataset to classify different categories of fruits and illustrated that the Fruits-360
dataset is larger compared to other fruit datasets. Kodors et al. [28] used this dataset to
classify apples and pears in order to compare the performance of different deep learning
architectures. Based on this, Fruits-360 was used in this study to objectively evaluate and
compare the performance of the proposed models. Fruits-360 contains 90,483 images from
131 categories of fruits and vegetables, including a total of 8538 images of 13 classes of
apples from a wide range of varieties, such as Braeburn, Crimson Snow, Golden, Granny
Smith, Pink Lady, and Red Delicious. Each image (100 × 100 pixels) is of a single apple on
a white background, as shown in Figure 1.
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2.2. Training and Testing Datasets Set-Up

Thirteen classes of apple images from Fruits-360 were used to build two datasets, as
shown in Table 1. Dataset A was configured from the original training and testing sets
provided by Fruits-360, and the validation set was a random selection of 1/5 of the images
from the training set. Dataset B was an inverted version of dataset A, i.e., the testing set
of dataset B corresponded to the sum of the training and validation sets of dataset A, and
the sum of the training and validation sets of dataset B corresponded to the testing set of
dataset A. As a result, the training-to-testing ratios for dataset A and dataset B were 2.4:1.0
and 1.0:3.7, respectively.

Table 1. The number of images per class for training, validation, and testing in the two datasets.

Class
Dataset A Dataset B

Training Set Validation Set Testing Set Training Set Validation Set Testing Set

1 Braeburn 344 85 144 116 28 429
2 Crimson

Snow 344 85 144 119 28 429

3 Golden 1 344 85 144 116 28 429
4 Golden 2 344 85 144 116 28 429
5 Golden 3 344 85 144 116 28 429

6 Granny Smith 344 85 144 116 28 429
7 Pink Lady 344 85 144 116 28 429

8 Red 1 344 85 144 116 28 429
9 Red 2 344 85 144 116 28 429

10 Red 3 344 85 144 116 28 429
11 Red

Delicious 344 85 144 116 28 429

12 Red Yellow 1 344 85 144 116 28 429
13 Red Yellow 2 344 85 144 116 28 429

Total 4472 1105 1872 1508 364 5577

2.3. Network Architectures

Five CNNs from two different frameworks were used to investigate the effects of
different structures and depths of the network on the classification results.

2.3.1. Series Networks

A series network is a neural network for deep learning that has layers arranged
one after the other, with only one input layer and one output layer [29]. AlexNet and
VGG-19 are representative series networks that have achieved good performance in image
recognition and classification. They have similar architecture but a different number of
layers (depth). Specifically, AlexNet has 25 layers, including 5 convolutional layers and
3 fully connected layers, while VGG-19 has 47 layers, including 16 convolutional layers and
3 fully connected layers. More information about these two networks has been described
in previous studies [30,31].

2.3.2. Directed Acyclic Graph Networks

A directed acyclic graph (DAG) network is another structure of neural network used
for deep learning, with layers arranged as a directed acyclic graph [29]. The residual
network (ResNet) is a type of DAG network with residual (shortcut) connections that
bypass the main network layers. The invention of ResNet was an important milestone
in the development of CNNs [32,33]. In recent years, ResNet has outperformed previous
models in image recognition and object detection [34]. There are several variants of ResNet
that differ only in the number of layers (depth), so to find out the effect of network depth
on the results of a classification task, we used ResNet-18, ResNet-50, and ResNet-101
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in this study, and more information about ResNet has been well described in previous
studies [33,35].

2.4. Transfer Learning

In general, CNNs are trained on large datasets of more than one million images (e.g.,
ImageNet) and perform best when they have deeper and more highly interconnected
layers [12]. However, the currently used CNNs involving fruit and vegetable classification
tasks are trained on a limited number of classes and small datasets, which can easily lead
to the overfitting of deep networks, making the results unscientific and unconvincing [23].
Moreover, training these large CNNs can lead to significant drawbacks such as increased
computational costs and slow-running processes [36].

To overcome the above problems, transfer learning was used. Transfer learning is a
deep learning method that uses the information collected from an established model to
start over with a different problem [37]. Take AlexNet as an example, as shown in Figure
S1 in the Supplementary Materials. With transfer learning, the entire structure of AlexNet
is divided into two parts: the pre-trained part and the replaced part. The replaced part
is only a small part of the whole network, thus a small training dataset is sufficient for
transfer learning. Meanwhile, transfer learning can help reduce the dependence of deep
networks on computer hardware and training time [38], and more details can be found in
our previous studies [31,39]. In addition, AlexNet, VGG-19, ResNet-18, ResNet-50, and
ResNet-101, below, all refer to the corresponding models that were pre-trained on Imagenet
and re-trained in apple recognition tasks by transfer learning.

2.5. Image Processing

All the images were resized to fit the input size requirements of each pre-trained
network. Specifically, 227 × 227 pixels for AlexNet and 224 × 224 pixels for VGG-19,
ResNet-18, ResNet-50, and ResNet-101.

2.6. Metrics for Performance Evaluation of CNN-Based Models

A confusion matrix is a specific table layout used to describe and visualize the per-
formance of a trained model on a testing set [40]. Common metrics including accuracy,
precision, recall, and F1-score can be computed from the confusion matrix and are used
here to further reflect and compare the CNN-based models’ performance. The equations of
common metrics are shown below, where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1 − score = (2 × Precision × Recall )/(Precision + Recall) (4)

Accuracy refers to the overall classification accuracy, which is a sum of the total correct
positive cases and the total negative cases over the total number of cases; precision is the
proportion of positive cases correctly predicted by the model to the true positive cases;
recall is the proportion of positive cases correctly predicted by the model to the number of
positive cases predicted by the model; and F1-score is the summed average of precision
and recall [41]. In addition, since our study involves a multiclassification task, the macro-
average values of precision, recall, and F1-score were also calculated, i.e., macro-precision,
macro-recall, and macro-F1, and the expressions are given by the following equations [20]:

macro − Precision =
1
n ∑n

i=1 Precisioni (5)



Foods 2023, 12, 885 6 of 16

macro − Recall =
1
n ∑n

i=1 Recalli (6)

macro − F1 =
2 × macro − Precision × macro − Recall

macro − Precision + macro − Recall
(7)

2.7. Visualization Methods

Three visualization methods were applied to deconstruct the five CNN-based models
to improve their interpretability and credibility for food science applications.

2.7.1. Feature Visualization

Images of the feature visualization of the last fully connected layer of each trained
model were generated using the deepDreamImage technique [31].

2.7.2. Strongest Activations

One image of each type of apple was randomly selected from the testing set and fed
into the trained model to show the strongest activations of the last convolutional layer using
the method “Visualize Activations of a Convolutional Neural Network” in Mathworks.

2.7.3. Local Interpretable Model-Agnostic Explanations

One image of an apple was randomly selected from the testing set and fed into the
trained model to show the corresponding local interpretable model-agnostic explana-
tions (LIME) image using the method “local interpretable model-agnostic explanations”
in Mathworks.

2.8. Computer Configuration and Model Hyperparameters

To compare the performance of different CNN-based models, all models were im-
plemented using MATLAB R2020b version, running on the same personal desktop with
an Intel(R) Core i7-9700k CPU*1 and NVIDIA® GeForce RTX 2060 SUPER GPU*1, and
trained by Adaptive Moment Estimation (ADAM). In addition, the same model hyperpa-
rameters were adopted: initial learning rate = 0.00001, learn rate drop factor = 0.1, learn
rate drop period= 10, minibatch size = 64, and Max Epochs = 15. The training progress
of the five models on dataset A and dataset B is shown in Figure S2 and Figure S3 in the
supplementary file, respectively, including classification accuracy and cross-entropy loss
for each epoch of training and validation [42].

3. Results and Discussion
3.1. Performance of the Different Trained Models

The confusion matrices for the testing sets of dataset A and dataset B are shown
in Figures 2 and 3, respectively, with the correct predictions for each category located
on the diagonal of the table and marked in blue and the incorrect predictions for each
category marked in pink. Compared to Figure 2, the number of misclassified images for
each trained model in Figure 3 increased noticeably, resulting in a decrease in the overall
classification accuracy of each trained model. As shown in Table 2, the overall classification
accuracy achieved by all models on dataset A was significantly higher than that of dataset
B, indicating that the dataset configuration had a significant effect on the classification
results. Specifically, models trained with a relatively large training set and tested on a
smaller testing set achieved high overall classification accuracies, especially for VGG-19
and the three ResNets, which achieved over 99% overall classification accuracy on dataset
A. Moreover, in a real-world scenario, testing sets tend to be infinite or unlimited, so to
approach reality [43], we set up dataset B (the size of the testing set is 3.7 times greater than
the training set) for further comparison of the performance of the five models. As expected,
the reduction in the size of the training set and the increase in the size of the testing set posed
a challenge to the models, resulting in a significant decrease in the overall classification
accuracy of all models, as well as other metrics in Tables 3 and 4. This phenomenon is
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consistent with our previous research, such as the classification of tomato varieties using
CNN-based models [44]. However, VGG-19 and the three ResNets still maintained good
performance on dataset B, with an overall classification accuracy greater than 91.9% and a
macro-F1 greater than 92.1%.
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Table 2. Comparison of the different trained models.

AlexNet VGG-19 ResNet-18 ResNet-50 ResNet-101

Type of network Series Series DAG DAG DAG
Connections none none 78 × 2 table 192 × 2 table 379 × 2 table

Running hardware GPU GPU GPU GPU CPU
Layers 25 47 71 177 347

Model size (MB) 204 495 40 84 151
Dataset A (training-to-testing = 2.4:1.0)

Training time (s) 85.4 5716.6 231.3 952.0 20548.0
Testing time (s) 1.0 22.0 1.9 4.6 62.7

Classification time for one image
(ms) 0.5 11.8 1.0 2.5 33.5

Overall classification accuracy
(%) 96.1 100.0 99.0 99.3 99.2

Dataset B (training-to-testing = 1.0:3.7)
Training time (s) 29.0 1707.6 74.6 295.6 6971.6
Testing time (s) 2.3 54.3 4.7 11.8 188.2

Classification time for one image
(ms) 0.4 9.7 0.8 2.1 33.7

Overall classification accuracy
(%) 89.4 93.9 91.9 93.9 93.0

Table 3. Precision, recall, and F1-score of AlexNet- and VGG-19-based models on dataset A and
dataset B.

Dataset A AlexNet VGG-19

Class Precision
(%) Recall (%) F1-Score

(%)
Precision

(%) Recall (%) F1-Score
(%)

1 85.9 88.9 87.4 100.0 100.0 100.0
2 100.0 94.4 97.1 100.0 100.0 100.0
3 100.0 100.0 100.0 100.0 100.0 100.0
4 100.0 100.0 100.0 100.0 100.0 100.0
5 83.7 100.0 91.1 100.0 100.0 100.0
6 100.0 80.6 89.3 100.0 100.0 100.0
7 94.7 100.0 97.3 100.0 100.0 100.0
8 94.7 100.0 97.3 100.0 100.0 100.0
9 93.9 85.4 89.4 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0 100.0 100.0
11 100.0 100.0 100.0 100.0 100.0 100.0
12 100.0 100.0 100.0 100.0 100.0 100.0
13 100.0 100.0 100.0 100.0 100.0 100.0

macro- 96.4 96.1 96.2 100.0 100.0 100.0
Dataset B

Class
1 84.5 84.8 84.6 78.9 87.9 83.2
2 77.5 98.8 86.9 80.3 100.0 89.1
3 92.8 99.8 96.2 99.8 100.0 99.9
4 88.1 100.0 93.7 100.0 100.0 100.0
5 99.6 62.5 76.8 100.0 92.3 96.0
6 77.7 100.0 87.5 92.9 100.0 96.3
7 98.1 72.0 83.0 100.0 77.2 87.1
8 77.9 96.0 86.0 81.3 99.3 89.4
9 86.0 77.6 81.6 100.0 84.6 91.7

10 99.1 100.0 99.5 100.0 100.0 100.0
11 99.7 89.7 94.4 100.0 89.7 94.6
12 98.9 81.1 89.1 100.0 90.2 94.8
13 100.0 99.8 99.9 100.0 100.0 100.0

macro- 90.8 89.4 90.1 94.9 93.9 94.4
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Table 4. Precision, recall, and F1-score of the three ResNet-based models on dataset A and dataset B.

Dataset A ResNet-18 ResNet-50 ResNet-101

Class Precision
(%) Recall (%) F1-Score

(%)
Precision

(%) Recall (%) F1-Score
(%)

Precision
(%) Recall (%) F1-Score

(%)

1 88.9 100.0 94.1 92.8 97.9 95.3 90.6 100.0 95.1
2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0 100.0 100.0 99.3 100.0 99.6
6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.3 99.6
7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
9 100.0 87.5 93.3 97.8 92.4 95.0 100.0 89.6 94.5

10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
11 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
12 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
13 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

macro- 99.1 99.0 99.1 99.3 99.3 99.3 99.2 99.1 99.2
Dataset B

Class
1 87.4 94.2 90.7 89.8 84.4 87.0 83.3 93.9 88.3
2 79.4 100.0 88.5 77.9 100.0 87.6 72.9 99.5 84.1
3 99.8 100.0 99.9 100.0 100.0 100.0 99.5 100.0 99.7
4 99.5 97.9 98.7 100.0 96.0 98.0 99.5 92.8 96.0
5 86.4 85.8 86.1 89.4 97.9 93.5 97.8 83.2 89.9
6 83.0 89.0 85.9 97.0 91.4 94.1 82.0 99.8 90.0
7 98.1 71.8 82.9 95.6 75.8 84.6 99.7 75.5 85.9
8 87.2 89.0 88.1 92.5 91.6 92.0 95.9 87.9 91.7
9 84.8 80.4 82.5 86.5 86.5 86.5 93.7 90.4 92.0

10 99.3 97.2 98.2 99.3 100.0 99.6 100.0 100.0 100.0
11 100.0 93.7 96.7 99.0 96.7 97.8 99.7 88.1 93.5
12 95.6 95.3 95.4 99.3 99.8 99.5 99.8 97.7 98.7
13 100.0 99.8 99.9 99.3 100.0 99.6 100.0 100.0 100.0

macro- 92.3 91.9 92.1 94.3 93.9 94.1 94.1 93.0 93.6

Compared to other studies [19,20,45], which generally employed only one dataset
(more training data–less testing data) to evaluate the performance of CNN-based models,
we set up these two datasets in order to find out the effect of different sizes of training
sets on apple variety classification results, such as classification accuracy, training time,
etc. This is because it is often difficult to obtain large training sets in practice, and even
when large training sets are available, manually labeling them is time-consuming and
laborious work [39]. In addition, a larger training set means more computer resource
consumption and longer training time for the same model, as shown in Table 2. For
this reason, it would be beneficial for the practical use of CNNs if they could produce
desirable and reliable results based on a relatively small training set. Furthermore, it was
also found that for the same type of network (series or DAG network), the model size,
overall classification accuracy, and training and testing times increased as the model depth
(number of layers) increased. This phenomenon is consistent with many recent studies
that suggest that network depth is a key factor in leading the results in image classification
tasks because CNNs automatically learn and integrate (low/med/high-level) features from
the training set to classify images, and the level of features can be improved as the network
depth increases, which contributes to an improvement in classification accuracy to some
extent [33].

In real-world applications, the ultimate goal of a multi-class classification task is to
achieve the most accurate recognition of a single image in the shortest possible time [43].
The recognition time for a single image is a key point to consider when evaluating the
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performance of different models, as it is directly related to the efficiency of the model in
practice, whereas model training is a one-off activity, or at most periodic to maintain and
update its performance [44]. Therefore, although the training times for the models were
long in this case, ranging from a few minutes to several hours, they were still acceptable and
would be further reduced with improvements in computer hardware [39]. For the series
networks, VGG-19 achieved the highest accuracy (i.e., 100% for dataset A and 93.9% for
dataset B) and macro-F1 (i.e., 100% for dataset A and 94.4% for dataset B) on both datasets.
For the DAG networks, ResNet-50 achieved the highest accuracy (i.e., 99.3% for dataset A
and 93.9% for dataset B) and macro-F1 (i.e., 99.3% for dataset A and 94.1% for dataset B) on
both datasets. When comparing these two models, we can easily conclude that VGG-19
has the highest accuracy among the five models. However, the average time for VGG-19
to recognize an image was approximately 4.7 times longer than that of ResNet-50, which
reduces its efficiency in practice. Therefore, ResNet-50 is more practical than VGG-19.
Based on the above, the strengths and weaknesses of each model are summarized in Table 5,
which can be used as a guide for the selection of a suitable model in practice. In addition,
as all models achieved excellent performance on dataset A, a comparison of the feature
visualization, strongest activation, and LIME of the different models trained on dataset A is
presented in the following sections.

Table 5. Strengths and weaknesses of each trained model.

Strengths Weakness

AlexNet Fast training and classifying; good practicality Low accuracy
VGG-19 High accuracy Slow training and classifying

ResNet-18 Fast training and classifying; high accuracy and good practicality
ResNet-50 High accuracy, good practicality

ResNet-101 High accuracy Dependence on high-performance
computers; slow training and classifying

3.2. Model Interpretability Analysis
3.2.1. Feature Visualization

Features are generally the physical characteristics of an object that can be used to
distinguish it from other objects. A fruit has many physical characteristics, including color,
texture, shape, and size, which are used by traditional fixed-feature-based machine learning
methods for recognition and classification tasks, such as detecting the defects or maturity
of fruits [46,47]. However, such fixed, simple, feature-based classifiers are not robust or
suitable for complex tasks because fruits have many inter-class and intra-class similari-
ties and variations, and especially inter-class similarities and intra-class variations pose
significant challenges [6,23]. In contrast to simple fixed-feature-based machine learning
methods, CNNs are able to automatically learn and integrate features from training images
and use them for classification tasks [44]. Specifically, the convolutional layers act as feature
extractors for the input images, whose dimensionality is subsequently reduced by the
pooling layers, and the fully connected layers act as classifiers [48]. Therefore, in this study,
the feature visualization of the last fully connected layer of the different trained models was
used to explain to us how the trained CNNs build an understanding of apple images, i.e.,
the common and high-level features of each type of apple learned by the trained models
from the training set, as shown in Figure 4 [49].

It is clear that the feature visualization images of different trained models differ in
pattern or style even for the same class of apples, suggesting that different models interpret
the same class of apple in different ways. At the same time, although some classes of
apples are very similar in appearance, their corresponding feature visualization images
generated by different models were still different, suggesting that different CNN-based
models learned the true differences between classes of apples [44]. For instance, Golden 3
and Granny Smith (classes 5 and 6 in Figure 1) had distinctly different feature visualization
images for each model despite their similar colors, shapes, and sizes. Moreover, for series
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networks, the feature visualization images generated by AlexNet for each type of apple
show many repeat patterns, while the feature visualization images generated by VGG-19
show a lot of random stripes, which are more abstract than those generated by AlexNet.
For DAG networks, the feature visualization images generated by the three ResNet-based
models were also different and abstract, which is difficult to interpret. This phenomenon is
due to the different depths of the models because CNNs typically build an understanding
of images in a hierarchical way over many layers, where earlier layers learn basic and
low-level features such as colors, edges, textures, or shapes, and later layers learn and
integrate simple features (learned by earlier layers) into increasingly complex and abstract
features, such as patterns, parts, or objects, so that the last fully connected layer learns the
high-level features of each class and uses them for prediction, but sometimes the high-level
features are too abstract to be interpreted [50,51]. Based on this, since deeper layers can
learn the combinations of features learned by the previous layers, the deeper ResNet-based
model implies more convolutional layers, which can extract more advanced and complex
features than the relatively shallow model [29].
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3.2.2. Strongest Activations

The purpose of presenting the strongest activations is to observe and compare how
trained models recognize apples. Figure 5 shows one randomly selected image from each
type of apple in the testing set and the corresponding strongest activations generated by the
last convolutional layer of the different trained models. In the strongest activation images,
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strong positive activation is shown by white pixels and strong negative activation is shown
by black pixels [31]. We focus on the white areas in the images, as they indicate the areas
recognized by the trained models [52]. Interestingly, for series networks, white areas show
that AlexNet and VGG-19 classify apples based on their contours or shapes, whereas for
DAG networks, ResNet-based models classify apples based on their entire region. These
findings are exclusive because, to the best of our knowledge, there are no related papers
that reveal how a CNN-based model recognizes apples, and these results also suggest that
models with different frameworks recognize apples in different ways.
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3.2.3. Local Interpretable Model-Agnostic Explanations

Since LIME typically uses simple and more interpretable models (e.g., linear models or
decision tree models) to locally approximate the predictions of the target black-box model,
LIME was applied here to figure out how CNN-based models make classification decisions
on apple types in order to further improve the interpretability of the models [50,53].

Figure 6 shows the feature importance maps corresponding to each model as deter-
mined by the LIME technique. Specifically, the first row shows the classification results
of the same apple image by the different models, i.e., the three categories that received
the highest classification probabilities are displayed at the top of the image. The second
row shows the recognition region of the image that the model used to classify. The third
row shows the most important features determined by each model [29]. For instance, in
row 1 column 1, AlexNet classified the apple image as Class 6 (Granny Smith) with 100%
probability, and Class 9 (Red 2) and Class 11 (Red Delicious) with 0 probability. For row
2 column 1, the feature map shows which regions of the image were important for the
classification of the apple (Class 6). According to the chromaticity bar, the red regions
have a high importance, i.e., AlexNet focuses on the upper right region of the apple to
predict Class 6, and the prediction accuracy decreases when these regions are removed [53].
For row 3 column 1, it is a masked image and the visible regions need to be focused on
as it indicates the most important features identified by AlexNet, corresponding to the
important regions in the row 2 column 1 image. On this basis, we can find that different
models identify the important features in different regions.

Based on the above, Section 3.2 provides insight into the five CNN-based models
through three visualization methods to explore the models’ working mechanisms in this
task. Specifically, feature visualization images show the different understanding of apple
images by different trained models, while the strongest activations and LIME images
show how and why different trained models make classification decisions. Unfortunately,
some behaviors of the different trained models mentioned in this section, such as why
series networks classify apples based on their contours or shapes while DAG networks
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classify apples based on their entire region, or why different models identify the important
features of apples in different regions, are currently unexplained, as deep learning is still a
“black box” technology and its internal mechanisms are not yet fully understood [25,54].
However, gaining insight into the internal workings of CNNs is valuable, as by revealing the
contribution (or not) of various features to models’ predictions, we can compare differences
in the evidence used by models and professionals in identifying and classifying apples.
These results help us to explain model predictions and build trust in deep learning for
practical applications [50].
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4. Conclusions

Highly automated recognition and classification systems for fruit varieties are very
important and necessary in the future of agriculture and food because they can significantly
reduce labor costs and improve the economic efficiency of fruits from harvest to market.
Five CNNs from two different structures, i.e., series networks (AlexNet and VGG-19)
and DAG networks (ResNet-18, ResNet-50, and ResNet-101), were used on two datasets
to identify and classify 13 classes of apples. Important findings were that (1) the dataset
configuration had a significant effect on the classification results, as the overall classification
accuracy of all models exceeded 96.1% on dataset A (training-to-testing = 2.4:1.0) compared
to 89.4–93.9% on dataset B (training-to-testing = 1.0:3.7); (2) for the same framework
of a network (series or DAG network), the model sizes, accuracies, and training and
testing times increased as the model depth (number of layers) increased; and (3) feature
visualization found that the understanding (learned features) of the apples was different for
different models, and strongest activations images revealed that series networks classified
apples based on their contours or shapes while DAG networks classified apples based
on their entire region, and the LIME technique showed the important features used by
the models to make classification decisions. The obtained results not only show the
applicability of CNNs in apple recognition tasks but also contribute to the interpretability
exploration of CNN-based models and further provide guidance for future applications of
deep learning-based methods in agriculture.
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Our future work is mainly based on the following aspects: (1) Increasing the number
of apple classes used for classification, as the number of apple classes used in this study
is insufficient compared to the global market. (2) Developing a new method that can
automatically perform hyperparameter optimization of the model, as CNN-based methods
are sensitive to hyperparameter optimization, which is usually an empirically based and
time-consuming task. (3) We will continue to investigate the interpretability of CNN-based
models to reveal their inner workings and mechanisms in order to improve the credibility
and trust of users in the food field.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods12040885/s1, Figure S1—Schematic of a pre-trained
network with transfer learning, taking AlexNet as an example; Figure S2—Classification accuracy and
cross-entropy loss for each epoch of training and validation on dataset A; Figure S3—Classification
accuracy and cross-entropy loss for each epoch of training and validation on dataset B.
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